/*
* Rockchip MIPI RX Synopsys/Innosilicon DPHY driver
*
* Copyright (C) 2017 Fuzhou Rockchip Electronics Co., Ltd.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <media/media-entity.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
#include <media/v4l2-device.h>
#include <linux/rockchip/cpu.h>
/* GRF */
#define RK1808_GRF_PD_VI_CON_OFFSET 0x0430
#define RK3288_GRF_SOC_CON6 0x025c
#define RK3288_GRF_SOC_CON8 0x0264
#define RK3288_GRF_SOC_CON9 0x0268
#define RK3288_GRF_SOC_CON10 0x026c
#define RK3288_GRF_SOC_CON14 0x027c
#define RK3288_GRF_SOC_STATUS21 0x02d4
#define RK3288_GRF_IO_VSEL 0x0380
#define RK3288_GRF_SOC_CON15 0x03a4
#define RK3326_GRF_IO_VSEL_OFFSET 0x0180
#define RK3326_GRF_PD_VI_CON_OFFSET 0x0430
#define RK3368_GRF_SOC_CON6_OFFSET 0x0418
#define RK3368_GRF_IO_VSEL_OFFSET 0x0900
#define RK3399_GRF_SOC_CON9 0x6224
#define RK3399_GRF_SOC_CON21 0x6254
#define RK3399_GRF_SOC_CON22 0x6258
#define RK3399_GRF_SOC_CON23 0x625c
#define RK3399_GRF_SOC_CON24 0x6260
#define RK3399_GRF_SOC_CON25 0x6264
#define RK3399_GRF_SOC_STATUS1 0xe2a4
#define RK3399_GRF_IO_VSEL 0x0900
#define RV1126_GRF_CSIPHY0_CON 0x10200
#define RV1126_GRF_CSIPHY1_CON 0x10210
#define RV1126_GRF_IOFUNC_CON3 0x1026c
#define RV1126_GRF_PHY1_SEL_CIFLITE BIT(2)
#define RV1126_GRF_PHY1_SEL_ISP BIT(1)
#define RV1126_GRF_PHY1_SEL_CIF BIT(0)
/* PHY */
#define RK3288_PHY_TEST_CTRL0 0x30
#define RK3288_PHY_TEST_CTRL1 0x34
#define RK3288_PHY_SHUTDOWNZ 0x08
#define RK3288_PHY_RSTZ 0x0c
#define RK3399_PHY_TEST_CTRL0 0xb4
#define RK3399_PHY_TEST_CTRL1 0xb8
#define RK3399_PHY_SHUTDOWNZ 0xa0
#define RK3399_PHY_RSTZ 0xa0
#define CLOCK_LANE_HS_RX_CONTROL 0x34
#define LANE0_HS_RX_CONTROL 0x44
#define LANE1_HS_RX_CONTROL 0x54
#define LANE2_HS_RX_CONTROL 0x84
#define LANE3_HS_RX_CONTROL 0x94
#define HS_RX_DATA_LANES_THS_SETTLE_CONTROL 0x75
/* LOW POWER MODE SET */
#define MIPI_CSI_DPHY_CTRL_INVALID_OFFSET 0xFFFF
#define RK1808_CSI_DPHY_CTRL_LANE_ENABLE 0x00
#define RK1808_CSI_DPHY_CTRL_PWRCTL \
MIPI_CSI_DPHY_CTRL_INVALID_OFFSET
#define RK1808_CSI_DPHY_CTRL_DIG_RST 0x80
#define RK3326_CSI_DPHY_CTRL_LANE_ENABLE 0x00
#define RK3326_CSI_DPHY_CTRL_PWRCTL 0x04
#define RK3326_CSI_DPHY_CTRL_DIG_RST 0x80
#define RK3368_CSI_DPHY_CTRL_LANE_ENABLE 0x00
#define RK3368_CSI_DPHY_CTRL_PWRCTL 0x04
#define RK3368_CSI_DPHY_CTRL_DIG_RST 0x80
#define RV1126_CSI_DPHY_CTRL_LANE_ENABLE 0x00
#define RV1126_CSI_DPHY_CTRL_PWRCTL \
MIPI_CSI_DPHY_CTRL_INVALID_OFFSET
#define RV1126_CSI_DPHY_CTRL_DIG_RST 0x80
#define MIPI_CSI_DPHY_CTRL_DATALANE_ENABLE_OFFSET_BIT 2
#define MIPI_CSI_DPHY_CTRL_CLKLANE_ENABLE_OFFSET_BIT 6
/* Configure the count time of the THS-SETTLE by protocol. */
#define RK1808_CSI_DPHY_CLK_WR_THS_SETTLE 0x160
#define RK1808_CSI_DPHY_LANE0_WR_THS_SETTLE \
(RK1808_CSI_DPHY_CLK_WR_THS_SETTLE + 0x80)
#define RK1808_CSI_DPHY_LANE1_WR_THS_SETTLE \
(RK1808_CSI_DPHY_LANE0_WR_THS_SETTLE + 0x80)
#define RK1808_CSI_DPHY_LANE2_WR_THS_SETTLE \
(RK1808_CSI_DPHY_LANE1_WR_THS_SETTLE + 0x80)
#define RK1808_CSI_DPHY_LANE3_WR_THS_SETTLE \
(RK1808_CSI_DPHY_LANE2_WR_THS_SETTLE + 0x80)
#define RK3326_CSI_DPHY_CLK_WR_THS_SETTLE 0x100
#define RK3326_CSI_DPHY_LANE0_WR_THS_SETTLE \
(RK3326_CSI_DPHY_CLK_WR_THS_SETTLE + 0x80)
#define RK3326_CSI_DPHY_LANE1_WR_THS_SETTLE \
(RK3326_CSI_DPHY_LANE0_WR_THS_SETTLE + 0x80)
#define RK3326_CSI_DPHY_LANE2_WR_THS_SETTLE \
(RK3326_CSI_DPHY_LANE1_WR_THS_SETTLE + 0x80)
#define RK3326_CSI_DPHY_LANE3_WR_THS_SETTLE \
(RK3326_CSI_DPHY_LANE2_WR_THS_SETTLE + 0x80)
#define RK3326S_CSI_DPHY_CLK_WR_THS_SETTLE 0x160
#define RK3326S_CSI_DPHY_LANE0_WR_THS_SETTLE \
(RK3326S_CSI_DPHY_CLK_WR_THS_SETTLE + 0x80)
#define RK3326S_CSI_DPHY_LANE1_WR_THS_SETTLE \
(RK3326S_CSI_DPHY_LANE0_WR_THS_SETTLE + 0x80)
#define RK3326S_CSI_DPHY_LANE2_WR_THS_SETTLE \
(RK3326S_CSI_DPHY_LANE1_WR_THS_SETTLE + 0x80)
#define RK3326S_CSI_DPHY_LANE3_WR_THS_SETTLE \
(RK3326S_CSI_DPHY_LANE2_WR_THS_SETTLE + 0x80)
#define RK3326S_CSI_DPHY_CLK_MODE 0x128
#define RK3368_CSI_DPHY_CLK_WR_THS_SETTLE 0x100
#define RK3368_CSI_DPHY_LANE0_WR_THS_SETTLE \
(RK3368_CSI_DPHY_CLK_WR_THS_SETTLE + 0x80)
#define RK3368_CSI_DPHY_LANE1_WR_THS_SETTLE \
(RK3368_CSI_DPHY_LANE0_WR_THS_SETTLE + 0x80)
#define RK3368_CSI_DPHY_LANE2_WR_THS_SETTLE \
(RK3368_CSI_DPHY_LANE1_WR_THS_SETTLE + 0x80)
#define RK3368_CSI_DPHY_LANE3_WR_THS_SETTLE \
(RK3368_CSI_DPHY_LANE2_WR_THS_SETTLE + 0x80)
#define RV1126_CSI_DPHY_CLK_WR_THS_SETTLE 0x160
#define RV1126_CSI_DPHY_LANE0_WR_THS_SETTLE 0x1e0
#define RV1126_CSI_DPHY_LANE1_WR_THS_SETTLE 0x260
#define RV1126_CSI_DPHY_LANE2_WR_THS_SETTLE 0x2e0
#define RV1126_CSI_DPHY_LANE3_WR_THS_SETTLE 0x360
/* Calibration reception enable */
#define RK1808_CSI_DPHY_CLK_CALIB_EN 0x168
#define RK1808_CSI_DPHY_LANE0_CALIB_EN 0x1e8
#define RK1808_CSI_DPHY_LANE1_CALIB_EN 0x268
#define RK1808_CSI_DPHY_LANE2_CALIB_EN 0x2e8
#define RK1808_CSI_DPHY_LANE3_CALIB_EN 0x368
#define RK3326_CSI_DPHY_CLK_CALIB_EN \
MIPI_CSI_DPHY_CTRL_INVALID_OFFSET
#define RK3326_CSI_DPHY_LANE0_CALIB_EN \
MIPI_CSI_DPHY_CTRL_INVALID_OFFSET
#define RK3326_CSI_DPHY_LANE1_CALIB_EN \
MIPI_CSI_DPHY_CTRL_INVALID_OFFSET
#define RK3326_CSI_DPHY_LANE2_CALIB_EN \
MIPI_CSI_DPHY_CTRL_INVALID_OFFSET
#define RK3326_CSI_DPHY_LANE3_CALIB_EN \
MIPI_CSI_DPHY_CTRL_INVALID_OFFSET
#define RK3368_CSI_DPHY_CLK_CALIB_EN \
MIPI_CSI_DPHY_CTRL_INVALID_OFFSET
#define RK3368_CSI_DPHY_LANE0_CALIB_EN \
MIPI_CSI_DPHY_CTRL_INVALID_OFFSET
#define RK3368_CSI_DPHY_LANE1_CALIB_EN \
MIPI_CSI_DPHY_CTRL_INVALID_OFFSET
#define RK3368_CSI_DPHY_LANE2_CALIB_EN \
MIPI_CSI_DPHY_CTRL_INVALID_OFFSET
#define RK3368_CSI_DPHY_LANE3_CALIB_EN \
MIPI_CSI_DPHY_CTRL_INVALID_OFFSET
#define RV1126_CSI_DPHY_CLK_CALIB_EN 0x168
#define RV1126_CSI_DPHY_LANE0_CALIB_EN 0x1e8
#define RV1126_CSI_DPHY_LANE1_CALIB_EN 0x268
#define RV1126_CSI_DPHY_LANE2_CALIB_EN 0x2e8
#define RV1126_CSI_DPHY_LANE3_CALIB_EN 0x368
#define RV1126_CSI_DPHY_MIPI_LVDS_MODEL 0x2cc
#define RV1126_CSI_DPHY_LVDS_MODE 0x300
/*
* CSI HOST
*/
#define PHY_TESTEN_ADDR (0x1 << 16)
#define PHY_TESTEN_DATA (0x0 << 16)
#define PHY_TESTCLK (0x1 << 1)
#define PHY_TESTCLR (0x1 << 0)
#define THS_SETTLE_COUNTER_THRESHOLD 0x04
#define HIWORD_UPDATE(val, mask, shift) \
((val) << (shift) | (mask) << ((shift) + 16))
enum mipi_dphy_chip_id {
CHIP_ID_RK1808 = 0,
CHIP_ID_RK3288,
CHIP_ID_RK3326,
CHIP_ID_RK3368,
CHIP_ID_RK3399,
CHIP_ID_RK1126,
CHIP_ID_RK3326S,
};
enum mipi_dphy_rx_pads {
MIPI_DPHY_RX_PAD_SINK = 0,
MIPI_DPHY_RX_PAD_SOURCE,
MIPI_DPHY_RX_PADS_NUM,
};
enum dphy_reg_id {
GRF_DPHY_RX0_TURNDISABLE = 0,
GRF_DPHY_RX0_FORCERXMODE,
GRF_DPHY_RX0_FORCETXSTOPMODE,
GRF_DPHY_RX0_ENABLE,
GRF_DPHY_RX0_TESTCLR,
GRF_DPHY_RX0_TESTCLK,
GRF_DPHY_RX0_TESTEN,
GRF_DPHY_RX0_TESTDIN,
GRF_DPHY_RX0_TURNREQUEST,
GRF_DPHY_RX0_TESTDOUT,
GRF_DPHY_TX0_TURNDISABLE,
GRF_DPHY_TX0_FORCERXMODE,
GRF_DPHY_TX0_FORCETXSTOPMODE,
GRF_DPHY_TX0_TURNREQUEST,
GRF_DPHY_TX1RX1_TURNDISABLE,
GRF_DPHY_TX1RX1_FORCERXMODE,
GRF_DPHY_TX1RX1_FORCETXSTOPMODE,
GRF_DPHY_TX1RX1_ENABLE,
GRF_DPHY_TX1RX1_MASTERSLAVEZ,
GRF_DPHY_TX1RX1_BASEDIR,
GRF_DPHY_TX1RX1_ENABLECLK,
GRF_DPHY_TX1RX1_TURNREQUEST,
GRF_DPHY_RX1_SRC_SEL,
/* rk3288 only */
GRF_CON_DISABLE_ISP,
GRF_CON_ISP_DPHY_SEL,
GRF_DSI_CSI_TESTBUS_SEL,
GRF_DVP_V18SEL,
/* rk1808 & rk3326 & rv1126 */
GRF_DPHY_CSIPHY_FORCERXMODE,
GRF_DPHY_CSIPHY_CLKLANE_EN,
GRF_DPHY_CSIPHY_DATALANE_EN,
/* rv1126 only */
GRF_DPHY_CLK_INV_SEL,
GRF_DPHY_SEL,
/* rk3368 only */
GRF_ISP_MIPI_CSI_HOST_SEL,
/* below is for rk3399 only */
GRF_DPHY_RX0_CLK_INV_SEL,
GRF_DPHY_RX1_CLK_INV_SEL,
GRF_DPHY_TX1RX1_SRC_SEL,
};
enum csiphy_reg_id {
CSIPHY_CTRL_LANE_ENABLE = 0,
CSIPHY_CTRL_PWRCTL,
CSIPHY_CTRL_DIG_RST,
CSIPHY_CLK_THS_SETTLE,
CSIPHY_LANE0_THS_SETTLE,
CSIPHY_LANE1_THS_SETTLE,
CSIPHY_LANE2_THS_SETTLE,
CSIPHY_LANE3_THS_SETTLE,
CSIPHY_CLK_CALIB_ENABLE,
CSIPHY_LANE0_CALIB_ENABLE,
CSIPHY_LANE1_CALIB_ENABLE,
CSIPHY_LANE2_CALIB_ENABLE,
CSIPHY_LANE3_CALIB_ENABLE,
//rv1126 only
CSIPHY_MIPI_LVDS_MODEL,
CSIPHY_LVDS_MODE,
CSIPHY_CLK_MODE,
};
enum mipi_dphy_ctl_type {
MIPI_DPHY_CTL_GRF_ONLY = 0,
MIPI_DPHY_CTL_CSI_HOST
};
enum mipi_dphy_lane {
MIPI_DPHY_LANE_CLOCK = 0,
MIPI_DPHY_LANE_DATA0,
MIPI_DPHY_LANE_DATA1,
MIPI_DPHY_LANE_DATA2,
MIPI_DPHY_LANE_DATA3
};
enum txrx_reg_id {
TXRX_PHY_TEST_CTRL0 = 0,
TXRX_PHY_TEST_CTRL1,
TXRX_PHY_SHUTDOWNZ,
TXRX_PHY_RSTZ,
};
struct dphy_reg {
u32 offset;
u32 mask;
u32 shift;
};
struct txrx_reg {
u32 offset;
};
struct csiphy_reg {
u32 offset;
};
#define PHY_REG(_offset, _width, _shift) \
{ .offset = _offset, .mask = BIT(_width) - 1, .shift = _shift, }
#define TXRX_REG(_offset) \
{ .offset = _offset, }
#define CSIPHY_REG(_offset) \
{ .offset = _offset, }
static const struct dphy_reg rk1808_grf_dphy_regs[] = {
[GRF_DPHY_CSIPHY_FORCERXMODE] = PHY_REG(RK1808_GRF_PD_VI_CON_OFFSET, 4, 0),
[GRF_DPHY_CSIPHY_CLKLANE_EN] = PHY_REG(RK1808_GRF_PD_VI_CON_OFFSET, 1, 8),
[GRF_DPHY_CSIPHY_DATALANE_EN] = PHY_REG(RK1808_GRF_PD_VI_CON_OFFSET, 4, 4),
};
static const struct dphy_reg rk3288_grf_dphy_regs[] = {
[GRF_CON_DISABLE_ISP] = PHY_REG(RK3288_GRF_SOC_CON6, 1, 0),
[GRF_CON_ISP_DPHY_SEL] = PHY_REG(RK3288_GRF_SOC_CON6, 1, 1),
[GRF_DSI_CSI_TESTBUS_SEL] = PHY_REG(RK3288_GRF_SOC_CON6, 1, 14),
[GRF_DPHY_TX0_TURNDISABLE] = PHY_REG(RK3288_GRF_SOC_CON8, 4, 0),
[GRF_DPHY_TX0_FORCERXMODE] = PHY_REG(RK3288_GRF_SOC_CON8, 4, 4),
[GRF_DPHY_TX0_FORCETXSTOPMODE] = PHY_REG(RK3288_GRF_SOC_CON8, 4, 8),
[GRF_DPHY_TX1RX1_TURNDISABLE] = PHY_REG(RK3288_GRF_SOC_CON9, 4, 0),
[GRF_DPHY_TX1RX1_FORCERXMODE] = PHY_REG(RK3288_GRF_SOC_CON9, 4, 4),
[GRF_DPHY_TX1RX1_FORCETXSTOPMODE] = PHY_REG(RK3288_GRF_SOC_CON9, 4, 8),
[GRF_DPHY_TX1RX1_ENABLE] = PHY_REG(RK3288_GRF_SOC_CON9, 4, 12),
[GRF_DPHY_RX0_TURNDISABLE] = PHY_REG(RK3288_GRF_SOC_CON10, 4, 0),
[GRF_DPHY_RX0_FORCERXMODE] = PHY_REG(RK3288_GRF_SOC_CON10, 4, 4),
[GRF_DPHY_RX0_FORCETXSTOPMODE] = PHY_REG(RK3288_GRF_SOC_CON10, 4, 8),
[GRF_DPHY_RX0_ENABLE] = PHY_REG(RK3288_GRF_SOC_CON10, 4, 12),
[GRF_DPHY_RX0_TESTCLR] = PHY_REG(RK3288_GRF_SOC_CON14, 1, 0),
[GRF_DPHY_RX0_TESTCLK] = PHY_REG(RK3288_GRF_SOC_CON14, 1, 1),
[GRF_DPHY_RX0_TESTEN] = PHY_REG(RK3288_GRF_SOC_CON14, 1, 2),
[GRF_DPHY_RX0_TESTDIN] = PHY_REG(RK3288_GRF_SOC_CON14, 8, 3),
[GRF_DPHY_TX1RX1_ENABLECLK] = PHY_REG(RK3288_GRF_SOC_CON14, 1, 12),
[GRF_DPHY_RX1_SRC_SEL] = PHY_REG(RK3288_GRF_SOC_CON14, 1, 13),
[GRF_DPHY_TX1RX1_MASTERSLAVEZ] = PHY_REG(RK3288_GRF_SOC_CON14, 1, 14),
[GRF_DPHY_TX1RX1_BASEDIR] = PHY_REG(RK3288_GRF_SOC_CON14, 1, 15),
[GRF_DPHY_RX0_TURNREQUEST] = PHY_REG(RK3288_GRF_SOC_CON15, 4, 0),
[GRF_DPHY_TX1RX1_TURNREQUEST] = PHY_REG(RK3288_GRF_SOC_CON15, 4, 4),
[GRF_DPHY_TX0_TURNREQUEST] = PHY_REG(RK3288_GRF_SOC_CON15, 3, 8),
[GRF_DVP_V18SEL] = PHY_REG(RK3288_GRF_IO_VSEL, 1, 1),
[GRF_DPHY_RX0_TESTDOUT] = PHY_REG(RK3288_GRF_SOC_STATUS21, 8, 0),
};
static const struct dphy_reg rk3326_grf_dphy_regs[] = {
[GRF_DVP_V18SEL] = PHY_REG(RK3326_GRF_IO_VSEL_OFFSET, 1, 4),
[GRF_DPHY_CSIPHY_FORCERXMODE] = PHY_REG(RK3326_GRF_PD_VI_CON_OFFSET, 4, 0),
[GRF_DPHY_CSIPHY_CLKLANE_EN] = PHY_REG(RK3326_GRF_PD_VI_CON_OFFSET, 1, 8),
[GRF_DPHY_CSIPHY_DATALANE_EN] = PHY_REG(RK3326_GRF_PD_VI_CON_OFFSET, 4, 4),
};
static const struct dphy_reg rk3368_grf_dphy_regs[] = {
[GRF_DVP_V18SEL] = PHY_REG(RK3368_GRF_IO_VSEL_OFFSET, 1, 1),
[GRF_DPHY_CSIPHY_FORCERXMODE] = PHY_REG(RK3368_GRF_SOC_CON6_OFFSET, 4, 8),
[GRF_ISP_MIPI_CSI_HOST_SEL] = PHY_REG(RK3368_GRF_SOC_CON6_OFFSET, 1, 1),
[GRF_CON_DISABLE_ISP] = PHY_REG(RK3368_GRF_SOC_CON6_OFFSET, 1, 0),
};
static const struct dphy_reg rk3399_grf_dphy_regs[] = {
[GRF_DPHY_RX0_TURNREQUEST] = PHY_REG(RK3399_GRF_SOC_CON9, 4, 0),
[GRF_DPHY_RX0_CLK_INV_SEL] = PHY_REG(RK3399_GRF_SOC_CON9, 1, 10),
[GRF_DPHY_RX1_CLK_INV_SEL] = PHY_REG(RK3399_GRF_SOC_CON9, 1, 11),
[GRF_DPHY_RX0_ENABLE] = PHY_REG(RK3399_GRF_SOC_CON21, 4, 0),
[GRF_DPHY_RX0_FORCERXMODE] = PHY_REG(RK3399_GRF_SOC_CON21, 4, 4),
[GRF_DPHY_RX0_FORCETXSTOPMODE] = PHY_REG(RK3399_GRF_SOC_CON21, 4, 8),
[GRF_DPHY_RX0_TURNDISABLE] = PHY_REG(RK3399_GRF_SOC_CON21, 4, 12),
[GRF_DPHY_TX0_FORCERXMODE] = PHY_REG(RK3399_GRF_SOC_CON22, 4, 0),
[GRF_DPHY_TX0_FORCETXSTOPMODE] = PHY_REG(RK3399_GRF_SOC_CON22, 4, 4),
[GRF_DPHY_TX0_TURNDISABLE] = PHY_REG(RK3399_GRF_SOC_CON22, 4, 8),
[GRF_DPHY_TX0_TURNREQUEST] = PHY_REG(RK3399_GRF_SOC_CON22, 4, 12),
[GRF_DPHY_TX1RX1_ENABLE] = PHY_REG(RK3399_GRF_SOC_CON23, 4, 0),
[GRF_DPHY_TX1RX1_FORCERXMODE] = PHY_REG(RK3399_GRF_SOC_CON23, 4, 4),
[GRF_DPHY_TX1RX1_FORCETXSTOPMODE] = PHY_REG(RK3399_GRF_SOC_CON23, 4, 8),
[GRF_DPHY_TX1RX1_TURNDISABLE] = PHY_REG(RK3399_GRF_SOC_CON23, 4, 12),
[GRF_DPHY_TX1RX1_TURNREQUEST] = PHY_REG(RK3399_GRF_SOC_CON24, 4, 0),
[GRF_DPHY_TX1RX1_SRC_SEL] = PHY_REG(RK3399_GRF_SOC_CON24, 1, 4),
[GRF_DPHY_TX1RX1_BASEDIR] = PHY_REG(RK3399_GRF_SOC_CON24, 1, 5),
[GRF_DPHY_TX1RX1_ENABLECLK] = PHY_REG(RK3399_GRF_SOC_CON24, 1, 6),
[GRF_DPHY_TX1RX1_MASTERSLAVEZ] = PHY_REG(RK3399_GRF_SOC_CON24, 1, 7),
[GRF_DPHY_RX0_TESTDIN] = PHY_REG(RK3399_GRF_SOC_CON25, 8, 0),
[GRF_DPHY_RX0_TESTEN] = PHY_REG(RK3399_GRF_SOC_CON25, 1, 8),
[GRF_DPHY_RX0_TESTCLK] = PHY_REG(RK3399_GRF_SOC_CON25, 1, 9),
[GRF_DPHY_RX0_TESTCLR] = PHY_REG(RK3399_GRF_SOC_CON25, 1, 10),
[GRF_DPHY_RX0_TESTDOUT] = PHY_REG(RK3399_GRF_SOC_STATUS1, 8, 0),
[GRF_DVP_V18SEL] = PHY_REG(RK3399_GRF_IO_VSEL, 1, 1),
};
static const struct dphy_reg rv1126_grf_dphy0_regs[] = {
[GRF_DPHY_CSIPHY_FORCERXMODE] = PHY_REG(RV1126_GRF_CSIPHY0_CON, 4, 0),
[GRF_DPHY_CSIPHY_DATALANE_EN] = PHY_REG(RV1126_GRF_CSIPHY0_CON, 4, 4),
[GRF_DPHY_CSIPHY_CLKLANE_EN] = PHY_REG(RV1126_GRF_CSIPHY0_CON, 1, 8),
[GRF_DPHY_CLK_INV_SEL] = PHY_REG(RV1126_GRF_CSIPHY0_CON, 1, 9),
[GRF_DPHY_SEL] = PHY_REG(RV1126_GRF_IOFUNC_CON3, 3, 9),
};
static const struct dphy_reg rv1126_grf_dphy1_regs[] = {
[GRF_DPHY_CSIPHY_FORCERXMODE] = PHY_REG(RV1126_GRF_CSIPHY1_CON, 4, 0),
[GRF_DPHY_CSIPHY_DATALANE_EN] = PHY_REG(RV1126_GRF_CSIPHY1_CON, 4, 4),
[GRF_DPHY_CSIPHY_CLKLANE_EN] = PHY_REG(RV1126_GRF_CSIPHY1_CON, 1, 8),
[GRF_DPHY_CLK_INV_SEL] = PHY_REG(RV1126_GRF_CSIPHY1_CON, 1, 9),
[GRF_DPHY_SEL] = PHY_REG(RV1126_GRF_IOFUNC_CON3, 3, 9),
};
static const struct txrx_reg rk3288_txrx_regs[] = {
[TXRX_PHY_TEST_CTRL0] = TXRX_REG(RK3288_PHY_TEST_CTRL0),
[TXRX_PHY_TEST_CTRL1] = TXRX_REG(RK3288_PHY_TEST_CTRL1),
[TXRX_PHY_SHUTDOWNZ] = TXRX_REG(RK3288_PHY_SHUTDOWNZ),
[TXRX_PHY_RSTZ] = TXRX_REG(RK3288_PHY_RSTZ),
};
static const struct txrx_reg rk3399_txrx_regs[] = {
[TXRX_PHY_TEST_CTRL0] = TXRX_REG(RK3399_PHY_TEST_CTRL0),
[TXRX_PHY_TEST_CTRL1] = TXRX_REG(RK3399_PHY_TEST_CTRL1),
[TXRX_PHY_SHUTDOWNZ] = TXRX_REG(RK3399_PHY_SHUTDOWNZ),
[TXRX_PHY_RSTZ] = TXRX_REG(RK3399_PHY_RSTZ),
};
static const struct csiphy_reg rk1808_csiphy_regs[] = {
[CSIPHY_CTRL_LANE_ENABLE] = CSIPHY_REG(RK1808_CSI_DPHY_CTRL_LANE_ENABLE),
[CSIPHY_CTRL_PWRCTL] = CSIPHY_REG(RK1808_CSI_DPHY_CTRL_PWRCTL),
[CSIPHY_CTRL_DIG_RST] = CSIPHY_REG(RK1808_CSI_DPHY_CTRL_DIG_RST),
[CSIPHY_CLK_THS_SETTLE] = CSIPHY_REG(RK1808_CSI_DPHY_CLK_WR_THS_SETTLE),
[CSIPHY_LANE0_THS_SETTLE] = CSIPHY_REG(RK1808_CSI_DPHY_LANE0_WR_THS_SETTLE),
[CSIPHY_LANE1_THS_SETTLE] = CSIPHY_REG(RK1808_CSI_DPHY_LANE1_WR_THS_SETTLE),
[CSIPHY_LANE2_THS_SETTLE] = CSIPHY_REG(RK1808_CSI_DPHY_LANE2_WR_THS_SETTLE),
[CSIPHY_LANE3_THS_SETTLE] = CSIPHY_REG(RK1808_CSI_DPHY_LANE3_WR_THS_SETTLE),
[CSIPHY_CLK_CALIB_ENABLE] = CSIPHY_REG(RK1808_CSI_DPHY_CLK_CALIB_EN),
[CSIPHY_LANE0_CALIB_ENABLE] = CSIPHY_REG(RK1808_CSI_DPHY_LANE0_CALIB_EN),
[CSIPHY_LANE1_CALIB_ENABLE] = CSIPHY_REG(RK1808_CSI_DPHY_LANE1_CALIB_EN),
[CSIPHY_LANE2_CALIB_ENABLE] = CSIPHY_REG(RK1808_CSI_DPHY_LANE2_CALIB_EN),
[CSIPHY_LANE3_CALIB_ENABLE] = CSIPHY_REG(RK1808_CSI_DPHY_LANE3_CALIB_EN),
};
static const struct csiphy_reg rk3326_csiphy_regs[] = {
[CSIPHY_CTRL_LANE_ENABLE] = CSIPHY_REG(RK3326_CSI_DPHY_CTRL_LANE_ENABLE),
[CSIPHY_CTRL_PWRCTL] = CSIPHY_REG(RK3326_CSI_DPHY_CTRL_PWRCTL),
[CSIPHY_CTRL_DIG_RST] = CSIPHY_REG(RK3326_CSI_DPHY_CTRL_DIG_RST),
[CSIPHY_CLK_THS_SETTLE] = CSIPHY_REG(RK3326_CSI_DPHY_CLK_WR_THS_SETTLE),
[CSIPHY_LANE0_THS_SETTLE] = CSIPHY_REG(RK3326_CSI_DPHY_LANE0_WR_THS_SETTLE),
[CSIPHY_LANE1_THS_SETTLE] = CSIPHY_REG(RK3326_CSI_DPHY_LANE1_WR_THS_SETTLE),
[CSIPHY_LANE2_THS_SETTLE] = CSIPHY_REG(RK3326_CSI_DPHY_LANE2_WR_THS_SETTLE),
[CSIPHY_LANE3_THS_SETTLE] = CSIPHY_REG(RK3326_CSI_DPHY_LANE3_WR_THS_SETTLE),
[CSIPHY_CLK_CALIB_ENABLE] = CSIPHY_REG(RK3326_CSI_DPHY_CLK_CALIB_EN),
[CSIPHY_LANE0_CALIB_ENABLE] = CSIPHY_REG(RK3326_CSI_DPHY_LANE0_CALIB_EN),
[CSIPHY_LANE1_CALIB_ENABLE] = CSIPHY_REG(RK3326_CSI_DPHY_LANE1_CALIB_EN),
[CSIPHY_LANE2_CALIB_ENABLE] = CSIPHY_REG(RK3326_CSI_DPHY_LANE2_CALIB_EN),
[CSIPHY_LANE3_CALIB_ENABLE] = CSIPHY_REG(RK3326_CSI_DPHY_LANE3_CALIB_EN),
};
static const struct csiphy_reg rk3326s_csiphy_regs[] = {
[CSIPHY_CTRL_LANE_ENABLE] = CSIPHY_REG(RK3326_CSI_DPHY_CTRL_LANE_ENABLE),
[CSIPHY_CTRL_PWRCTL] = CSIPHY_REG(RK3326_CSI_DPHY_CTRL_PWRCTL),
[CSIPHY_CTRL_DIG_RST] = CSIPHY_REG(RK3326_CSI_DPHY_CTRL_DIG_RST),
[CSIPHY_CLK_THS_SETTLE] = CSIPHY_REG(RK3326S_CSI_DPHY_CLK_WR_THS_SETTLE),
[CSIPHY_LANE0_THS_SETTLE] = CSIPHY_REG(RK3326S_CSI_DPHY_LANE0_WR_THS_SETTLE),
[CSIPHY_LANE1_THS_SETTLE] = CSIPHY_REG(RK3326S_CSI_DPHY_LANE1_WR_THS_SETTLE),
[CSIPHY_LANE2_THS_SETTLE] = CSIPHY_REG(RK3326S_CSI_DPHY_LANE2_WR_THS_SETTLE),
[CSIPHY_LANE3_THS_SETTLE] = CSIPHY_REG(RK3326S_CSI_DPHY_LANE3_WR_THS_SETTLE),
[CSIPHY_CLK_CALIB_ENABLE] = CSIPHY_REG(RK3326_CSI_DPHY_CLK_CALIB_EN),
[CSIPHY_LANE0_CALIB_ENABLE] = CSIPHY_REG(RK3326_CSI_DPHY_LANE0_CALIB_EN),
[CSIPHY_LANE1_CALIB_ENABLE] = CSIPHY_REG(RK3326_CSI_DPHY_LANE1_CALIB_EN),
[CSIPHY_LANE2_CALIB_ENABLE] = CSIPHY_REG(RK3326_CSI_DPHY_LANE2_CALIB_EN),
[CSIPHY_LANE3_CALIB_ENABLE] = CSIPHY_REG(RK3326_CSI_DPHY_LANE3_CALIB_EN),
[CSIPHY_CLK_MODE] = CSIPHY_REG(RK3326S_CSI_DPHY_CLK_MODE),
};
static const struct csiphy_reg rk3368_csiphy_regs[] = {
[CSIPHY_CTRL_LANE_ENABLE] = CSIPHY_REG(RK3368_CSI_DPHY_CTRL_LANE_ENABLE),
[CSIPHY_CTRL_PWRCTL] = CSIPHY_REG(RK3368_CSI_DPHY_CTRL_PWRCTL),
[CSIPHY_CTRL_DIG_RST] = CSIPHY_REG(RK3368_CSI_DPHY_CTRL_DIG_RST),
[CSIPHY_CLK_THS_SETTLE] = CSIPHY_REG(RK3368_CSI_DPHY_CLK_WR_THS_SETTLE),
[CSIPHY_LANE0_THS_SETTLE] = CSIPHY_REG(RK3368_CSI_DPHY_LANE0_WR_THS_SETTLE),
[CSIPHY_LANE1_THS_SETTLE] = CSIPHY_REG(RK3368_CSI_DPHY_LANE1_WR_THS_SETTLE),
[CSIPHY_LANE2_THS_SETTLE] = CSIPHY_REG(RK3368_CSI_DPHY_LANE2_WR_THS_SETTLE),
[CSIPHY_LANE3_THS_SETTLE] = CSIPHY_REG(RK3368_CSI_DPHY_LANE3_WR_THS_SETTLE),
[CSIPHY_CLK_CALIB_ENABLE] = CSIPHY_REG(RK3368_CSI_DPHY_CLK_CALIB_EN),
[CSIPHY_LANE0_CALIB_ENABLE] = CSIPHY_REG(RK3368_CSI_DPHY_LANE0_CALIB_EN),
[CSIPHY_LANE1_CALIB_ENABLE] = CSIPHY_REG(RK3368_CSI_DPHY_LANE1_CALIB_EN),
[CSIPHY_LANE2_CALIB_ENABLE] = CSIPHY_REG(RK3368_CSI_DPHY_LANE2_CALIB_EN),
[CSIPHY_LANE3_CALIB_ENABLE] = CSIPHY_REG(RK3368_CSI_DPHY_LANE3_CALIB_EN),
};
static const struct csiphy_reg rv1126_csiphy_regs[] = {
[CSIPHY_CTRL_LANE_ENABLE] = CSIPHY_REG(RV1126_CSI_DPHY_CTRL_LANE_ENABLE),
[CSIPHY_CTRL_PWRCTL] = CSIPHY_REG(RV1126_CSI_DPHY_CTRL_PWRCTL),
[CSIPHY_CTRL_DIG_RST] = CSIPHY_REG(RV1126_CSI_DPHY_CTRL_DIG_RST),
[CSIPHY_CLK_THS_SETTLE] = CSIPHY_REG(RV1126_CSI_DPHY_CLK_WR_THS_SETTLE),
[CSIPHY_LANE0_THS_SETTLE] = CSIPHY_REG(RV1126_CSI_DPHY_LANE0_WR_THS_SETTLE),
[CSIPHY_LANE1_THS_SETTLE] = CSIPHY_REG(RV1126_CSI_DPHY_LANE1_WR_THS_SETTLE),
[CSIPHY_LANE2_THS_SETTLE] = CSIPHY_REG(RV1126_CSI_DPHY_LANE2_WR_THS_SETTLE),
[CSIPHY_LANE3_THS_SETTLE] = CSIPHY_REG(RV1126_CSI_DPHY_LANE3_WR_THS_SETTLE),
[CSIPHY_CLK_CALIB_ENABLE] = CSIPHY_REG(RV1126_CSI_DPHY_CLK_CALIB_EN),
[CSIPHY_LANE0_CALIB_ENABLE] = CSIPHY_REG(RV1126_CSI_DPHY_LANE0_CALIB_EN),
[CSIPHY_LANE1_CALIB_ENABLE] = CSIPHY_REG(RV1126_CSI_DPHY_LANE1_CALIB_EN),
[CSIPHY_LANE2_CALIB_ENABLE] = CSIPHY_REG(RV1126_CSI_DPHY_LANE2_CALIB_EN),
[CSIPHY_LANE3_CALIB_ENABLE] = CSIPHY_REG(RV1126_CSI_DPHY_LANE3_CALIB_EN),
[CSIPHY_MIPI_LVDS_MODEL] = CSIPHY_REG(RV1126_CSI_DPHY_MIPI_LVDS_MODEL),
[CSIPHY_LVDS_MODE] = CSIPHY_REG(RV1126_CSI_DPHY_LVDS_MODE),
};
struct hsfreq_range {
u32 range_h;
u8 cfg_bit;
};
struct mipidphy_priv;
struct dphy_drv_data {
const char * const *clks;
int num_clks;
const struct hsfreq_range *hsfreq_ranges;
int num_hsfreq_ranges;
const struct dphy_reg *grf_regs;
const struct txrx_reg *txrx_regs;
const struct csiphy_reg *csiphy_regs;
enum mipi_dphy_ctl_type ctl_type;
void (*individual_init)(struct mipidphy_priv *priv);
enum mipi_dphy_chip_id chip_id;
};
struct sensor_async_subdev {
struct v4l2_async_subdev asd;
struct v4l2_mbus_config mbus;
int lanes;
};
#define MAX_DPHY_CLK 8
#define MAX_DPHY_SENSORS 2
struct mipidphy_sensor {
struct v4l2_subdev *sd;
struct v4l2_mbus_config mbus;
struct v4l2_mbus_framefmt format;
int lanes;
};
struct mipidphy_priv {
struct device *dev;
struct regmap *regmap_grf;
const struct dphy_reg *grf_regs;
const struct txrx_reg *txrx_regs;
const struct csiphy_reg *csiphy_regs;
void __iomem *csihost_base_addr;
struct clk *clks[MAX_DPHY_CLK];
const struct dphy_drv_data *drv_data;
u64 data_rate_mbps;
struct v4l2_async_notifier notifier;
struct v4l2_subdev sd;
struct mutex mutex; /* lock for updating protection */
struct media_pad pads[MIPI_DPHY_RX_PADS_NUM];
struct mipidphy_sensor sensors[MAX_DPHY_SENSORS];
int num_sensors;
int phy_index;
bool is_streaming;
void __iomem *txrx_base_addr;
int (*stream_on)(struct mipidphy_priv *priv, struct v4l2_subdev *sd);
int (*stream_off)(struct mipidphy_priv *priv, struct v4l2_subdev *sd);
};
static inline struct mipidphy_priv *to_dphy_priv(struct v4l2_subdev *subdev)
{
return container_of(subdev, struct mipidphy_priv, sd);
}
static inline void write_grf_reg(struct mipidphy_priv *priv,
int index, u8 value)
{
const struct dphy_reg *reg = &priv->grf_regs[index];
unsigned int val = HIWORD_UPDATE(value, reg->mask, reg->shift);
if (reg->offset)
regmap_write(priv->regmap_grf, reg->offset, val);
}
static inline u32 read_grf_reg(struct mipidphy_priv *priv, int index)
{
const struct dphy_reg *reg = &priv->grf_regs[index];
unsigned int val = 0;
if (reg->offset) {
regmap_read(priv->regmap_grf, reg->offset, &val);
val = (val >> reg->shift) & reg->mask;
}
return val;
}
static inline void write_txrx_reg(struct mipidphy_priv *priv,
int index, u32 value)
{
const struct txrx_reg *reg = &priv->txrx_regs[index];
if (reg->offset)
writel(value, priv->txrx_base_addr + reg->offset);
}
static void mipidphy0_wr_reg(struct mipidphy_priv *priv,
u8 test_code, u8 test_data)
{
/*
* With the falling edge on TESTCLK, the TESTDIN[7:0] signal content
* is latched internally as the current test code. Test data is
* programmed internally by rising edge on TESTCLK.
*/
write_grf_reg(priv, GRF_DPHY_RX0_TESTCLK, 1);
write_grf_reg(priv, GRF_DPHY_RX0_TESTDIN, test_code);
write_grf_reg(priv, GRF_DPHY_RX0_TESTEN, 1);
write_grf_reg(priv, GRF_DPHY_RX0_TESTCLK, 0);
write_grf_reg(priv, GRF_DPHY_RX0_TESTEN, 0);
write_grf_reg(priv, GRF_DPHY_RX0_TESTDIN, test_data);
write_grf_reg(priv, GRF_DPHY_RX0_TESTCLK, 1);
}
static void mipidphy1_wr_reg(struct mipidphy_priv *priv, unsigned char addr,
unsigned char data)
{
/*
* TESTEN =1,TESTDIN=addr
* TESTCLK=0
* TESTEN =0,TESTDIN=data
* TESTCLK=1
*/
write_txrx_reg(priv, TXRX_PHY_TEST_CTRL1, PHY_TESTEN_ADDR | addr);
write_txrx_reg(priv, TXRX_PHY_TEST_CTRL0, 0x00);
write_txrx_reg(priv, TXRX_PHY_TEST_CTRL1, PHY_TESTEN_DATA | data);
write_txrx_reg(priv, TXRX_PHY_TEST_CTRL0, 0x02);
}
static inline void write_csiphy_reg(struct mipidphy_priv *priv,
int index, u32 value)
{
const struct csiphy_reg *reg = &priv->csiphy_regs[index];
if (reg->offset != MIPI_CSI_DPHY_CTRL_INVALID_OFFSET)
writel(value, priv->csihost_base_addr + reg->offset);
}
static inline void read_csiphy_reg(struct mipidphy_priv *priv,
int index, u32 *value)
{
const struct csiphy_reg *reg = &priv->csiphy_regs[index];
if (reg->offset != MIPI_CSI_DPHY_CTRL_INVALID_OFFSET)
*value = readl(priv->csihost_base_addr + reg->offset);
}
static void csi_mipidphy_wr_ths_settle(struct mipidphy_priv *priv, int hsfreq,
enum mipi_dphy_lane lane)
{
unsigned int val = 0;
unsigned int offset;
switch (lane) {
case MIPI_DPHY_LANE_CLOCK:
offset = CSIPHY_CLK_THS_SETTLE;
break;
case MIPI_DPHY_LANE_DATA0:
offset = CSIPHY_LANE0_THS_SETTLE;
break;
case MIPI_DPHY_LANE_DATA1:
offset = CSIPHY_LANE1_THS_SETTLE;
break;
case MIPI_DPHY_LANE_DATA2:
offset = CSIPHY_LANE2_THS_SETTLE;
break;
case MIPI_DPHY_LANE_DATA3:
offset = CSIPHY_LANE3_THS_SETTLE;
break;
default:
return;
}
read_csiphy_reg(priv, offset, &val);
val = (val & ~0x7f) | hsfreq;
write_csiphy_reg(priv, offset, val);
}
static struct v4l2_subdev *get_remote_sensor(struct v4l2_subdev *sd)
{
struct media_pad *local, *remote;
struct media_entity *sensor_me;
local = &sd->entity.pads[MIPI_DPHY_RX_PAD_SINK];
remote = media_entity_remote_pad(local);
if (!remote) {
v4l2_warn(sd, "No link between dphy and sensor\n");
return NULL;
}
sensor_me = media_entity_remote_pad(local)->entity;
return media_entity_to_v4l2_subdev(sensor_me);
}
static struct mipidphy_sensor *sd_to_sensor(struct mipidphy_priv *priv,
struct v4l2_subdev *sd)
{
int i;
for (i = 0; i < priv->num_sensors; ++i)
if (priv->sensors[i].sd == sd)
return &priv->sensors[i];
return NULL;
}
static int mipidphy_get_sensor_data_rate(struct v4l2_subdev *sd)
{
struct mipidphy_priv *priv = to_dphy_priv(sd);
struct v4l2_subdev *sensor_sd = get_remote_sensor(sd);
struct v4l2_ctrl *link_freq;
struct v4l2_querymenu qm = { .id = V4L2_CID_LINK_FREQ, };
int ret;
link_freq = v4l2_ctrl_find(sensor_sd->ctrl_handler, V4L2_CID_LINK_FREQ);
if (!link_freq) {
v4l2_warn(sd, "No pixel rate control in subdev\n");
return -EPIPE;
}
qm.index = v4l2_ctrl_g_ctrl(link_freq);
ret = v4l2_querymenu(sensor_sd->ctrl_handler, &qm);
if (ret < 0) {
v4l2_err(sd, "Failed to get menu item\n");
return ret;
}
if (!qm.value) {
v4l2_err(sd, "Invalid link_freq\n");
return -EINVAL;
}
priv->data_rate_mbps = qm.value * 2;
do_div(priv->data_rate_mbps, 1000 * 1000);
v4l2_info(sd, "data_rate_mbps %lld\n", priv->data_rate_mbps);
return 0;
}
static int mipidphy_update_sensor_mbus(struct v4l2_subdev *sd)
{
struct mipidphy_priv *priv = to_dphy_priv(sd);
struct v4l2_subdev *sensor_sd = get_remote_sensor(sd);
struct mipidphy_sensor *sensor = sd_to_sensor(priv, sensor_sd);
struct v4l2_mbus_config mbus;
int ret;
ret = v4l2_subdev_call(sensor_sd, pad, get_mbus_config, 0, &mbus);
if (ret)
return ret;
sensor->mbus = mbus;
switch (mbus.flags & V4L2_MBUS_CSI2_LANES) {
case V4L2_MBUS_CSI2_1_LANE:
sensor->lanes = 1;
break;
case V4L2_MBUS_CSI2_2_LANE:
sensor->lanes = 2;
break;
case V4L2_MBUS_CSI2_3_LANE:
sensor->lanes = 3;
break;
case V4L2_MBUS_CSI2_4_LANE:
sensor->lanes = 4;
break;
default:
return -EINVAL;
}
return 0;
}
static void rk1126_mipidphy_dphy_sel(struct v4l2_subdev *sd)
{
struct mipidphy_priv *priv = to_dphy_priv(sd);
char *model;
u8 oldval, newval;
model = sd->v4l2_dev->mdev->model;
oldval = read_grf_reg(priv, GRF_DPHY_SEL);
newval = oldval;
if (!strncmp(model, "rkcif_lite_mipi_lvds", sizeof("rkcif_lite_mipi_lvds") - 1)) {
if (priv->phy_index == 0)
newval &= ~RV1126_GRF_PHY1_SEL_CIFLITE;
else
newval |= RV1126_GRF_PHY1_SEL_CIFLITE;
} else if (!strncmp(model, "rkcif_mipi_lvds", sizeof("rkcif_mipi_lvds") - 1)) {
if (priv->phy_index == 0)
newval &= ~RV1126_GRF_PHY1_SEL_CIF;
else
newval |= RV1126_GRF_PHY1_SEL_CIF;
} else {
if (priv->phy_index == 0)
newval &= ~RV1126_GRF_PHY1_SEL_ISP;
else
newval |= RV1126_GRF_PHY1_SEL_ISP;
}
if (newval != oldval)
write_grf_reg(priv, GRF_DPHY_SEL, newval);
}
static int mipidphy_s_stream_start(struct v4l2_subdev *sd)
{
struct mipidphy_priv *priv = to_dphy_priv(sd);
int ret = 0;
if (priv->is_streaming)
return 0;
ret = mipidphy_get_sensor_data_rate(sd);
if (ret < 0)
return ret;
if (priv->drv_data->chip_id == CHIP_ID_RK1126)
rk1126_mipidphy_dphy_sel(sd);
mipidphy_update_sensor_mbus(sd);
priv->stream_on(priv, sd);
priv->is_streaming = true;
return 0;
}
static int mipidphy_s_stream_stop(struct v4l2_subdev *sd)
{
struct mipidphy_priv *priv = to_dphy_priv(sd);
if (!priv->is_streaming)
return 0;
if (priv->stream_off)
priv->stream_off(priv, sd);
priv->is_streaming = false;
return 0;
}
static int mipidphy_s_stream(struct v4l2_subdev *sd, int on)
{
int ret = 0;
struct mipidphy_priv *priv = to_dphy_priv(sd);
dev_info(priv->dev, "stream on:%d\n", on);
mutex_lock(&priv->mutex);
if (on)
ret = mipidphy_s_stream_start(sd);
else
ret = mipidphy_s_stream_stop(sd);
mutex_unlock(&priv->mutex);
return ret;
}
static int mipidphy_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct v4l2_subdev *sensor = get_remote_sensor(sd);
if (sensor)
return v4l2_subdev_call(sensor, video, g_frame_interval, fi);
return -EINVAL;
}
static int mipidphy_g_mbus_config(struct v4l2_subdev *sd, unsigned int pad_id,
struct v4l2_mbus_config *config)
{
struct mipidphy_priv *priv = to_dphy_priv(sd);
struct v4l2_subdev *sensor_sd = get_remote_sensor(sd);
struct mipidphy_sensor *sensor;
if (!sensor_sd)
return -ENODEV;
sensor = sd_to_sensor(priv, sensor_sd);
mipidphy_update_sensor_mbus(sd);
*config = sensor->mbus;
return 0;
}
static int mipidphy_s_power(struct v4l2_subdev *sd, int on)
{
struct mipidphy_priv *priv = to_dphy_priv(sd);
if (on)
return pm_runtime_get_sync(priv->dev);
else
return pm_runtime_put(priv->dev);
}
static int mipidphy_runtime_suspend(struct device *dev)
{
struct media_entity *me = dev_get_drvdata(dev);
struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(me);
struct mipidphy_priv *priv = to_dphy_priv(sd);
int i, num_clks;
num_clks = priv->drv_data->num_clks;
for (i = num_clks - 1; i >= 0; i--)
if (!IS_ERR(priv->clks[i]))
clk_disable_unprepare(priv->clks[i]);
return 0;
}
static int mipidphy_runtime_resume(struct device *dev)
{
struct media_entity *me = dev_get_drvdata(dev);
struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(me);
struct mipidphy_priv *priv = to_dphy_priv(sd);
int i, num_clks, ret;
num_clks = priv->drv_data->num_clks;
for (i = 0; i < num_clks; i++) {
if (!IS_ERR(priv->clks[i])) {
ret = clk_prepare_enable(priv->clks[i]);
if (ret < 0)
goto err;
}
}
return 0;
err:
while (--i >= 0)
clk_disable_unprepare(priv->clks[i]);
return ret;
}
/* dphy accepts all fmt/size from sensor */
static int mipidphy_get_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct mipidphy_priv *priv = to_dphy_priv(sd);
struct v4l2_subdev *sensor_sd = get_remote_sensor(sd);
struct mipidphy_sensor *sensor = sd_to_sensor(priv, sensor_sd);
int ret;
/*
* Do not allow format changes and just relay whatever
* set currently in the sensor.
*/
if (!sensor_sd)
return -ENODEV;
ret = v4l2_subdev_call(sensor_sd, pad, get_fmt, NULL, fmt);
if (!ret && fmt->pad == 0)
sensor->format = fmt->format;
return ret;
}
static int mipidphy_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct v4l2_subdev *sensor = get_remote_sensor(sd);
return v4l2_subdev_call(sensor, pad, get_selection, NULL, sel);
}
static const struct v4l2_subdev_pad_ops mipidphy_subdev_pad_ops = {
.set_fmt = mipidphy_get_set_fmt,
.get_fmt = mipidphy_get_set_fmt,
.get_selection = mipidphy_get_selection,
.get_mbus_config = mipidphy_g_mbus_config,
};
static const struct v4l2_subdev_core_ops mipidphy_core_ops = {
.s_power = mipidphy_s_power,
};
static const struct v4l2_subdev_video_ops mipidphy_video_ops = {
.g_frame_interval = mipidphy_g_frame_interval,
.s_stream = mipidphy_s_stream,
};
static const struct v4l2_subdev_ops mipidphy_subdev_ops = {
.core = &mipidphy_core_ops,
.video = &mipidphy_video_ops,
.pad = &mipidphy_subdev_pad_ops,
};
/* These tables must be sorted by .range_h ascending. */
static const struct hsfreq_range rk1808_rv1126_mipidphy_hsfreq_ranges[] = {
{ 109, 0x02}, { 149, 0x03}, { 199, 0x06}, { 249, 0x06},
{ 299, 0x06}, { 399, 0x08}, { 499, 0x0b}, { 599, 0x0e},
{ 699, 0x10}, { 799, 0x12}, { 999, 0x16}, {1199, 0x1e},
{1399, 0x23}, {1599, 0x2d}, {1799, 0x32}, {1999, 0x37},
{2199, 0x3c}, {2399, 0x41}, {2499, 0x46}
};
static const struct hsfreq_range rk3288_mipidphy_hsfreq_ranges[] = {
{ 89, 0x00}, { 99, 0x10}, { 109, 0x20}, { 129, 0x01},
{ 139, 0x11}, { 149, 0x21}, { 169, 0x02}, { 179, 0x12},
{ 199, 0x22}, { 219, 0x03}, { 239, 0x13}, { 249, 0x23},
{ 269, 0x04}, { 299, 0x14}, { 329, 0x05}, { 359, 0x15},
{ 399, 0x25}, { 449, 0x06}, { 499, 0x16}, { 549, 0x07},
{ 599, 0x17}, { 649, 0x08}, { 699, 0x18}, { 749, 0x09},
{ 799, 0x19}, { 849, 0x29}, { 899, 0x39}, { 949, 0x0a},
{ 999, 0x1a}
};
static const struct hsfreq_range rk3326_mipidphy_hsfreq_ranges[] = {
{ 109, 0x00}, { 149, 0x01}, { 199, 0x02}, { 249, 0x03},
{ 299, 0x04}, { 399, 0x05}, { 499, 0x06}, { 599, 0x07},
{ 699, 0x08}, { 799, 0x09}, { 899, 0x0a}, {1099, 0x0b},
{1249, 0x0c}, {1349, 0x0d}, {1500, 0x0e}
};
static const struct hsfreq_range rk3326s_mipidphy_hsfreq_ranges[] = {
{ 109, 0x02}, { 149, 0x03}, { 199, 0x06}, { 249, 0x06},
{ 299, 0x06}, { 399, 0x08}, { 499, 0x0b}, { 599, 0x0e},
{ 699, 0x10}, { 799, 0x12}, { 999, 0x16}, {1199, 0x1e},
};
static const struct hsfreq_range rk3368_mipidphy_hsfreq_ranges[] = {
{ 109, 0x00}, { 149, 0x01}, { 199, 0x02}, { 249, 0x03},
{ 299, 0x04}, { 399, 0x05}, { 499, 0x06}, { 599, 0x07},
{ 699, 0x08}, { 799, 0x09}, { 899, 0x0a}, {1099, 0x0b},
{1249, 0x0c}, {1349, 0x0d}, {1500, 0x0e}
};
static const struct hsfreq_range rk3399_mipidphy_hsfreq_ranges[] = {
{ 89, 0x00}, { 99, 0x10}, { 109, 0x20}, { 129, 0x01},
{ 139, 0x11}, { 149, 0x21}, { 169, 0x02}, { 179, 0x12},
{ 199, 0x22}, { 219, 0x03}, { 239, 0x13}, { 249, 0x23},
{ 269, 0x04}, { 299, 0x14}, { 329, 0x05}, { 359, 0x15},
{ 399, 0x25}, { 449, 0x06}, { 499, 0x16}, { 549, 0x07},
{ 599, 0x17}, { 649, 0x08}, { 699, 0x18}, { 749, 0x09},
{ 799, 0x19}, { 849, 0x29}, { 899, 0x39}, { 949, 0x0a},
{ 999, 0x1a}, {1049, 0x2a}, {1099, 0x3a}, {1149, 0x0b},
{1199, 0x1b}, {1249, 0x2b}, {1299, 0x3b}, {1349, 0x0c},
{1399, 0x1c}, {1449, 0x2c}, {1500, 0x3c}
};
static const char * const rk1808_mipidphy_clks[] = {
"pclk",
};
static const char * const rk3288_mipidphy_clks[] = {
"dphy-ref",
"pclk",
};
static const char * const rk3326_mipidphy_clks[] = {
"dphy-ref",
};
static const char * const rk3368_mipidphy_clks[] = {
"pclk_dphyrx",
};
static const char * const rk3399_mipidphy_clks[] = {
"dphy-ref",
"dphy-cfg",
"grf",
"pclk_mipi_dsi",
};
static const char * const rv1126_mipidphy_clks[] = {
"pclk",
};
static void default_mipidphy_individual_init(struct mipidphy_priv *priv)
{
}
static void rk3368_mipidphy_individual_init(struct mipidphy_priv *priv)
{
/* isp select */
write_grf_reg(priv, GRF_ISP_MIPI_CSI_HOST_SEL, 1);
}
static void rk3399_mipidphy_individual_init(struct mipidphy_priv *priv)
{
/*
* According to the sequence of RK3399_TXRX_DPHY, the setting of isp0 mipi
* will affect txrx dphy in default state of grf_soc_con24.
*/
write_grf_reg(priv, GRF_DPHY_TX1RX1_SRC_SEL, 0);
write_grf_reg(priv, GRF_DPHY_TX1RX1_MASTERSLAVEZ, 0);
write_grf_reg(priv, GRF_DPHY_TX1RX1_BASEDIR, 0);
write_grf_reg(priv, GRF_DVP_V18SEL, 0x1);
}
static void rv1126_mipidphy_individual_init(struct mipidphy_priv *priv)
{
struct device *dev = priv->dev;
struct device_node *parent = dev->of_node;
struct device_node *remote = NULL;
u8 val, sel;
priv->grf_regs = priv->phy_index ?
rv1126_grf_dphy1_regs : rv1126_grf_dphy0_regs;
val = read_grf_reg(priv, GRF_DPHY_SEL);
/* get port1 remote endpoint info */
remote = of_graph_get_remote_node(parent, 1, 0);
if (remote) {
if (strstr(remote->name, "isp"))
sel = !priv->phy_index ? 0 : RV1126_GRF_PHY1_SEL_ISP;
else
sel = !priv->phy_index ? 0 :
RV1126_GRF_PHY1_SEL_CIF | RV1126_GRF_PHY1_SEL_CIFLITE;
of_node_put(remote);
write_grf_reg(priv, GRF_DPHY_SEL, val | sel);
}
}
static int mipidphy_rx_stream_on(struct mipidphy_priv *priv,
struct v4l2_subdev *sd)
{
struct v4l2_subdev *sensor_sd = get_remote_sensor(sd);
struct mipidphy_sensor *sensor = sd_to_sensor(priv, sensor_sd);
const struct dphy_drv_data *drv_data = priv->drv_data;
const struct hsfreq_range *hsfreq_ranges = drv_data->hsfreq_ranges;
int num_hsfreq_ranges = drv_data->num_hsfreq_ranges;
int i, hsfreq = 0;
for (i = 0; i < num_hsfreq_ranges; i++) {
if (hsfreq_ranges[i].range_h >= priv->data_rate_mbps) {
hsfreq = hsfreq_ranges[i].cfg_bit;
break;
}
}
if (i == num_hsfreq_ranges) {
i = num_hsfreq_ranges - 1;
dev_warn(priv->dev, "data rate: %lld mbps, max support %d mbps",
priv->data_rate_mbps, hsfreq_ranges[i].range_h + 1);
hsfreq = hsfreq_ranges[i].cfg_bit;
}
/* RK3288 isp connected to phy0-rx */
write_grf_reg(priv, GRF_CON_ISP_DPHY_SEL, 0);
/* Belowed is the sequence of mipi configuration */
/* Step1: set RSTZ = 1'b0, phy0 controlled by isp0 */
/* Step2: set SHUTDOWNZ = 1'b0, controlled by isp0 */
/* Step3: set TESTCLEAR = 1'b1 */
write_grf_reg(priv, GRF_DPHY_RX0_TESTCLK, 1);
write_grf_reg(priv, GRF_DPHY_RX0_TESTCLR, 1);
usleep_range(100, 150);
/* Step4: apply REFCLK signal with the appropriate frequency */
/* Step5: apply CFG_CLK signal with the appropriate frequency */
/* Step6: set MASTERSLAVEZ = 1'b0 (for SLAVE), phy0 default is slave */
/* Step7: set BASEDIR_N = 1’b1 (for SLAVE), phy0 default is slave */
/*
* Step8: set all REQUEST inputs to zero, need to wait 15ns:
* step8.1:set lan turndisab as 1
* step8.2:set lan turnrequest as 0
*/
write_grf_reg(priv, GRF_DPHY_RX0_TURNDISABLE, 0xf);
write_grf_reg(priv, GRF_DPHY_RX0_FORCERXMODE, 0);
write_grf_reg(priv, GRF_DPHY_RX0_TURNREQUEST, 0);
usleep_range(100, 150);
/* Step9: set TESTCLR to low, need to wait 15ns */
write_grf_reg(priv, GRF_DPHY_RX0_TESTCLR, 0);
usleep_range(100, 150);
/*
* Step10: configure Test Code 0x44 hsfreqrange according to values
* step10.1:set clock lane
* step10.2:set hsfreqrange by lane0(test code 0x44)
*/
hsfreq <<= 1;
mipidphy0_wr_reg(priv, CLOCK_LANE_HS_RX_CONTROL, 0);
mipidphy0_wr_reg(priv, LANE0_HS_RX_CONTROL, hsfreq);
mipidphy0_wr_reg(priv, LANE1_HS_RX_CONTROL, hsfreq);
mipidphy0_wr_reg(priv, LANE2_HS_RX_CONTROL, hsfreq);
mipidphy0_wr_reg(priv, LANE3_HS_RX_CONTROL, hsfreq);
/* Step11: Configure analog references: of Test Code 0x22 */
/* Step12: Set ENABLE_N=1'b1, need to wait 5ns */
/* set lane num */
write_grf_reg(priv, GRF_DPHY_RX0_ENABLE, GENMASK(sensor->lanes - 1, 0));
/* Step13: Set SHUTDOWNZ=1'b1, controlled by isp need to wait 5ns */
/* Step14: Set RSTZ=1'b1, controlled by isp */
/*
* Step15: Wait until STOPSTATEDATA_N & STOPSTATECLK
* outputs are asserted
*/
usleep_range(100, 150);
return 0;
}
static int mipidphy_txrx_stream_on(struct mipidphy_priv *priv,
struct v4l2_subdev *sd)
{
struct v4l2_subdev *sensor_sd = get_remote_sensor(sd);
struct mipidphy_sensor *sensor = sd_to_sensor(priv, sensor_sd);
const struct dphy_drv_data *drv_data = priv->drv_data;
const struct hsfreq_range *hsfreq_ranges = drv_data->hsfreq_ranges;
int num_hsfreq_ranges = drv_data->num_hsfreq_ranges;
int i, hsfreq = 0;
for (i = 0; i < num_hsfreq_ranges; i++) {
if (hsfreq_ranges[i].range_h >= priv->data_rate_mbps) {
hsfreq = hsfreq_ranges[i].cfg_bit;
break;
}
}
if (i == num_hsfreq_ranges) {
i = num_hsfreq_ranges - 1;
dev_warn(priv->dev, "data rate: %lld mbps, max support %d mbps",
priv->data_rate_mbps, hsfreq_ranges[i].range_h + 1);
hsfreq = hsfreq_ranges[i].cfg_bit;
}
/*
*Config rk3288:
*step1:rk3288 isp connected to phy1-rx
*step2:rk3288 phy1-rx test bus connected to csi host
*step3:rk3288 phy1-rx source selected as: isp = 1'b1,csi-host = 1'b0
*/
write_grf_reg(priv, GRF_CON_ISP_DPHY_SEL, 1);
write_grf_reg(priv, GRF_DSI_CSI_TESTBUS_SEL, 1);
write_grf_reg(priv, GRF_DPHY_RX1_SRC_SEL, 1);
/*
* Config rk3399:
* step1:rk3399 phy1-rx source selected as:1'b0=isp1,1'b1=isp0
*/
write_grf_reg(priv, GRF_DPHY_TX1RX1_SRC_SEL, 0);
/* Belowed is the sequence of mipi configuration */
/* Step1: set RSTZ = 1'b0, phy1-rx controlled by isp */
/* Step2: set SHUTDOWNZ = 1'b0, phy1-rx controlled by isp */
/* Step3: set TESTCLR= 1'b1,TESTCLK=1'b1 */
write_txrx_reg(priv, TXRX_PHY_TEST_CTRL0, PHY_TESTCLR | PHY_TESTCLK);
usleep_range(100, 150);
/* Step4: apply REFCLK signal with the appropriate frequency */
/* Step5: apply CFG_CLK signal with the appropriate frequency */
/*
* Step6: set MASTERSLAVEZ = 1'b0 (for SLAVE),
* phy1 is set as slave,controlled by isp
*/
write_grf_reg(priv, GRF_DPHY_TX1RX1_MASTERSLAVEZ, 0);
/*
* Step7: set BASEDIR_N = 1’b1 (for SLAVE),
* phy1 is set as slave,controlled by isp
*/
write_grf_reg(priv, GRF_DPHY_TX1RX1_BASEDIR, 1);
/* Step8: set all REQUEST inputs to zero, need to wait 15ns */
write_grf_reg(priv, GRF_DPHY_TX1RX1_FORCERXMODE, 0);
write_grf_reg(priv, GRF_DPHY_TX1RX1_FORCETXSTOPMODE, 0);
write_grf_reg(priv, GRF_DPHY_TX1RX1_TURNREQUEST, 0);
write_grf_reg(priv, GRF_DPHY_TX1RX1_TURNDISABLE, 0xf);
usleep_range(100, 150);
/* Step9: set TESTCLR=1'b0,TESTCLK=1'b1 need to wait 15ns */
write_txrx_reg(priv, TXRX_PHY_TEST_CTRL0, PHY_TESTCLK);
usleep_range(100, 150);
/*
* Step10: configure Test Code 0x44 hsfreqrange according to values
* step10.1:set clock lane
* step10.2:set hsfreqrange by lane0(test code 0x44)
*/
hsfreq <<= 1;
mipidphy1_wr_reg(priv, CLOCK_LANE_HS_RX_CONTROL, 0);
mipidphy1_wr_reg(priv, LANE0_HS_RX_CONTROL, hsfreq);
mipidphy1_wr_reg(priv, LANE1_HS_RX_CONTROL, 0);
mipidphy1_wr_reg(priv, LANE2_HS_RX_CONTROL, 0);
mipidphy1_wr_reg(priv, LANE3_HS_RX_CONTROL, 0);
/* Step11: Configure analog references: of Test Code 0x22 */
/*
* Step12: Set ENABLE_N=1'b1, need to wait 5ns
* Set lane num:
* for 3288,controlled by isp,enable lanes actually
* is set by grf_soc_con9[12:15];
* for 3399,controlled by isp1,enable lanes actually
* is set by isp1,
* if run 3399 here operates grf_soc_con23[0:3]
*/
write_grf_reg(priv, GRF_DPHY_TX1RX1_ENABLE,
GENMASK(sensor->lanes - 1, 0));
/*
* Step13:Set SHUTDOWNZ=1'b1, phy1-rx controlled by isp,
* need to wait 5ns
*/
/* Step14:Set RSTZ=1'b1, phy1-rx controlled by isp*/
/*
* Step15:Wait until STOPSTATEDATA_N & STOPSTATECLK
* outputs are asserted
*/
usleep_range(100, 150);
return 0;
}
static int csi_mipidphy_stream_on(struct mipidphy_priv *priv,
struct v4l2_subdev *sd)
{
struct v4l2_subdev *sensor_sd = get_remote_sensor(sd);
struct mipidphy_sensor *sensor = sd_to_sensor(priv, sensor_sd);
const struct dphy_drv_data *drv_data = priv->drv_data;
const struct hsfreq_range *hsfreq_ranges = drv_data->hsfreq_ranges;
int num_hsfreq_ranges = drv_data->num_hsfreq_ranges;
int i, hsfreq = 0;
u32 val = 0;
u32 clk_mode = 0x03;
write_grf_reg(priv, GRF_DVP_V18SEL, 0x1);
/* phy start */
write_csiphy_reg(priv, CSIPHY_CTRL_PWRCTL, 0xe4);
/* set data lane num and enable clock lane */
write_csiphy_reg(priv, CSIPHY_CTRL_LANE_ENABLE,
((GENMASK(sensor->lanes - 1, 0) << MIPI_CSI_DPHY_CTRL_DATALANE_ENABLE_OFFSET_BIT) |
(0x1 << MIPI_CSI_DPHY_CTRL_CLKLANE_ENABLE_OFFSET_BIT) | 0x1));
/* Reset dphy analog part */
write_csiphy_reg(priv, CSIPHY_CTRL_PWRCTL, 0xe0);
usleep_range(500, 1000);
if (sensor->mbus.type == V4L2_MBUS_CSI2_DPHY) {
/* Reset dphy digital part */
write_csiphy_reg(priv, CSIPHY_CTRL_DIG_RST, 0x1e);
write_csiphy_reg(priv, CSIPHY_CTRL_DIG_RST, 0x1f);
if (drv_data->chip_id == CHIP_ID_RK3326S) {
if (sensor->mbus.flags & V4L2_MBUS_CSI2_CONTINUOUS_CLOCK)
clk_mode = 0x03;
else if (sensor->mbus.flags & V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK)
clk_mode = 0;
write_csiphy_reg(priv, CSIPHY_CLK_MODE, clk_mode);
}
} else {
/* Disable MIPI internal logical and switch to LVDS bank */
write_csiphy_reg(priv, CSIPHY_CTRL_DIG_RST, 0x3e);
/* Enable LVDS mode */
write_csiphy_reg(priv, CSIPHY_MIPI_LVDS_MODEL, 0x4);
switch (sensor->format.code) {
case MEDIA_BUS_FMT_Y12_1X12:
case MEDIA_BUS_FMT_SRGGB12_1X12:
case MEDIA_BUS_FMT_SBGGR12_1X12:
case MEDIA_BUS_FMT_SGBRG12_1X12:
case MEDIA_BUS_FMT_SGRBG12_1X12:
val = 0x1f; //12bit
break;
case MEDIA_BUS_FMT_Y10_1X10:
case MEDIA_BUS_FMT_SBGGR10_1X10:
case MEDIA_BUS_FMT_SRGGB10_1X10:
case MEDIA_BUS_FMT_SGBRG10_1X10:
case MEDIA_BUS_FMT_SGRBG10_1X10:
val = 0xf; //10bit
break;
default:
val = 0x2f; //8bit
}
/* Enable LVDS internal logical and select bit mode */
write_csiphy_reg(priv, CSIPHY_LVDS_MODE, val);
}
/* not into receive mode/wait stopstate */
write_grf_reg(priv, GRF_DPHY_CSIPHY_FORCERXMODE, 0x0);
/* enable calibration */
if (priv->data_rate_mbps > 1500) {
write_csiphy_reg(priv, CSIPHY_CLK_CALIB_ENABLE, 0x80);
if (sensor->lanes > 0x00)
write_csiphy_reg(priv, CSIPHY_LANE0_CALIB_ENABLE, 0x80);
if (sensor->lanes > 0x01)
write_csiphy_reg(priv, CSIPHY_LANE1_CALIB_ENABLE, 0x80);
if (sensor->lanes > 0x02)
write_csiphy_reg(priv, CSIPHY_LANE2_CALIB_ENABLE, 0x80);
if (sensor->lanes > 0x03)
write_csiphy_reg(priv, CSIPHY_LANE3_CALIB_ENABLE, 0x80);
}
/* set clock lane and data lane */
for (i = 0; i < num_hsfreq_ranges; i++) {
if (hsfreq_ranges[i].range_h >= priv->data_rate_mbps) {
hsfreq = hsfreq_ranges[i].cfg_bit;
break;
}
}
if (i == num_hsfreq_ranges) {
i = num_hsfreq_ranges - 1;
dev_warn(priv->dev, "data rate: %lld mbps, max support %d mbps",
priv->data_rate_mbps, hsfreq_ranges[i].range_h + 1);
hsfreq = hsfreq_ranges[i].cfg_bit;
}
csi_mipidphy_wr_ths_settle(priv, hsfreq, MIPI_DPHY_LANE_CLOCK);
if (sensor->lanes > 0x00)
csi_mipidphy_wr_ths_settle(priv, hsfreq, MIPI_DPHY_LANE_DATA0);
if (sensor->lanes > 0x01)
csi_mipidphy_wr_ths_settle(priv, hsfreq, MIPI_DPHY_LANE_DATA1);
if (sensor->lanes > 0x02)
csi_mipidphy_wr_ths_settle(priv, hsfreq, MIPI_DPHY_LANE_DATA2);
if (sensor->lanes > 0x03)
csi_mipidphy_wr_ths_settle(priv, hsfreq, MIPI_DPHY_LANE_DATA3);
write_grf_reg(priv, GRF_DPHY_CLK_INV_SEL, 0x1);
write_grf_reg(priv, GRF_DPHY_CSIPHY_CLKLANE_EN, 0x1);
write_grf_reg(priv, GRF_DPHY_CSIPHY_DATALANE_EN,
GENMASK(sensor->lanes - 1, 0));
return 0;
}
static int csi_mipidphy_stream_off(struct mipidphy_priv *priv,
struct v4l2_subdev *sd)
{
/* disable all lanes */
write_csiphy_reg(priv, CSIPHY_CTRL_LANE_ENABLE, 0x01);
/* disable pll and ldo */
write_csiphy_reg(priv, CSIPHY_CTRL_PWRCTL, 0xe3);
usleep_range(500, 1000);
return 0;
}
static const struct dphy_drv_data rk1808_mipidphy_drv_data = {
.clks = rk1808_mipidphy_clks,
.num_clks = ARRAY_SIZE(rk1808_mipidphy_clks),
.hsfreq_ranges = rk1808_rv1126_mipidphy_hsfreq_ranges,
.num_hsfreq_ranges = ARRAY_SIZE(rk1808_rv1126_mipidphy_hsfreq_ranges),
.grf_regs = rk1808_grf_dphy_regs,
.csiphy_regs = rk1808_csiphy_regs,
.ctl_type = MIPI_DPHY_CTL_CSI_HOST,
.individual_init = default_mipidphy_individual_init,
.chip_id = CHIP_ID_RK1808,
};
static const struct dphy_drv_data rk3288_mipidphy_drv_data = {
.clks = rk3288_mipidphy_clks,
.num_clks = ARRAY_SIZE(rk3288_mipidphy_clks),
.hsfreq_ranges = rk3288_mipidphy_hsfreq_ranges,
.num_hsfreq_ranges = ARRAY_SIZE(rk3288_mipidphy_hsfreq_ranges),
.grf_regs = rk3288_grf_dphy_regs,
.txrx_regs = rk3288_txrx_regs,
.ctl_type = MIPI_DPHY_CTL_GRF_ONLY,
.individual_init = default_mipidphy_individual_init,
.chip_id = CHIP_ID_RK3288,
};
static const struct dphy_drv_data rk3326_mipidphy_drv_data = {
.clks = rk3326_mipidphy_clks,
.num_clks = ARRAY_SIZE(rk3326_mipidphy_clks),
.hsfreq_ranges = rk3326_mipidphy_hsfreq_ranges,
.num_hsfreq_ranges = ARRAY_SIZE(rk3326_mipidphy_hsfreq_ranges),
.grf_regs = rk3326_grf_dphy_regs,
.csiphy_regs = rk3326_csiphy_regs,
.ctl_type = MIPI_DPHY_CTL_CSI_HOST,
.individual_init = default_mipidphy_individual_init,
.chip_id = CHIP_ID_RK3326,
};
static const struct dphy_drv_data rk3326s_mipidphy_drv_data = {
.clks = rk3326_mipidphy_clks,
.num_clks = ARRAY_SIZE(rk3326_mipidphy_clks),
.hsfreq_ranges = rk3326s_mipidphy_hsfreq_ranges,
.num_hsfreq_ranges = ARRAY_SIZE(rk3326s_mipidphy_hsfreq_ranges),
.grf_regs = rk3326_grf_dphy_regs,
.csiphy_regs = rk3326s_csiphy_regs,
.ctl_type = MIPI_DPHY_CTL_CSI_HOST,
.individual_init = default_mipidphy_individual_init,
.chip_id = CHIP_ID_RK3326S,
};
static const struct dphy_drv_data rk3368_mipidphy_drv_data = {
.clks = rk3368_mipidphy_clks,
.num_clks = ARRAY_SIZE(rk3368_mipidphy_clks),
.hsfreq_ranges = rk3368_mipidphy_hsfreq_ranges,
.num_hsfreq_ranges = ARRAY_SIZE(rk3368_mipidphy_hsfreq_ranges),
.grf_regs = rk3368_grf_dphy_regs,
.csiphy_regs = rk3368_csiphy_regs,
.ctl_type = MIPI_DPHY_CTL_CSI_HOST,
.individual_init = rk3368_mipidphy_individual_init,
.chip_id = CHIP_ID_RK3368,
};
static const struct dphy_drv_data rk3399_mipidphy_drv_data = {
.clks = rk3399_mipidphy_clks,
.num_clks = ARRAY_SIZE(rk3399_mipidphy_clks),
.hsfreq_ranges = rk3399_mipidphy_hsfreq_ranges,
.num_hsfreq_ranges = ARRAY_SIZE(rk3399_mipidphy_hsfreq_ranges),
.grf_regs = rk3399_grf_dphy_regs,
.txrx_regs = rk3399_txrx_regs,
.ctl_type = MIPI_DPHY_CTL_GRF_ONLY,
.individual_init = rk3399_mipidphy_individual_init,
.chip_id = CHIP_ID_RK3399,
};
static const struct dphy_drv_data rv1126_mipidphy_drv_data = {
.clks = rv1126_mipidphy_clks,
.num_clks = ARRAY_SIZE(rv1126_mipidphy_clks),
.hsfreq_ranges = rk1808_rv1126_mipidphy_hsfreq_ranges,
.num_hsfreq_ranges = ARRAY_SIZE(rk1808_rv1126_mipidphy_hsfreq_ranges),
.csiphy_regs = rv1126_csiphy_regs,
.ctl_type = MIPI_DPHY_CTL_CSI_HOST,
.individual_init = rv1126_mipidphy_individual_init,
.chip_id = CHIP_ID_RK1126,
};
static const struct of_device_id rockchip_mipidphy_match_id[] = {
{
.compatible = "rockchip,rk1808-mipi-dphy-rx",
.data = &rk1808_mipidphy_drv_data,
},
{
.compatible = "rockchip,rk3288-mipi-dphy",
.data = &rk3288_mipidphy_drv_data,
},
{
.compatible = "rockchip,rk3326-mipi-dphy",
.data = &rk3326_mipidphy_drv_data,
},
{
.compatible = "rockchip,rk3326s-mipi-dphy",
.data = &rk3326s_mipidphy_drv_data,
},
{
.compatible = "rockchip,rk3368-mipi-dphy",
.data = &rk3368_mipidphy_drv_data,
},
{
.compatible = "rockchip,rk3399-mipi-dphy",
.data = &rk3399_mipidphy_drv_data,
},
{
.compatible = "rockchip,rv1126-csi-dphy",
.data = &rv1126_mipidphy_drv_data,
},
{}
};
MODULE_DEVICE_TABLE(of, rockchip_mipidphy_match_id);
/* The .bound() notifier callback when a match is found */
static int
rockchip_mipidphy_notifier_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *sd,
struct v4l2_async_subdev *asd)
{
struct mipidphy_priv *priv = container_of(notifier,
struct mipidphy_priv,
notifier);
struct sensor_async_subdev *s_asd = container_of(asd,
struct sensor_async_subdev, asd);
struct mipidphy_sensor *sensor;
unsigned int pad, ret;
if (priv->num_sensors == ARRAY_SIZE(priv->sensors))
return -EBUSY;
sensor = &priv->sensors[priv->num_sensors++];
sensor->lanes = s_asd->lanes;
sensor->mbus = s_asd->mbus;
sensor->sd = sd;
dev_info(priv->dev, "match %s:bus type %d\n", sd->name, s_asd->mbus.type);
for (pad = 0; pad < sensor->sd->entity.num_pads; pad++)
if (sensor->sd->entity.pads[pad].flags & MEDIA_PAD_FL_SOURCE)
break;
if (pad == sensor->sd->entity.num_pads) {
dev_err(priv->dev,
"failed to find src pad for %s\n",
sensor->sd->name);
return -ENXIO;
}
ret = media_create_pad_link(
&sensor->sd->entity, pad,
&priv->sd.entity, MIPI_DPHY_RX_PAD_SINK,
priv->num_sensors != 1 ? 0 : MEDIA_LNK_FL_ENABLED);
if (ret) {
dev_err(priv->dev,
"failed to create link for %s\n",
sensor->sd->name);
return ret;
}
return 0;
}
/* The .unbind callback */
static void
rockchip_mipidphy_notifier_unbind(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *sd,
struct v4l2_async_subdev *asd)
{
struct mipidphy_priv *priv = container_of(notifier,
struct mipidphy_priv,
notifier);
struct mipidphy_sensor *sensor = sd_to_sensor(priv, sd);
sensor->sd = NULL;
}
static const struct
v4l2_async_notifier_operations rockchip_mipidphy_async_ops = {
.bound = rockchip_mipidphy_notifier_bound,
.unbind = rockchip_mipidphy_notifier_unbind,
};
static int rockchip_mipidphy_fwnode_parse(struct device *dev,
struct v4l2_fwnode_endpoint *vep,
struct v4l2_async_subdev *asd)
{
struct sensor_async_subdev *s_asd =
container_of(asd, struct sensor_async_subdev, asd);
struct v4l2_mbus_config *config = &s_asd->mbus;
if (vep->base.port != 0) {
dev_err(dev, "The PHY has only port 0\n");
return -EINVAL;
}
if (vep->bus_type == V4L2_MBUS_CSI2_DPHY) {
config->type = V4L2_MBUS_CSI2_DPHY;
config->flags = vep->bus.mipi_csi2.flags;
s_asd->lanes = vep->bus.mipi_csi2.num_data_lanes;
} else if (vep->bus_type == V4L2_MBUS_CCP2) {
/* V4L2_MBUS_CCP2 for lvds */
config->type = V4L2_MBUS_CCP2;
s_asd->lanes = vep->bus.mipi_csi1.data_lane;
} else {
dev_err(dev, "Only CSI2 and CCP2 bus type is currently supported\n");
return -EINVAL;
}
switch (s_asd->lanes) {
case 1:
config->flags |= V4L2_MBUS_CSI2_1_LANE;
break;
case 2:
config->flags |= V4L2_MBUS_CSI2_2_LANE;
break;
case 3:
config->flags |= V4L2_MBUS_CSI2_3_LANE;
break;
case 4:
config->flags |= V4L2_MBUS_CSI2_4_LANE;
break;
default:
return -EINVAL;
}
return 0;
}
static int rockchip_mipidphy_media_init(struct mipidphy_priv *priv)
{
int ret;
priv->pads[MIPI_DPHY_RX_PAD_SOURCE].flags =
MEDIA_PAD_FL_SOURCE | MEDIA_PAD_FL_MUST_CONNECT;
priv->pads[MIPI_DPHY_RX_PAD_SINK].flags =
MEDIA_PAD_FL_SINK | MEDIA_PAD_FL_MUST_CONNECT;
priv->sd.entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
ret = media_entity_pads_init(&priv->sd.entity,
MIPI_DPHY_RX_PADS_NUM, priv->pads);
if (ret < 0)
return ret;
v4l2_async_notifier_init(&priv->notifier);
ret = v4l2_async_notifier_parse_fwnode_endpoints_by_port(
priv->dev, &priv->notifier,
sizeof(struct sensor_async_subdev), 0,
rockchip_mipidphy_fwnode_parse);
if (ret < 0)
return ret;
priv->sd.subdev_notifier = &priv->notifier;
priv->notifier.ops = &rockchip_mipidphy_async_ops;
ret = v4l2_async_subdev_notifier_register(&priv->sd, &priv->notifier);
if (ret) {
dev_err(priv->dev,
"failed to register async notifier : %d\n", ret);
v4l2_async_notifier_cleanup(&priv->notifier);
return ret;
}
return v4l2_async_register_subdev(&priv->sd);
}
static int rockchip_mipidphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct v4l2_subdev *sd;
struct mipidphy_priv *priv;
struct regmap *grf;
struct resource *res;
const struct of_device_id *of_id;
const struct dphy_drv_data *drv_data;
int i, ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
of_id = of_match_device(rockchip_mipidphy_match_id, dev);
if (!of_id)
return -EINVAL;
grf = syscon_node_to_regmap(dev->parent->of_node);
if (IS_ERR(grf)) {
grf = syscon_regmap_lookup_by_phandle(dev->of_node,
"rockchip,grf");
if (IS_ERR(grf)) {
dev_err(dev, "Can't find GRF syscon\n");
return -ENODEV;
}
}
priv->regmap_grf = grf;
priv->phy_index = of_alias_get_id(dev->of_node, "dphy");
if (priv->phy_index < 0)
priv->phy_index = 0;
drv_data = of_id->data;
if (soc_is_px30s())
drv_data = &rk3326s_mipidphy_drv_data;
for (i = 0; i < drv_data->num_clks; i++) {
priv->clks[i] = devm_clk_get(dev, drv_data->clks[i]);
if (IS_ERR(priv->clks[i]))
dev_dbg(dev, "Failed to get %s\n", drv_data->clks[i]);
}
priv->grf_regs = drv_data->grf_regs;
priv->txrx_regs = drv_data->txrx_regs;
priv->csiphy_regs = drv_data->csiphy_regs;
priv->drv_data = drv_data;
if (drv_data->ctl_type == MIPI_DPHY_CTL_CSI_HOST) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->csihost_base_addr = devm_ioremap_resource(dev, res);
priv->stream_on = csi_mipidphy_stream_on;
priv->stream_off = csi_mipidphy_stream_off;
} else {
priv->stream_on = mipidphy_txrx_stream_on;
priv->txrx_base_addr = NULL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->txrx_base_addr = devm_ioremap_resource(dev, res);
if (IS_ERR(priv->txrx_base_addr))
priv->stream_on = mipidphy_rx_stream_on;
priv->stream_off = NULL;
}
sd = &priv->sd;
mutex_init(&priv->mutex);
v4l2_subdev_init(sd, &mipidphy_subdev_ops);
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
snprintf(sd->name, sizeof(sd->name), "rockchip-mipi-dphy-rx");
sd->dev = dev;
platform_set_drvdata(pdev, &sd->entity);
ret = rockchip_mipidphy_media_init(priv);
if (ret < 0)
goto destroy_mutex;
pm_runtime_enable(&pdev->dev);
drv_data->individual_init(priv);
return 0;
destroy_mutex:
mutex_destroy(&priv->mutex);
return 0;
}
static int rockchip_mipidphy_remove(struct platform_device *pdev)
{
struct media_entity *me = platform_get_drvdata(pdev);
struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(me);
struct mipidphy_priv *priv = platform_get_drvdata(pdev);
media_entity_cleanup(&sd->entity);
pm_runtime_disable(&pdev->dev);
mutex_destroy(&priv->mutex);
return 0;
}
static const struct dev_pm_ops rockchip_mipidphy_pm_ops = {
SET_RUNTIME_PM_OPS(mipidphy_runtime_suspend,
mipidphy_runtime_resume, NULL)
};
static struct platform_driver rockchip_isp_mipidphy_driver = {
.probe = rockchip_mipidphy_probe,
.remove = rockchip_mipidphy_remove,
.driver = {
.name = "rockchip-mipi-dphy-rx",
.pm = &rockchip_mipidphy_pm_ops,
.of_match_table = rockchip_mipidphy_match_id,
},
};
module_platform_driver(rockchip_isp_mipidphy_driver);
MODULE_AUTHOR("Rockchip Camera/ISP team");
MODULE_DESCRIPTION("Rockchip MIPI RX DPHY driver");
MODULE_LICENSE("Dual BSD/GPL");