/*
* Copyright (c) 2017, Fuzhou Rockchip Electronics Co., Ltd
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/thermal.h>
#include <linux/timer.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/reboot.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/nvmem-consumer.h>
#include <linux/pm_qos.h>
#include <soc/rockchip/scpi.h>
/**
* If the temperature over a period of time High,
* the resulting TSHUT gave CRU module,let it reset the entire chip,
* or via GPIO give PMIC.
*/
enum tshut_mode {
TSHUT_MODE_CRU = 0,
TSHUT_MODE_GPIO,
};
enum tsadc_mode {
TSADC_AUTO_MODE = 0,
TSHUT_USER_MODE,
};
/**
* the system Temperature Sensors tshut(tshut) polarity
* the bit 8 is tshut polarity.
* 0: low active, 1: high active
*/
enum tshut_polarity {
TSHUT_LOW_ACTIVE = 0,
TSHUT_HIGH_ACTIVE,
};
#define NUM_SENSORS 2
/* TSADC V2 Sensor info define: */
#define TSADCV2_USER_CON 0x00
#define TSADCV2_AUTO_CON 0x04
#define TSADCV2_INT_EN 0x08
#define TSADCV2_INT_PD 0x0c
#define TSADCV2_DATA(chn) (0x20 + (chn) * 0x04)
#define TSADC_CLK_CYCLE_TIME 32 /* usec */
#define TSADCV3_DATA_MASK 0x3ff
/**
* The conversion table has the adc value and temperature.
* ADC_DECREMENT: the adc value is of diminishing.(e.g. rk3288_code_table)
* ADC_INCREMENT: the adc value is incremental.(e.g. rk3368_code_table)
*/
enum adc_sort_mode {
ADC_DECREMENT = 0,
ADC_INCREMENT,
};
#define TIME_OUT_TOTAL 2000
#define INVALID_EFUSE_VALUE 0xff
enum {
ACCESS_FORBIDDEN = 0,
};
#define MIN_TEMP (-40000)
#define MAX_TEMP (125000)
#define INVALID_TEMP INT_MAX
#define BASE (1024)
#define BASE_SHIFT (10)
#define START_BOUNDING_COUNT (100)
#define HIGHER_BOUNDING_TEMP (30)
#define LOWER_BOUNDING_TEMP (15)
/**
* struct tsadc_table - hold information about code and temp mapping
* @code: raw code from tsadc ip
* @temp: the mapping temperature
*/
struct tsadc_table {
unsigned long code;
int temp;
};
/**
* struct chip_tsadc_table - hold information about chip-specific differences
* @id: conversion table
* @length: size of conversion table
* @data_mask: mask to apply on data inputs
* @mode: sort mode of this adc variant (incrementing or decrementing)
*/
struct chip_tsadc_table {
const struct tsadc_table *id;
unsigned int length;
u32 data_mask;
enum adc_sort_mode mode;
};
/**
* struct rk3368_tsadc_chip - hold the private data of tsadc chip
* @chn_id[SOC_MAX_SENSORS]: the sensor id of chip correspond to the channel
* @chn_num: the channel number of tsadc chip
* @tshut_temp: the hardware-controlled shutdown temperature value
* @tshut_mode: the hardware-controlled shutdown mode (0:CRU 1:GPIO)
* @tshut_polarity: the hardware-controlled active polarity (0:LOW 1:HIGH)
* @chip_tsadc_table: the chip-specific conversion table
* @get_temp: get the temperature
* @set_alarm_temp: set the high temperature interrupt
* @set_tshut_temp: set the hardware-controlled shutdown temperature
* @set_tshut_mode: set the hardware-controlled shutdown mode
*/
struct rk3368_tsadc_chip {
int chn_id[NUM_SENSORS];
int chn_num;
long hw_shut_temp;
enum tshut_mode tshut_mode;
enum tsadc_mode mode;
enum tshut_polarity tshut_polarity;
int latency_bound;
const struct chip_tsadc_table *temp_table;
/* Per-sensor methods */
int (*get_temp)(const struct chip_tsadc_table *table,
int chn, void __iomem *reg, int *temp);
void (*set_alarm_temp)(const struct chip_tsadc_table *table,
int chn, void __iomem *reg, int temp);
void (*set_tshut_temp)(const struct chip_tsadc_table *table,
int chn, void __iomem *reg, int temp);
void (*set_tshut_mode)(int chn, void __iomem *reg, enum tshut_mode m);
};
/**
* struct rk3368_thermal_sensor - hold the information of thermal sensor
* @ctx: pointer to the platform/configuration data
* @tzd: pointer to a thermal zone
* @id: identifier of the thermal sensor
*/
struct rk3368_thermal_sensor {
struct rk3368_thermal_data *ctx;
struct thermal_zone_device *tzd;
int id;
};
/**
* struct rk3368_thermal_data - hold the private data of thermal driver
* @chip: pointer to the platform/configuration data
* @pdev: platform device of thermal
* @reset: the reset controller of tsadc
* @sensors[SOC_MAX_SENSORS]: the thermal sensor
* @clk: the controller clock is divided by the external 24MHz
* @pclk: the advanced peripherals bus clock
* @regs: the base address of tsadc controller
* @tshut_temp: the hardware-controlled shutdown temperature value
* @tshut_mode: the hardware-controlled shutdown mode (0:CRU 1:GPIO)
* @tshut_polarity: the hardware-controlled active polarity (0:LOW 1:HIGH)
* @cpu_temp_adjust: efuse value used to ajust the temperature
* @gpu_temp_adjust: efuse value used to ajust the temperature
* @cpu_temp: the current cpu's temperature
* @logout: switch to control log output or not
* @rk3368_thermal_kobj: node in sys fs
*/
struct rk3368_thermal_data {
const struct rk3368_tsadc_chip *chip;
struct platform_device *pdev;
struct reset_control *reset;
struct rk3368_thermal_sensor sensors[NUM_SENSORS];
struct clk *clk;
struct clk *pclk;
void __iomem *regs;
long hw_shut_temp;
enum tshut_mode tshut_mode;
enum tshut_polarity tshut_polarity;
int cpu_temp_adjust;
int gpu_temp_adjust;
int cpu_temp;
bool logout;
struct kobject *rk3368_thermal_kobj;
struct regulator *ref_regulator;
int regulator_uv;
int latency_req;
int latency_bound;
struct notifier_block tsadc_nb;
};
static struct rk3368_thermal_data *thermal_ctx;
static DEFINE_MUTEX(thermal_reg_mutex);
static DEFINE_MUTEX(thermal_lat_mutex);
static const struct tsadc_table code_table_3368[] = {
{0, MIN_TEMP},
{106, MIN_TEMP},
{108, -35000},
{110, -30000},
{112, -25000},
{114, -20000},
{116, -15000},
{118, -10000},
{120, -5000},
{122, 0},
{124, 5000},
{126, 10000},
{128, 15000},
{130, 20000},
{132, 25000},
{134, 30000},
{136, 35000},
{138, 40000},
{140, 45000},
{142, 50000},
{144, 55000},
{146, 60000},
{148, 65000},
{150, 70000},
{152, 75000},
{154, 80000},
{156, 85000},
{158, 90000},
{160, 95000},
{162, 100000},
{163, 105000},
{165, 110000},
{167, 115000},
{169, 120000},
{171, MAX_TEMP},
{TSADCV3_DATA_MASK, MAX_TEMP},
};
static const struct chip_tsadc_table tsadc_table_3368 = {
.id = code_table_3368,
.length = ARRAY_SIZE(code_table_3368),
.data_mask = TSADCV3_DATA_MASK,
.mode = ADC_INCREMENT,
};
static int rk3368_get_ajust_code(struct device_node *np, int *ajust_code)
{
struct nvmem_cell *cell;
unsigned char *buf;
size_t len;
cell = of_nvmem_cell_get(np, "temp_adjust");
if (IS_ERR(cell)) {
pr_err("avs failed to get temp_adjust cell\n");
return PTR_ERR(cell);
}
buf = (unsigned char *)nvmem_cell_read(cell, &len);
nvmem_cell_put(cell);
if (IS_ERR(buf))
return PTR_ERR(buf);
if (buf[0] == INVALID_EFUSE_VALUE)
return -EINVAL;
if (buf[0] & 0x80)
*ajust_code = -(buf[0] & 0x7f);
else
*ajust_code = buf[0];
kfree(buf);
return 0;
}
static struct rk3368_thermal_data *rk3368_thermal_get_data(void)
{
WARN_ON(!thermal_ctx);
return thermal_ctx;
}
static int rk3368_temp_to_code(const struct chip_tsadc_table *tmp_table,
long temp, u32 *code)
{
unsigned int low = 1;
unsigned int high = tmp_table->length - 1;
unsigned int mid = (low + high) / 2;
unsigned int num;
unsigned long denom;
*code = tmp_table->data_mask;
WARN_ON(tmp_table->length < 2);
if (temp < tmp_table->id[low].temp)
return -EAGAIN; /* Incorrect reading */
while (low <= high) {
if (temp == tmp_table->id[mid].temp) {
*code = tmp_table->id[mid].code;
break;
} else if (temp > tmp_table->id[mid].temp) {
low = mid + 1;
} else {
high = mid - 1;
}
mid = (low + high) / 2;
}
/*
* The 5C granularity provided by the table is too much. Let's
* assume that the relationship between sensor readings and
* temperature between 2 table entries is linear and interpolate
* to produce less granular result.
*/
if (*code == tmp_table->data_mask) {
num = abs(tmp_table->id[low].code - tmp_table->id[high].code);
num *= abs(tmp_table->id[high].temp - temp);
denom = abs(tmp_table->id[high].temp - tmp_table->id[low].temp);
*code = tmp_table->id[high].code + (num / denom);
}
return 0;
}
static int rk3368_code_to_temp(const struct chip_tsadc_table *tmp_table,
u32 code, int *temp)
{
unsigned int low = 1;
unsigned int high = tmp_table->length - 1;
unsigned int mid = (low + high) / 2;
unsigned int num;
unsigned long denom;
*temp = INVALID_TEMP;
WARN_ON(tmp_table->length < 2);
switch (tmp_table->mode) {
case ADC_DECREMENT:
code &= tmp_table->data_mask;
if (code < tmp_table->id[high].code)
return -EAGAIN; /* Incorrect reading */
while (low <= high) {
if (code == tmp_table->id[mid].code) {
*temp = tmp_table->id[mid].temp;
break;
} else if (code < tmp_table->id[mid].code) {
low = mid + 1;
} else {
high = mid - 1;
}
mid = (low + high) / 2;
}
break;
case ADC_INCREMENT:
code &= tmp_table->data_mask;
if (code < tmp_table->id[low].code)
return -EAGAIN; /* Incorrect reading */
while (low <= high) {
if (code == tmp_table->id[mid].code) {
*temp = tmp_table->id[mid].temp;
break;
} else if (code > tmp_table->id[mid].code) {
low = mid + 1;
} else {
high = mid - 1;
}
mid = (low + high) / 2;
}
break;
default:
pr_err("Invalid the conversion table\n");
}
/*
* The 5C granularity provided by the table is too much. Let's
* assume that the relationship between sensor readings and
* temperature between 2 table entries is linear and interpolate
* to produce less granular result.
*/
if (*temp == INVALID_TEMP) {
num = abs(tmp_table->id[low].temp - tmp_table->id[high].temp);
num *= abs(tmp_table->id[high].code - code);
denom = abs(tmp_table->id[high].code - tmp_table->id[low].code);
*temp = tmp_table->id[high].temp + (num / denom);
}
return 0;
}
static const struct rk3368_tsadc_chip rk3368_tsadc_data = {
.tshut_mode = TSHUT_MODE_GPIO, /* default TSHUT via GPIO give PMIC */
.tshut_polarity = TSHUT_LOW_ACTIVE, /* default TSHUT LOW ACTIVE */
.latency_bound = 50000, /* default 50000 us */
.hw_shut_temp = 125000,
.mode = TSHUT_USER_MODE,
.chn_num = 2,
.chn_id[0] = 0,
.chn_id[1] = 1,
.temp_table = &tsadc_table_3368,
};
static int rk3368_configure_from_dt(struct device *dev,
struct device_node *np,
struct rk3368_thermal_data *thermal)
{
u32 shut_temp;
u32 rate;
u32 cycle;
int lat_bound;
int ret;
if (of_property_read_u32(np, "clock-frequency", &rate)) {
dev_err(dev, "Missing clock-frequency property in the DT.\n");
return -EINVAL;
}
ret = clk_set_rate(thermal->clk, rate);
cycle = DIV_ROUND_UP(1000000000, rate) / 1000;
if (scpi_thermal_set_clk_cycle(cycle)) {
dev_err(dev, "scpi_thermal_set_clk_cycle error.\n");
return -EINVAL;
}
if (of_property_read_u32(np, "hw-shut-temp", &shut_temp)) {
dev_warn(dev,
"Missing tshut temp property, using default %ld\n",
thermal->chip->hw_shut_temp);
thermal->hw_shut_temp = thermal->chip->hw_shut_temp;
} else {
thermal->hw_shut_temp = shut_temp;
}
if (of_property_read_u32(np, "latency-bound", &lat_bound)) {
dev_warn(dev,
"Missing latency-bound property, using default %d\n",
thermal->chip->latency_bound);
thermal->latency_bound = thermal->chip->latency_bound;
} else {
thermal->latency_bound = lat_bound;
}
if (thermal->hw_shut_temp > INT_MAX) {
dev_err(dev, "Invalid tshut temperature specified: %ld\n",
thermal->hw_shut_temp);
return -ERANGE;
}
return 0;
}
static int predict_temp(int temp)
{
int cov_q = 18;
int cov_r = 542;
int gain;
int temp_mid;
int temp_now;
int prob_mid;
int prob_now;
static int temp_last = 25;
static int prob_last = 20;
static int bounding_cnt;
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
if (!ctx)
return INVALID_TEMP;
if (bounding_cnt++ > START_BOUNDING_COUNT) {
bounding_cnt = START_BOUNDING_COUNT;
if (temp - temp_last > HIGHER_BOUNDING_TEMP)
temp = temp_last + HIGHER_BOUNDING_TEMP / 3;
if (temp_last - temp > LOWER_BOUNDING_TEMP)
temp = temp_last - LOWER_BOUNDING_TEMP / 3;
}
temp_mid = temp_last;
prob_mid = prob_last + cov_q;
gain = (prob_mid * BASE) / (prob_mid + cov_r);
temp_now = temp_mid + (gain * (temp - temp_mid) >> BASE_SHIFT);
prob_now = ((BASE - gain) * prob_mid) >> BASE_SHIFT;
prob_last = prob_now;
temp_last = temp_now;
if (ctx->logout)
pr_info("prob_now %d, temp_last %d, temp %d gain %d", prob_now,
temp_now, temp, gain);
return temp_last;
}
static int get_raw_code_internal(void)
{
u32 val_cpu_pd;
int val_cpu = INVALID_TEMP;
int i;
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
if (!ctx)
return INVALID_TEMP;
/* power up, channel 0 */
writel_relaxed(0x18, ctx->regs + TSADCV2_USER_CON);
udelay(TSADC_CLK_CYCLE_TIME * 2);
/* start working */
writel_relaxed(0x38, ctx->regs + TSADCV2_USER_CON);
udelay(TSADC_CLK_CYCLE_TIME * 13);
/* try 50 times */
for (i = 0; i < 50; i++) {
udelay(TSADC_CLK_CYCLE_TIME);
val_cpu_pd = readl_relaxed(ctx->regs + TSADCV2_INT_PD);
if ((val_cpu_pd & 0x100) == 0x100) {
udelay(1);
/*clear eoc inter */
writel_relaxed(0x100, ctx->regs + TSADCV2_INT_PD);
/*read adc data */
val_cpu = readl_relaxed(ctx->regs + TSADCV2_DATA(0));
break;
}
}
/*power down, channel 0 */
writel_relaxed(0x0, ctx->regs + TSADCV2_USER_CON);
return val_cpu;
}
#define RAW_CODE_MIN (50)
#define RAW_CODE_MAX (225)
static int rk3368_get_raw_code(struct rk3368_thermal_data *ctx)
{
static int old_data = 130;
int tsadc_data = 0;
if (ctx->latency_req > ctx->latency_bound)
tsadc_data = scpi_thermal_get_temperature();
else
tsadc_data = get_raw_code_internal();
if ((tsadc_data < RAW_CODE_MIN) || (tsadc_data > RAW_CODE_MAX))
tsadc_data = old_data;
else
old_data = tsadc_data;
return tsadc_data;
}
static int rk3368_convert_code_2_temp(int tsadc_data, int voltage)
{
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
const struct rk3368_tsadc_chip *tsadc;
int out_temp;
static int old_temp;
int data_adjust;
u32 code_temp;
u32 tmp_code1;
u32 tmp_code2;
if (!ctx)
return INVALID_TEMP;
tsadc = ctx->chip;
rk3368_temp_to_code(tsadc->temp_table,
ctx->cpu_temp_adjust * 1000, &tmp_code1);
rk3368_temp_to_code(tsadc->temp_table, 0, &tmp_code2);
data_adjust = tmp_code1 - tmp_code2;
code_temp =
((tsadc_data * voltage - data_adjust * 1000000) + 500000) / 1000000;
rk3368_code_to_temp(tsadc->temp_table, code_temp, &out_temp);
if (ctx->logout)
pr_info("cpu code temp:[%d, %d], voltage: %d\n",
tsadc_data, out_temp / 1000, voltage);
if ((out_temp < MIN_TEMP) || (out_temp > MAX_TEMP))
out_temp = old_temp;
else
old_temp = out_temp;
ctx->cpu_temp = out_temp / 1000;
return out_temp;
}
static int rk3368_thermal_set_trips(void *_sensor, int low, int high)
{
return 0;
}
static int rk3368_thermal_get_temp(void *_sensor, int *out_temp)
{
int raw_code;
int temp;
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
struct platform_device *pdev;
if (!ctx)
return INVALID_TEMP;
pdev = ctx->pdev;
mutex_lock(&thermal_reg_mutex);
raw_code = rk3368_get_raw_code(ctx);
temp = rk3368_convert_code_2_temp(raw_code, ctx->regulator_uv);
*out_temp = predict_temp(temp / 1000) * 1000;
mutex_unlock(&thermal_reg_mutex);
return 0;
}
static const struct thermal_zone_of_device_ops rk3368_of_thermal_ops = {
.get_temp = rk3368_thermal_get_temp,
.set_trips = rk3368_thermal_set_trips,
};
static int
rk3368_thermal_register_sensor(struct platform_device *pdev,
struct rk3368_thermal_data *ctx,
struct rk3368_thermal_sensor *sensor, int id)
{
int error;
sensor->ctx = ctx;
sensor->id = id;
sensor->tzd = devm_thermal_zone_of_sensor_register(&pdev->dev, id,
sensor,
&rk3368_of_thermal_ops);
if (IS_ERR(sensor->tzd)) {
error = PTR_ERR(sensor->tzd);
dev_err(&pdev->dev, "failed to register sensor %d: %d\n",
id, error);
return error;
}
return 0;
}
/*
* Reset TSADC Controller, reset all tsadc registers.
*/
static void rk3368_thermal_reset_controller(struct reset_control *reset)
{
reset_control_assert(reset);
udelay(10);
reset_control_deassert(reset);
}
static ssize_t rk3368_thermal_temp_adjust_test_store(struct kobject *kobj,
struct kobj_attribute
*attr, const char *buf,
size_t n)
{
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
int getdata;
char cmd;
const char *buftmp = buf;
int ret;
if (!ctx)
return n;
ret = sscanf(buftmp, "%c ", &cmd);
if (ret != 1)
return -EINVAL;
switch (cmd) {
case 'c':
ret = sscanf(buftmp, "%c %d", &cmd, &getdata);
if (ret != 2)
return -EINVAL;
ctx->cpu_temp_adjust = getdata;
pr_info("get cpu_temp_adjust value = %d\n", getdata);
break;
case 'g':
ret = sscanf(buftmp, "%c %d", &cmd, &getdata);
if (ret != 2)
return -EINVAL;
ctx->gpu_temp_adjust = getdata;
pr_info("get gpu_temp_adjust value = %d\n", getdata);
break;
default:
pr_info("Unknown command\n");
break;
}
return n;
}
static ssize_t rk3368_thermal_temp_adjust_test_show(struct kobject *kobj,
struct kobj_attribute
*attr, char *buf)
{
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
char *str = buf;
if (!ctx)
return 0;
str +=
sprintf(str, "rk3368_thermal: cpu:%d, gpu:%d\n",
ctx->cpu_temp_adjust, ctx->gpu_temp_adjust);
return (str - buf);
}
static ssize_t rk3368_thermal_temp_test_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t n)
{
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
char cmd;
const char *buftmp = buf;
int ret;
if (!ctx)
return n;
ret = sscanf(buftmp, "%c", &cmd);
if (ret != 1)
return -EINVAL;
switch (cmd) {
case 't':
ctx->logout = true;
break;
case 'f':
ctx->logout = false;
break;
default:
pr_info("Unknown command\n");
break;
}
return n;
}
static ssize_t rk3368_thermal_temp_test_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
char *str = buf;
if (!ctx)
return 0;
str += sprintf(str, "current cpu_temp:%d\n", ctx->cpu_temp);
return (str - buf);
}
struct rk3368_thermal_attribute {
struct attribute attr;
ssize_t (*show) (struct kobject *kobj, struct kobj_attribute *attr,
char *buf);
ssize_t (*store) (struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t n);
};
static struct rk3368_thermal_attribute rk3368_thermal_attrs[] = {
/*node_name permission show_func store_func */
__ATTR(temp_adjust, 0644,
rk3368_thermal_temp_adjust_test_show,
rk3368_thermal_temp_adjust_test_store),
__ATTR(temp, 0644, rk3368_thermal_temp_test_show,
rk3368_thermal_temp_test_store),
};
static void rk3368_dump_temperature(void)
{
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
struct platform_device *pdev;
if (!ctx)
return;
pdev = ctx->pdev;
if (ctx->cpu_temp != INVALID_TEMP)
dev_warn(&pdev->dev, "cpu channal temperature(%d C)\n",
ctx->cpu_temp);
if (ctx->regs) {
pr_warn("THERMAL REGS:\n");
print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET,
32, 4, ctx->regs, 0x88, false);
}
}
EXPORT_SYMBOL_GPL(rk3368_dump_temperature);
static int rk3368_thermal_panic(struct notifier_block *this,
unsigned long ev, void *ptr)
{
rk3368_dump_temperature();
return NOTIFY_DONE;
}
static struct notifier_block rk3368_thermal_panic_block = {
.notifier_call = rk3368_thermal_panic,
};
static int rk3368_thermal_notify(struct notifier_block *nb,
unsigned long event, void *data)
{
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
struct platform_device *pdev;
if (!ctx)
return NOTIFY_OK;
pdev = ctx->pdev;
if (event & REGULATOR_EVENT_PRE_VOLTAGE_CHANGE) {
mutex_lock(&thermal_reg_mutex);
} else if (event & (REGULATOR_EVENT_VOLTAGE_CHANGE |
REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE)) {
ctx->regulator_uv = (unsigned long)data;
if (mutex_is_locked(&thermal_reg_mutex))
mutex_unlock(&thermal_reg_mutex);
} else {
return NOTIFY_OK;
}
return NOTIFY_OK;
}
/*
* This function gets called when a part of the kernel has a new latency
* requirement. We record this requirement to instruct us to get temperature.
*/
static int tsadc_latency_notify(struct notifier_block *b,
unsigned long l, void *v)
{
struct rk3368_thermal_data *ctx = rk3368_thermal_get_data();
if (!ctx)
return NOTIFY_OK;
mutex_lock(&thermal_lat_mutex);
ctx->latency_req = (int)l;
mutex_unlock(&thermal_lat_mutex);
return NOTIFY_OK;
}
static struct notifier_block tsadc_latency_notifier = {
.notifier_call = tsadc_latency_notify,
};
static inline int tsadc_add_latency_notifier(struct notifier_block *n)
{
return pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY, n);
}
static inline int tsadc_remove_latency_notifier(struct notifier_block *n)
{
return pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY, n);
}
static const struct of_device_id of_rk3368_thermal_match[] = {
{
.compatible = "rockchip,rk3368-tsadc-legacy",
.data = (void *)&rk3368_tsadc_data,
},
{ /* end */ },
};
MODULE_DEVICE_TABLE(of, of_rk3368_thermal_match);
static int rk3368_thermal_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct rk3368_thermal_data *ctx;
const struct of_device_id *match;
struct resource *res;
int irq;
int i, j;
int error;
int uv;
int ajust_code = 0;
int latency_req = 0;
match = of_match_node(of_rk3368_thermal_match, np);
if (!match)
return -ENXIO;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "no irq resource?\n");
return -EINVAL;
}
ctx = devm_kzalloc(&pdev->dev, sizeof(struct rk3368_thermal_data),
GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->pdev = pdev;
ctx->chip = (const struct rk3368_tsadc_chip *)match->data;
if (!ctx->chip)
return -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ctx->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(ctx->regs))
return PTR_ERR(ctx->regs);
ctx->reset = devm_reset_control_get(&pdev->dev, "tsadc-apb");
if (IS_ERR(ctx->reset)) {
error = PTR_ERR(ctx->reset);
dev_err(&pdev->dev, "failed to get tsadc reset: %d\n", error);
return error;
}
ctx->clk = devm_clk_get(&pdev->dev, "tsadc");
if (IS_ERR(ctx->clk)) {
error = PTR_ERR(ctx->clk);
dev_err(&pdev->dev, "failed to get tsadc clock: %d\n", error);
return error;
}
ctx->pclk = devm_clk_get(&pdev->dev, "apb_pclk");
if (IS_ERR(ctx->pclk)) {
error = PTR_ERR(ctx->pclk);
dev_err(&pdev->dev, "failed to get apb_pclk clock: %d\n",
error);
return error;
}
error = clk_prepare_enable(ctx->clk);
if (error) {
dev_err(&pdev->dev, "failed to enable converter clock: %d\n",
error);
return error;
}
error = clk_prepare_enable(ctx->pclk);
if (error) {
dev_err(&pdev->dev, "failed to enable pclk: %d\n", error);
goto err_disable_clk;
}
rk3368_thermal_reset_controller(ctx->reset);
error = rk3368_configure_from_dt(&pdev->dev, np, ctx);
if (error) {
dev_err(&pdev->dev, "failed to parse device tree data: %d\n",
error);
goto err_disable_pclk;
}
thermal_ctx = ctx;
ctx->ref_regulator = devm_regulator_get_optional(&pdev->dev, "tsadc");
if (IS_ERR(ctx->ref_regulator)) {
error = PTR_ERR(ctx->ref_regulator);
if (error != -EPROBE_DEFER)
dev_err(&pdev->dev,
"couldn't get regulator tsadc-supply\n");
goto err_disable_pclk;
}
ctx->tsadc_nb.notifier_call = rk3368_thermal_notify;
/* register regulator notifier */
error =
regulator_register_notifier(ctx->ref_regulator, &ctx->tsadc_nb);
if (error) {
dev_err(&pdev->dev, "regulator notifier request failed\n");
goto err_disable_pclk;
}
uv = regulator_get_voltage(ctx->ref_regulator);
if (uv <= 0) {
dev_WARN(&pdev->dev, "regulator get failed\n");
uv = 1000000;
}
mutex_lock(&thermal_reg_mutex);
if (!ctx->regulator_uv)
ctx->regulator_uv = uv;
mutex_unlock(&thermal_reg_mutex);
error = tsadc_add_latency_notifier(&tsadc_latency_notifier);
if (error) {
dev_err(&pdev->dev, "latency notifier request failed\n");
goto err_unreg_notifier;
}
latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
mutex_lock(&thermal_lat_mutex);
if (!ctx->latency_req)
ctx->latency_req = latency_req;
mutex_unlock(&thermal_lat_mutex);
rk3368_get_ajust_code(np, &ajust_code);
ctx->cpu_temp_adjust = (int)ajust_code;
for (i = 0; i < ctx->chip->chn_num; i++) {
error = rk3368_thermal_register_sensor(pdev, ctx,
&ctx->sensors[i],
ctx->chip->chn_id[i]);
if (error) {
dev_err(&pdev->dev,
"failed to register thermal sensor %d : error= %d\n",
i, error);
for (j = 0; j < i; j++)
thermal_zone_of_sensor_unregister(&pdev->dev,
ctx->sensors[j].tzd);
goto err_remove_latancy_notifier;
}
}
ctx->rk3368_thermal_kobj =
kobject_create_and_add("rk3368_thermal", NULL);
if (!ctx->rk3368_thermal_kobj) {
error = -ENOMEM;
dev_err(&pdev->dev,
"failed to creat debug node : error= %d\n", error);
goto err_remove_latancy_notifier;
}
for (i = 0; i < ARRAY_SIZE(rk3368_thermal_attrs); i++) {
error =
sysfs_create_file(ctx->rk3368_thermal_kobj,
&rk3368_thermal_attrs[i].attr);
if (error) {
dev_err(&pdev->dev,
"failed to register thermal sensor %d : error= %d\n",
i, error);
for (j = 0; j < i; j++)
sysfs_remove_file(ctx->rk3368_thermal_kobj,
&rk3368_thermal_attrs[j].attr);
goto err_remove_latancy_notifier;
}
}
platform_set_drvdata(pdev, ctx);
atomic_notifier_chain_register(&panic_notifier_list,
&rk3368_thermal_panic_block);
ctx->cpu_temp = INVALID_TEMP;
pr_info("rk3368 tsadc probed successfully\n");
return 0;
err_remove_latancy_notifier:
tsadc_remove_latency_notifier(&tsadc_latency_notifier);
err_unreg_notifier:
regulator_unregister_notifier(ctx->ref_regulator, &ctx->tsadc_nb);
err_disable_pclk:
clk_disable_unprepare(ctx->pclk);
err_disable_clk:
clk_disable_unprepare(ctx->clk);
return error;
}
static int rk3368_thermal_remove(struct platform_device *pdev)
{
struct rk3368_thermal_data *ctx = platform_get_drvdata(pdev);
int i;
atomic_notifier_chain_unregister(&panic_notifier_list,
&rk3368_thermal_panic_block);
for (i = 0; i < ctx->chip->chn_num; i++) {
struct rk3368_thermal_sensor *sensor = &ctx->sensors[i];
thermal_zone_of_sensor_unregister(&pdev->dev, sensor->tzd);
}
tsadc_remove_latency_notifier(&tsadc_latency_notifier);
regulator_unregister_notifier(ctx->ref_regulator, &ctx->tsadc_nb);
clk_disable_unprepare(ctx->pclk);
clk_disable_unprepare(ctx->clk);
return 0;
}
static int __maybe_unused rk3368_thermal_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rk3368_thermal_data *ctx = platform_get_drvdata(pdev);
clk_disable(ctx->pclk);
clk_disable(ctx->clk);
return 0;
}
static int __maybe_unused rk3368_thermal_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rk3368_thermal_data *ctx = platform_get_drvdata(pdev);
int error;
error = clk_enable(ctx->clk);
if (error)
return error;
error = clk_enable(ctx->pclk);
if (error) {
clk_disable(ctx->clk);
return error;
}
rk3368_thermal_reset_controller(ctx->reset);
return 0;
}
static SIMPLE_DEV_PM_OPS(rk3368_thermal_pm_ops,
rk3368_thermal_suspend, rk3368_thermal_resume);
static struct platform_driver rk3368_thermal_driver = {
.driver = {
.name = "rk3368-thermal",
.pm = &rk3368_thermal_pm_ops,
.of_match_table = of_rk3368_thermal_match,
},
.probe = rk3368_thermal_probe,
.remove = rk3368_thermal_remove,
};
/* rk3368 thermal needs a clock source of 32k from rk818, so this init process
* is postponed
*/
static int __init rk3368_thermal_init_driver(void)
{
return platform_driver_register(&rk3368_thermal_driver);
}
late_initcall(rk3368_thermal_init_driver);
MODULE_DESCRIPTION("ROCKCHIP THERMAL Driver");
MODULE_AUTHOR("Rockchip, Inc.");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:rk3368-thermal");