^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /* SPDX-License-Identifier: LGPL-2.1 OR MIT */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * rseq.h
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * (C) Copyright 2016-2018 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) #ifndef RSEQ_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #define RSEQ_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <stdint.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <stdbool.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <pthread.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <signal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <errno.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <stdio.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <stdlib.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/rseq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) * Empty code injection macros, override when testing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) * It is important to consider that the ASM injection macros need to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) * fully reentrant (e.g. do not modify the stack).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #ifndef RSEQ_INJECT_ASM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #define RSEQ_INJECT_ASM(n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #ifndef RSEQ_INJECT_C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #define RSEQ_INJECT_C(n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #ifndef RSEQ_INJECT_INPUT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #define RSEQ_INJECT_INPUT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) #ifndef RSEQ_INJECT_CLOBBER
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #define RSEQ_INJECT_CLOBBER
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) #ifndef RSEQ_INJECT_FAILED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) #define RSEQ_INJECT_FAILED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) extern __thread volatile struct rseq __rseq_abi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) extern int __rseq_handled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) #define rseq_likely(x) __builtin_expect(!!(x), 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) #define rseq_unlikely(x) __builtin_expect(!!(x), 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) #define rseq_barrier() __asm__ __volatile__("" : : : "memory")
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) #define RSEQ_ACCESS_ONCE(x) (*(__volatile__ __typeof__(x) *)&(x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) #define RSEQ_WRITE_ONCE(x, v) __extension__ ({ RSEQ_ACCESS_ONCE(x) = (v); })
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) #define RSEQ_READ_ONCE(x) RSEQ_ACCESS_ONCE(x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) #define __rseq_str_1(x) #x
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) #define __rseq_str(x) __rseq_str_1(x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) #define rseq_log(fmt, args...) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) fprintf(stderr, fmt "(in %s() at " __FILE__ ":" __rseq_str(__LINE__)"\n", \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) ## args, __func__)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) #define rseq_bug(fmt, args...) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) rseq_log(fmt, ##args); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) abort(); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) #if defined(__x86_64__) || defined(__i386__)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) #include <rseq-x86.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) #elif defined(__ARMEL__)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) #include <rseq-arm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) #elif defined (__AARCH64EL__)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) #include <rseq-arm64.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) #elif defined(__PPC__)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) #include <rseq-ppc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) #elif defined(__mips__)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) #include <rseq-mips.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) #elif defined(__s390__)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) #include <rseq-s390.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) #error unsupported target
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) * Register rseq for the current thread. This needs to be called once
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) * by any thread which uses restartable sequences, before they start
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) * using restartable sequences, to ensure restartable sequences
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) * succeed. A restartable sequence executed from a non-registered
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) * thread will always fail.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) int rseq_register_current_thread(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) * Unregister rseq for current thread.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) int rseq_unregister_current_thread(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) * Restartable sequence fallback for reading the current CPU number.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) int32_t rseq_fallback_current_cpu(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) * Values returned can be either the current CPU number, -1 (rseq is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) * uninitialized), or -2 (rseq initialization has failed).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) static inline int32_t rseq_current_cpu_raw(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) return RSEQ_ACCESS_ONCE(__rseq_abi.cpu_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) * Returns a possible CPU number, which is typically the current CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) * The returned CPU number can be used to prepare for an rseq critical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) * section, which will confirm whether the cpu number is indeed the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) * current one, and whether rseq is initialized.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) * The CPU number returned by rseq_cpu_start should always be validated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) * by passing it to a rseq asm sequence, or by comparing it to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) * return value of rseq_current_cpu_raw() if the rseq asm sequence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) * does not need to be invoked.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) static inline uint32_t rseq_cpu_start(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) return RSEQ_ACCESS_ONCE(__rseq_abi.cpu_id_start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) static inline uint32_t rseq_current_cpu(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) int32_t cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) cpu = rseq_current_cpu_raw();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) if (rseq_unlikely(cpu < 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) cpu = rseq_fallback_current_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) return cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) static inline void rseq_clear_rseq_cs(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) #ifdef __LP64__
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) __rseq_abi.rseq_cs.ptr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) __rseq_abi.rseq_cs.ptr.ptr32 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) * rseq_prepare_unload() should be invoked by each thread executing a rseq
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) * critical section at least once between their last critical section and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) * library unload of the library defining the rseq critical section (struct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) * rseq_cs) or the code referred to by the struct rseq_cs start_ip and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) * post_commit_offset fields. This also applies to use of rseq in code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) * generated by JIT: rseq_prepare_unload() should be invoked at least once by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) * each thread executing a rseq critical section before reclaim of the memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) * holding the struct rseq_cs or reclaim of the code pointed to by struct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) * rseq_cs start_ip and post_commit_offset fields.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) static inline void rseq_prepare_unload(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) rseq_clear_rseq_cs();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) #endif /* RSEQ_H_ */