^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /* Measure nanosleep timer latency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) * by: john stultz (john.stultz@linaro.org)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * (C) Copyright Linaro 2013
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * Licensed under the GPLv2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * To build:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * $ gcc nsleep-lat.c -o nsleep-lat -lrt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * This program is free software: you can redistribute it and/or modify
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) * it under the terms of the GNU General Public License as published by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) * the Free Software Foundation, either version 2 of the License, or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) * (at your option) any later version.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) * This program is distributed in the hope that it will be useful,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) * but WITHOUT ANY WARRANTY; without even the implied warranty of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) * GNU General Public License for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <stdio.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <stdlib.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <sys/time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #include <sys/timex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #include <string.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #include <signal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #include "../kselftest.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #define NSEC_PER_SEC 1000000000ULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #define UNRESONABLE_LATENCY 40000000 /* 40ms in nanosecs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #define CLOCK_REALTIME 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #define CLOCK_MONOTONIC 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #define CLOCK_PROCESS_CPUTIME_ID 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #define CLOCK_THREAD_CPUTIME_ID 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) #define CLOCK_MONOTONIC_RAW 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #define CLOCK_REALTIME_COARSE 5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #define CLOCK_MONOTONIC_COARSE 6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) #define CLOCK_BOOTTIME 7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) #define CLOCK_REALTIME_ALARM 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) #define CLOCK_BOOTTIME_ALARM 9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) #define CLOCK_HWSPECIFIC 10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) #define CLOCK_TAI 11
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) #define NR_CLOCKIDS 12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) #define UNSUPPORTED 0xf00f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) char *clockstring(int clockid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) switch (clockid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) case CLOCK_REALTIME:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) return "CLOCK_REALTIME";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) case CLOCK_MONOTONIC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) return "CLOCK_MONOTONIC";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) case CLOCK_PROCESS_CPUTIME_ID:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) return "CLOCK_PROCESS_CPUTIME_ID";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) case CLOCK_THREAD_CPUTIME_ID:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) return "CLOCK_THREAD_CPUTIME_ID";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) case CLOCK_MONOTONIC_RAW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) return "CLOCK_MONOTONIC_RAW";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) case CLOCK_REALTIME_COARSE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) return "CLOCK_REALTIME_COARSE";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) case CLOCK_MONOTONIC_COARSE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) return "CLOCK_MONOTONIC_COARSE";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) case CLOCK_BOOTTIME:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) return "CLOCK_BOOTTIME";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) case CLOCK_REALTIME_ALARM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) return "CLOCK_REALTIME_ALARM";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) case CLOCK_BOOTTIME_ALARM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) return "CLOCK_BOOTTIME_ALARM";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) case CLOCK_TAI:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) return "CLOCK_TAI";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) return "UNKNOWN_CLOCKID";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) struct timespec timespec_add(struct timespec ts, unsigned long long ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) ts.tv_nsec += ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) while (ts.tv_nsec >= NSEC_PER_SEC) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) ts.tv_nsec -= NSEC_PER_SEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) ts.tv_sec++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) return ts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) long long timespec_sub(struct timespec a, struct timespec b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) long long ret = NSEC_PER_SEC * b.tv_sec + b.tv_nsec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) ret -= NSEC_PER_SEC * a.tv_sec + a.tv_nsec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) int nanosleep_lat_test(int clockid, long long ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) struct timespec start, end, target;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) long long latency = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) int i, count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) target.tv_sec = ns/NSEC_PER_SEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) target.tv_nsec = ns%NSEC_PER_SEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) if (clock_gettime(clockid, &start))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) return UNSUPPORTED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) if (clock_nanosleep(clockid, 0, &target, NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) return UNSUPPORTED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) count = 10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) /* First check relative latency */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) clock_gettime(clockid, &start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) for (i = 0; i < count; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) clock_nanosleep(clockid, 0, &target, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) clock_gettime(clockid, &end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) if (((timespec_sub(start, end)/count)-ns) > UNRESONABLE_LATENCY) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) printf("Large rel latency: %lld ns :", (timespec_sub(start, end)/count)-ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) /* Next check absolute latency */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) for (i = 0; i < count; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) clock_gettime(clockid, &start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) target = timespec_add(start, ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) clock_nanosleep(clockid, TIMER_ABSTIME, &target, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) clock_gettime(clockid, &end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) latency += timespec_sub(target, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) if (latency/count > UNRESONABLE_LATENCY) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) printf("Large abs latency: %lld ns :", latency/count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) int main(int argc, char **argv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) long long length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) int clockid, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) for (clockid = CLOCK_REALTIME; clockid < NR_CLOCKIDS; clockid++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) /* Skip cputime clockids since nanosleep won't increment cputime */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) if (clockid == CLOCK_PROCESS_CPUTIME_ID ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) clockid == CLOCK_THREAD_CPUTIME_ID ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) clockid == CLOCK_HWSPECIFIC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) printf("nsleep latency %-26s ", clockstring(clockid));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) fflush(stdout);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) length = 10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) while (length <= (NSEC_PER_SEC * 10)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) ret = nanosleep_lat_test(clockid, length);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) length *= 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) if (ret == UNSUPPORTED) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) printf("[UNSUPPORTED]\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) printf("[FAILED]\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) return ksft_exit_fail();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) printf("[OK]\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) return ksft_exit_pass();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) }