^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /* set_timer latency test
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) * John Stultz (john.stultz@linaro.org)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * (C) Copyright Linaro 2014
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * Licensed under the GPLv2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * This test makes sure the set_timer api is correct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * To build:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * $ gcc set-timer-lat.c -o set-timer-lat -lrt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) * This program is free software: you can redistribute it and/or modify
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) * it under the terms of the GNU General Public License as published by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) * the Free Software Foundation, either version 2 of the License, or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) * (at your option) any later version.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) * This program is distributed in the hope that it will be useful,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) * but WITHOUT ANY WARRANTY; without even the implied warranty of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) * GNU General Public License for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <errno.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #include <stdio.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #include <unistd.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #include <time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #include <string.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #include <signal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #include <stdlib.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #include <pthread.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #include "../kselftest.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #define CLOCK_REALTIME 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #define CLOCK_MONOTONIC 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #define CLOCK_PROCESS_CPUTIME_ID 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #define CLOCK_THREAD_CPUTIME_ID 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #define CLOCK_MONOTONIC_RAW 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) #define CLOCK_REALTIME_COARSE 5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #define CLOCK_MONOTONIC_COARSE 6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #define CLOCK_BOOTTIME 7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) #define CLOCK_REALTIME_ALARM 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) #define CLOCK_BOOTTIME_ALARM 9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) #define CLOCK_HWSPECIFIC 10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) #define CLOCK_TAI 11
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) #define NR_CLOCKIDS 12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) #define NSEC_PER_SEC 1000000000ULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) #define UNRESONABLE_LATENCY 40000000 /* 40ms in nanosecs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) #define TIMER_SECS 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) int alarmcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) int clock_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) struct timespec start_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) long long max_latency_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) int timer_fired_early;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) char *clockstring(int clockid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) switch (clockid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) case CLOCK_REALTIME:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) return "CLOCK_REALTIME";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) case CLOCK_MONOTONIC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) return "CLOCK_MONOTONIC";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) case CLOCK_PROCESS_CPUTIME_ID:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) return "CLOCK_PROCESS_CPUTIME_ID";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) case CLOCK_THREAD_CPUTIME_ID:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) return "CLOCK_THREAD_CPUTIME_ID";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) case CLOCK_MONOTONIC_RAW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) return "CLOCK_MONOTONIC_RAW";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) case CLOCK_REALTIME_COARSE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) return "CLOCK_REALTIME_COARSE";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) case CLOCK_MONOTONIC_COARSE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) return "CLOCK_MONOTONIC_COARSE";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) case CLOCK_BOOTTIME:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) return "CLOCK_BOOTTIME";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) case CLOCK_REALTIME_ALARM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) return "CLOCK_REALTIME_ALARM";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) case CLOCK_BOOTTIME_ALARM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) return "CLOCK_BOOTTIME_ALARM";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) case CLOCK_TAI:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) return "CLOCK_TAI";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) return "UNKNOWN_CLOCKID";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) long long timespec_sub(struct timespec a, struct timespec b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) long long ret = NSEC_PER_SEC * b.tv_sec + b.tv_nsec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) ret -= NSEC_PER_SEC * a.tv_sec + a.tv_nsec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) void sigalarm(int signo)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) long long delta_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) struct timespec ts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) clock_gettime(clock_id, &ts);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) alarmcount++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) delta_ns = timespec_sub(start_time, ts);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) delta_ns -= NSEC_PER_SEC * TIMER_SECS * alarmcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) if (delta_ns < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) timer_fired_early = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) if (delta_ns > max_latency_ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) max_latency_ns = delta_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) void describe_timer(int flags, int interval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) printf("%-22s %s %s ",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) clockstring(clock_id),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) flags ? "ABSTIME":"RELTIME",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) interval ? "PERIODIC":"ONE-SHOT");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) int setup_timer(int clock_id, int flags, int interval, timer_t *tm1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) struct sigevent se;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) struct itimerspec its1, its2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) /* Set up timer: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) memset(&se, 0, sizeof(se));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) se.sigev_notify = SIGEV_SIGNAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) se.sigev_signo = SIGRTMAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) se.sigev_value.sival_int = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) max_latency_ns = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) alarmcount = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) timer_fired_early = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) err = timer_create(clock_id, &se, tm1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) if ((clock_id == CLOCK_REALTIME_ALARM) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) (clock_id == CLOCK_BOOTTIME_ALARM)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) printf("%-22s %s missing CAP_WAKE_ALARM? : [UNSUPPORTED]\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) clockstring(clock_id),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) flags ? "ABSTIME":"RELTIME");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) /* Indicate timer isn't set, so caller doesn't wait */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) printf("%s - timer_create() failed\n", clockstring(clock_id));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) clock_gettime(clock_id, &start_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) if (flags) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) its1.it_value = start_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) its1.it_value.tv_sec += TIMER_SECS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) its1.it_value.tv_sec = TIMER_SECS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) its1.it_value.tv_nsec = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) its1.it_interval.tv_sec = interval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) its1.it_interval.tv_nsec = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) err = timer_settime(*tm1, flags, &its1, &its2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) printf("%s - timer_settime() failed\n", clockstring(clock_id));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) int check_timer_latency(int flags, int interval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) int err = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) describe_timer(flags, interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) printf("timer fired early: %7d : ", timer_fired_early);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) if (!timer_fired_early) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) printf("[OK]\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) printf("[FAILED]\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) err = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) describe_timer(flags, interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) printf("max latency: %10lld ns : ", max_latency_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) if (max_latency_ns < UNRESONABLE_LATENCY) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) printf("[OK]\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) printf("[FAILED]\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) err = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) int check_alarmcount(int flags, int interval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) describe_timer(flags, interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) printf("count: %19d : ", alarmcount);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) if (alarmcount == 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) printf("[OK]\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) printf("[FAILED]\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) int do_timer(int clock_id, int flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) timer_t tm1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) const int interval = TIMER_SECS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) err = setup_timer(clock_id, flags, interval, &tm1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) /* Unsupported case - return 0 to not fail the test */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) return err == 1 ? 0 : err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) while (alarmcount < 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) sleep(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) timer_delete(tm1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) return check_timer_latency(flags, interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) int do_timer_oneshot(int clock_id, int flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) timer_t tm1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) const int interval = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) struct timeval timeout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) err = setup_timer(clock_id, flags, interval, &tm1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) /* Unsupported case - return 0 to not fail the test */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) return err == 1 ? 0 : err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) memset(&timeout, 0, sizeof(timeout));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) timeout.tv_sec = 5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) err = select(0, NULL, NULL, NULL, &timeout);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) } while (err == -1 && errno == EINTR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) timer_delete(tm1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) err = check_timer_latency(flags, interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) err |= check_alarmcount(flags, interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) int main(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) struct sigaction act;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) int signum = SIGRTMAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) /* Set up signal handler: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) sigfillset(&act.sa_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) act.sa_flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) act.sa_handler = sigalarm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) sigaction(signum, &act, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) printf("Setting timers for every %i seconds\n", TIMER_SECS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) for (clock_id = 0; clock_id < NR_CLOCKIDS; clock_id++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) if ((clock_id == CLOCK_PROCESS_CPUTIME_ID) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) (clock_id == CLOCK_THREAD_CPUTIME_ID) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) (clock_id == CLOCK_MONOTONIC_RAW) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) (clock_id == CLOCK_REALTIME_COARSE) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) (clock_id == CLOCK_MONOTONIC_COARSE) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) (clock_id == CLOCK_HWSPECIFIC))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) ret |= do_timer(clock_id, TIMER_ABSTIME);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) ret |= do_timer(clock_id, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) ret |= do_timer_oneshot(clock_id, TIMER_ABSTIME);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) ret |= do_timer_oneshot(clock_id, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) return ksft_exit_fail();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) return ksft_exit_pass();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) }