Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * This test checks the response of the system clock to frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * steps made with adjtimex(). The frequency error and stability of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * the CLOCK_MONOTONIC clock relative to the CLOCK_MONOTONIC_RAW clock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * is measured in two intervals following the step. The test fails if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * values from the second interval exceed specified limits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  * Copyright (C) Miroslav Lichvar <mlichvar@redhat.com>  2017
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <math.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <stdio.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <sys/timex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <unistd.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include "../kselftest.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #define SAMPLES 100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #define SAMPLE_READINGS 10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #define MEAN_SAMPLE_INTERVAL 0.1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #define STEP_INTERVAL 1.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #define MAX_PRECISION 500e-9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #define MAX_FREQ_ERROR 0.02e-6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #define MAX_STDDEV 50e-9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #ifndef ADJ_SETOFFSET
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)   #define ADJ_SETOFFSET 0x0100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) struct sample {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 	double offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 	double time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) static time_t mono_raw_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) static time_t mono_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) static long user_hz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) static double precision;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) static double mono_freq_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) static double diff_timespec(struct timespec *ts1, struct timespec *ts2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	return ts1->tv_sec - ts2->tv_sec + (ts1->tv_nsec - ts2->tv_nsec) / 1e9;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) static double get_sample(struct sample *sample)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 	double delay, mindelay = 0.0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 	struct timespec ts1, ts2, ts3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 	for (i = 0; i < SAMPLE_READINGS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 		clock_gettime(CLOCK_MONOTONIC_RAW, &ts1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 		clock_gettime(CLOCK_MONOTONIC, &ts2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 		clock_gettime(CLOCK_MONOTONIC_RAW, &ts3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 		ts1.tv_sec -= mono_raw_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 		ts2.tv_sec -= mono_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 		ts3.tv_sec -= mono_raw_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 		delay = diff_timespec(&ts3, &ts1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 		if (delay <= 1e-9) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 			i--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 		if (!i || delay < mindelay) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 			sample->offset = diff_timespec(&ts2, &ts1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 			sample->offset -= delay / 2.0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 			sample->time = ts1.tv_sec + ts1.tv_nsec / 1e9;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 			mindelay = delay;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	return mindelay;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) static void reset_ntp_error(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	struct timex txc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	txc.modes = ADJ_SETOFFSET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	txc.time.tv_sec = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	txc.time.tv_usec = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	if (adjtimex(&txc) < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 		perror("[FAIL] adjtimex");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 		ksft_exit_fail();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) static void set_frequency(double freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	struct timex txc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	int tick_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	tick_offset = 1e6 * freq / user_hz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	txc.modes = ADJ_TICK | ADJ_FREQUENCY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	txc.tick = 1000000 / user_hz + tick_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	txc.freq = (1e6 * freq - user_hz * tick_offset) * (1 << 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	if (adjtimex(&txc) < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 		perror("[FAIL] adjtimex");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 		ksft_exit_fail();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) static void regress(struct sample *samples, int n, double *intercept,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 		    double *slope, double *r_stddev, double *r_max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	double x, y, r, x_sum, y_sum, xy_sum, x2_sum, r2_sum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	x_sum = 0.0, y_sum = 0.0, xy_sum = 0.0, x2_sum = 0.0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	for (i = 0; i < n; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 		x = samples[i].time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 		y = samples[i].offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 		x_sum += x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 		y_sum += y;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 		xy_sum += x * y;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 		x2_sum += x * x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	*slope = (xy_sum - x_sum * y_sum / n) / (x2_sum - x_sum * x_sum / n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	*intercept = (y_sum - *slope * x_sum) / n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	*r_max = 0.0, r2_sum = 0.0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	for (i = 0; i < n; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 		x = samples[i].time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 		y = samples[i].offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 		r = fabs(x * *slope + *intercept - y);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 		if (*r_max < r)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 			*r_max = r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 		r2_sum += r * r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	*r_stddev = sqrt(r2_sum / n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) static int run_test(int calibration, double freq_base, double freq_step)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	struct sample samples[SAMPLES];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	double intercept, slope, stddev1, max1, stddev2, max2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	double freq_error1, freq_error2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	set_frequency(freq_base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	for (i = 0; i < 10; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 		usleep(1e6 * MEAN_SAMPLE_INTERVAL / 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	reset_ntp_error();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	set_frequency(freq_base + freq_step);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	for (i = 0; i < 10; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 		usleep(rand() % 2000000 * STEP_INTERVAL / 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	set_frequency(freq_base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	for (i = 0; i < SAMPLES; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 		usleep(rand() % 2000000 * MEAN_SAMPLE_INTERVAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 		get_sample(&samples[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	if (calibration) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 		regress(samples, SAMPLES, &intercept, &slope, &stddev1, &max1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 		mono_freq_offset = slope;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 		printf("CLOCK_MONOTONIC_RAW frequency offset: %11.3f ppm\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 		       1e6 * mono_freq_offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	regress(samples, SAMPLES / 2, &intercept, &slope, &stddev1, &max1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	freq_error1 = slope * (1.0 - mono_freq_offset) - mono_freq_offset -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 			freq_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	regress(samples + SAMPLES / 2, SAMPLES / 2, &intercept, &slope,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 		&stddev2, &max2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	freq_error2 = slope * (1.0 - mono_freq_offset) - mono_freq_offset -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 			freq_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	printf("%6.0f %+10.3f %6.0f %7.0f %+10.3f %6.0f %7.0f\t",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	       1e6 * freq_step,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	       1e6 * freq_error1, 1e9 * stddev1, 1e9 * max1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	       1e6 * freq_error2, 1e9 * stddev2, 1e9 * max2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	if (fabs(freq_error2) > MAX_FREQ_ERROR || stddev2 > MAX_STDDEV) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 		printf("[FAIL]\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	printf("[OK]\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) static void init_test(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	struct timespec ts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	struct sample sample;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	if (clock_gettime(CLOCK_MONOTONIC_RAW, &ts)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 		perror("[FAIL] clock_gettime(CLOCK_MONOTONIC_RAW)");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 		ksft_exit_fail();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	mono_raw_base = ts.tv_sec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	if (clock_gettime(CLOCK_MONOTONIC, &ts)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 		perror("[FAIL] clock_gettime(CLOCK_MONOTONIC)");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 		ksft_exit_fail();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	mono_base = ts.tv_sec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	user_hz = sysconf(_SC_CLK_TCK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	precision = get_sample(&sample) / 2.0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	printf("CLOCK_MONOTONIC_RAW+CLOCK_MONOTONIC precision: %.0f ns\t\t",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	       1e9 * precision);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 	if (precision > MAX_PRECISION)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 		ksft_exit_skip("precision: %.0f ns > MAX_PRECISION: %.0f ns\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 				1e9 * precision, 1e9 * MAX_PRECISION);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	printf("[OK]\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	srand(ts.tv_sec ^ ts.tv_nsec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	run_test(1, 0.0, 0.0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) int main(int argc, char **argv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	double freq_base, freq_step;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	int i, j, fails = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	init_test();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	printf("Checking response to frequency step:\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 	printf("  Step           1st interval              2nd interval\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	printf("             Freq    Dev     Max       Freq    Dev     Max\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	for (i = 2; i >= 0; i--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 		for (j = 0; j < 5; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 			freq_base = (rand() % (1 << 24) - (1 << 23)) / 65536e6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 			freq_step = 10e-6 * (1 << (6 * i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 			fails += run_test(0, freq_base, freq_step);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	set_frequency(0.0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	if (fails)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 		return ksft_exit_fail();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	return ksft_exit_pass();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) }