Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /* alarmtimer suspend test
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2)  *		John Stultz (john.stultz@linaro.org)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  *              (C) Copyright Linaro 2013
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *              Licensed under the GPLv2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *   This test makes sure the alarmtimer & RTC wakeup code is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  *   functioning.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *  To build:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  *	$ gcc alarmtimer-suspend.c -o alarmtimer-suspend -lrt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  *   This program is free software: you can redistribute it and/or modify
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  *   it under the terms of the GNU General Public License as published by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  *   the Free Software Foundation, either version 2 of the License, or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  *   (at your option) any later version.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  *   This program is distributed in the hope that it will be useful,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19)  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20)  *   GNU General Public License for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #include <stdio.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #include <unistd.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #include <time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #include <string.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #include <signal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #include <stdlib.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #include <pthread.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #include "../kselftest.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define CLOCK_REALTIME			0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #define CLOCK_MONOTONIC			1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) #define CLOCK_PROCESS_CPUTIME_ID	2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) #define CLOCK_THREAD_CPUTIME_ID		3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) #define CLOCK_MONOTONIC_RAW		4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) #define CLOCK_REALTIME_COARSE		5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #define CLOCK_MONOTONIC_COARSE		6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) #define CLOCK_BOOTTIME			7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #define CLOCK_REALTIME_ALARM		8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) #define CLOCK_BOOTTIME_ALARM		9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) #define CLOCK_HWSPECIFIC		10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) #define CLOCK_TAI			11
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) #define NR_CLOCKIDS			12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #define NSEC_PER_SEC 1000000000ULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) #define UNREASONABLE_LAT (NSEC_PER_SEC * 5) /* hopefully we resume in 5 secs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) #define SUSPEND_SECS 15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) int alarmcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) int alarm_clock_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) struct timespec start_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) char *clockstring(int clockid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	switch (clockid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	case CLOCK_REALTIME:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 		return "CLOCK_REALTIME";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	case CLOCK_MONOTONIC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 		return "CLOCK_MONOTONIC";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	case CLOCK_PROCESS_CPUTIME_ID:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 		return "CLOCK_PROCESS_CPUTIME_ID";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	case CLOCK_THREAD_CPUTIME_ID:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 		return "CLOCK_THREAD_CPUTIME_ID";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	case CLOCK_MONOTONIC_RAW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 		return "CLOCK_MONOTONIC_RAW";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	case CLOCK_REALTIME_COARSE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 		return "CLOCK_REALTIME_COARSE";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	case CLOCK_MONOTONIC_COARSE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 		return "CLOCK_MONOTONIC_COARSE";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	case CLOCK_BOOTTIME:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 		return "CLOCK_BOOTTIME";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	case CLOCK_REALTIME_ALARM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 		return "CLOCK_REALTIME_ALARM";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	case CLOCK_BOOTTIME_ALARM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 		return "CLOCK_BOOTTIME_ALARM";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	case CLOCK_TAI:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 		return "CLOCK_TAI";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	return "UNKNOWN_CLOCKID";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) long long timespec_sub(struct timespec a, struct timespec b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	long long ret = NSEC_PER_SEC * b.tv_sec + b.tv_nsec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	ret -= NSEC_PER_SEC * a.tv_sec + a.tv_nsec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) int final_ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) void sigalarm(int signo)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	long long delta_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	struct timespec ts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	clock_gettime(alarm_clock_id, &ts);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	alarmcount++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	delta_ns = timespec_sub(start_time, ts);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	delta_ns -= NSEC_PER_SEC * SUSPEND_SECS * alarmcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	printf("ALARM(%i): %ld:%ld latency: %lld ns ", alarmcount, ts.tv_sec,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 							ts.tv_nsec, delta_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	if (delta_ns > UNREASONABLE_LAT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 		printf("[FAIL]\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 		final_ret = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 		printf("[OK]\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) int main(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	timer_t tm1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	struct itimerspec its1, its2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	struct sigevent se;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	struct sigaction act;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	int signum = SIGRTMAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	/* Set up signal handler: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	sigfillset(&act.sa_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	act.sa_flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	act.sa_handler = sigalarm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	sigaction(signum, &act, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	/* Set up timer: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	memset(&se, 0, sizeof(se));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	se.sigev_notify = SIGEV_SIGNAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	se.sigev_signo = signum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	se.sigev_value.sival_int = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	for (alarm_clock_id = CLOCK_REALTIME_ALARM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 			alarm_clock_id <= CLOCK_BOOTTIME_ALARM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 			alarm_clock_id++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 		alarmcount = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 		if (timer_create(alarm_clock_id, &se, &tm1) == -1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 			printf("timer_create failed, %s unsupported?\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 					clockstring(alarm_clock_id));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 		clock_gettime(alarm_clock_id, &start_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 		printf("Start time (%s): %ld:%ld\n", clockstring(alarm_clock_id),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 				start_time.tv_sec, start_time.tv_nsec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 		printf("Setting alarm for every %i seconds\n", SUSPEND_SECS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 		its1.it_value = start_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 		its1.it_value.tv_sec += SUSPEND_SECS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 		its1.it_interval.tv_sec = SUSPEND_SECS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 		its1.it_interval.tv_nsec = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 		timer_settime(tm1, TIMER_ABSTIME, &its1, &its2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 		while (alarmcount < 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 			sleep(1); /* First 5 alarms, do nothing */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 		printf("Starting suspend loops\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 		while (alarmcount < 10) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 			int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 			sleep(3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 			ret = system("echo mem > /sys/power/state");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 			if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 		timer_delete(tm1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	if (final_ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 		return ksft_exit_fail();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	return ksft_exit_pass();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) }