Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Sparse bit array
*
* Copyright (C) 2018, Google LLC.
* Copyright (C) 2018, Red Hat, Inc. (code style cleanup and fuzzing driver)
*
* This library provides functions to support a memory efficient bit array,
* with an index size of 2^64. A sparsebit array is allocated through
* the use sparsebit_alloc() and free'd via sparsebit_free(),
* such as in the following:
*
* struct sparsebit *s;
* s = sparsebit_alloc();
* sparsebit_free(&s);
*
* The struct sparsebit type resolves down to a struct sparsebit.
* Note that, sparsebit_free() takes a pointer to the sparsebit
* structure. This is so that sparsebit_free() is able to poison
* the pointer (e.g. set it to NULL) to the struct sparsebit before
* returning to the caller.
*
* Between the return of sparsebit_alloc() and the call of
* sparsebit_free(), there are multiple query and modifying operations
* that can be performed on the allocated sparsebit array. All of
* these operations take as a parameter the value returned from
* sparsebit_alloc() and most also take a bit index. Frequently
* used routines include:
*
* ---- Query Operations
* sparsebit_is_set(s, idx)
* sparsebit_is_clear(s, idx)
* sparsebit_any_set(s)
* sparsebit_first_set(s)
* sparsebit_next_set(s, prev_idx)
*
* ---- Modifying Operations
* sparsebit_set(s, idx)
* sparsebit_clear(s, idx)
* sparsebit_set_num(s, idx, num);
* sparsebit_clear_num(s, idx, num);
*
* A common operation, is to itterate over all the bits set in a test
* sparsebit array. This can be done via code with the following structure:
*
* sparsebit_idx_t idx;
* if (sparsebit_any_set(s)) {
* idx = sparsebit_first_set(s);
* do {
* ...
* idx = sparsebit_next_set(s, idx);
* } while (idx != 0);
* }
*
* The index of the first bit set needs to be obtained via
* sparsebit_first_set(), because sparsebit_next_set(), needs
* the index of the previously set. The sparsebit_idx_t type is
* unsigned, so there is no previous index before 0 that is available.
* Also, the call to sparsebit_first_set() is not made unless there
* is at least 1 bit in the array set. This is because sparsebit_first_set()
* aborts if sparsebit_first_set() is called with no bits set.
* It is the callers responsibility to assure that the
* sparsebit array has at least a single bit set before calling
* sparsebit_first_set().
*
* ==== Implementation Overview ====
* For the most part the internal implementation of sparsebit is
* opaque to the caller. One important implementation detail that the
* caller may need to be aware of is the spatial complexity of the
* implementation. This implementation of a sparsebit array is not
* only sparse, in that it uses memory proportional to the number of bits
* set. It is also efficient in memory usage when most of the bits are
* set.
*
* At a high-level the state of the bit settings are maintained through
* the use of a binary-search tree, where each node contains at least
* the following members:
*
* typedef uint64_t sparsebit_idx_t;
* typedef uint64_t sparsebit_num_t;
*
* sparsebit_idx_t idx;
* uint32_t mask;
* sparsebit_num_t num_after;
*
* The idx member contains the bit index of the first bit described by this
* node, while the mask member stores the setting of the first 32-bits.
* The setting of the bit at idx + n, where 0 <= n < 32, is located in the
* mask member at 1 << n.
*
* Nodes are sorted by idx and the bits described by two nodes will never
* overlap. The idx member is always aligned to the mask size, i.e. a
* multiple of 32.
*
* Beyond a typical implementation, the nodes in this implementation also
* contains a member named num_after. The num_after member holds the
* number of bits immediately after the mask bits that are contiguously set.
* The use of the num_after member allows this implementation to efficiently
* represent cases where most bits are set. For example, the case of all
* but the last two bits set, is represented by the following two nodes:
*
* node 0 - idx: 0x0 mask: 0xffffffff num_after: 0xffffffffffffffc0
* node 1 - idx: 0xffffffffffffffe0 mask: 0x3fffffff num_after: 0
*
* ==== Invariants ====
* This implementation usses the following invariants:
*
* + Node are only used to represent bits that are set.
* Nodes with a mask of 0 and num_after of 0 are not allowed.
*
* + Sum of bits set in all the nodes is equal to the value of
* the struct sparsebit_pvt num_set member.
*
* + The setting of at least one bit is always described in a nodes
* mask (mask >= 1).
*
* + A node with all mask bits set only occurs when the last bit
* described by the previous node is not equal to this nodes
* starting index - 1. All such occurences of this condition are
* avoided by moving the setting of the nodes mask bits into
* the previous nodes num_after setting.
*
* + Node starting index is evenly divisible by the number of bits
* within a nodes mask member.
*
* + Nodes never represent a range of bits that wrap around the
* highest supported index.
*
* (idx + MASK_BITS + num_after - 1) <= ((sparsebit_idx_t) 0) - 1)
*
* As a consequence of the above, the num_after member of a node
* will always be <=:
*
* maximum_index - nodes_starting_index - number_of_mask_bits
*
* + Nodes within the binary search tree are sorted based on each
* nodes starting index.
*
* + The range of bits described by any two nodes do not overlap. The
* range of bits described by a single node is:
*
* start: node->idx
* end (inclusive): node->idx + MASK_BITS + node->num_after - 1;
*
* Note, at times these invariants are temporarily violated for a
* specific portion of the code. For example, when setting a mask
* bit, there is a small delay between when the mask bit is set and the
* value in the struct sparsebit_pvt num_set member is updated. Other
* temporary violations occur when node_split() is called with a specified
* index and assures that a node where its mask represents the bit
* at the specified index exists. At times to do this node_split()
* must split an existing node into two nodes or create a node that
* has no bits set. Such temporary violations must be corrected before
* returning to the caller. These corrections are typically performed
* by the local function node_reduce().
*/
#include "test_util.h"
#include "sparsebit.h"
#include <limits.h>
#include <assert.h>
#define DUMP_LINE_MAX 100 /* Does not include indent amount */
typedef uint32_t mask_t;
#define MASK_BITS (sizeof(mask_t) * CHAR_BIT)
struct node {
<------>struct node *parent;
<------>struct node *left;
<------>struct node *right;
<------>sparsebit_idx_t idx; /* index of least-significant bit in mask */
<------>sparsebit_num_t num_after; /* num contiguously set after mask */
<------>mask_t mask;
};
struct sparsebit {
<------>/*
<------> * Points to root node of the binary search
<------> * tree. Equal to NULL when no bits are set in
<------> * the entire sparsebit array.
<------> */
<------>struct node *root;
<------>/*
<------> * A redundant count of the total number of bits set. Used for
<------> * diagnostic purposes and to change the time complexity of
<------> * sparsebit_num_set() from O(n) to O(1).
<------> * Note: Due to overflow, a value of 0 means none or all set.
<------> */
<------>sparsebit_num_t num_set;
};
/* Returns the number of set bits described by the settings
* of the node pointed to by nodep.
*/
static sparsebit_num_t node_num_set(struct node *nodep)
{
<------>return nodep->num_after + __builtin_popcount(nodep->mask);
}
/* Returns a pointer to the node that describes the
* lowest bit index.
*/
static struct node *node_first(struct sparsebit *s)
{
<------>struct node *nodep;
<------>for (nodep = s->root; nodep && nodep->left; nodep = nodep->left)
<------><------>;
<------>return nodep;
}
/* Returns a pointer to the node that describes the
* lowest bit index > the index of the node pointed to by np.
* Returns NULL if no node with a higher index exists.
*/
static struct node *node_next(struct sparsebit *s, struct node *np)
{
<------>struct node *nodep = np;
<------>/*
<------> * If current node has a right child, next node is the left-most
<------> * of the right child.
<------> */
<------>if (nodep->right) {
<------><------>for (nodep = nodep->right; nodep->left; nodep = nodep->left)
<------><------><------>;
<------><------>return nodep;
<------>}
<------>/*
<------> * No right child. Go up until node is left child of a parent.
<------> * That parent is then the next node.
<------> */
<------>while (nodep->parent && nodep == nodep->parent->right)
<------><------>nodep = nodep->parent;
<------>return nodep->parent;
}
/* Searches for and returns a pointer to the node that describes the
* highest index < the index of the node pointed to by np.
* Returns NULL if no node with a lower index exists.
*/
static struct node *node_prev(struct sparsebit *s, struct node *np)
{
<------>struct node *nodep = np;
<------>/*
<------> * If current node has a left child, next node is the right-most
<------> * of the left child.
<------> */
<------>if (nodep->left) {
<------><------>for (nodep = nodep->left; nodep->right; nodep = nodep->right)
<------><------><------>;
<------><------>return (struct node *) nodep;
<------>}
<------>/*
<------> * No left child. Go up until node is right child of a parent.
<------> * That parent is then the next node.
<------> */
<------>while (nodep->parent && nodep == nodep->parent->left)
<------><------>nodep = nodep->parent;
<------>return (struct node *) nodep->parent;
}
/* Allocates space to hold a copy of the node sub-tree pointed to by
* subtree and duplicates the bit settings to the newly allocated nodes.
* Returns the newly allocated copy of subtree.
*/
static struct node *node_copy_subtree(struct node *subtree)
{
<------>struct node *root;
<------>/* Duplicate the node at the root of the subtree */
<------>root = calloc(1, sizeof(*root));
<------>if (!root) {
<------><------>perror("calloc");
<------><------>abort();
<------>}
<------>root->idx = subtree->idx;
<------>root->mask = subtree->mask;
<------>root->num_after = subtree->num_after;
<------>/* As needed, recursively duplicate the left and right subtrees */
<------>if (subtree->left) {
<------><------>root->left = node_copy_subtree(subtree->left);
<------><------>root->left->parent = root;
<------>}
<------>if (subtree->right) {
<------><------>root->right = node_copy_subtree(subtree->right);
<------><------>root->right->parent = root;
<------>}
<------>return root;
}
/* Searches for and returns a pointer to the node that describes the setting
* of the bit given by idx. A node describes the setting of a bit if its
* index is within the bits described by the mask bits or the number of
* contiguous bits set after the mask. Returns NULL if there is no such node.
*/
static struct node *node_find(struct sparsebit *s, sparsebit_idx_t idx)
{
<------>struct node *nodep;
<------>/* Find the node that describes the setting of the bit at idx */
<------>for (nodep = s->root; nodep;
<------> nodep = nodep->idx > idx ? nodep->left : nodep->right) {
<------><------>if (idx >= nodep->idx &&
<------><------> idx <= nodep->idx + MASK_BITS + nodep->num_after - 1)
<------><------><------>break;
<------>}
<------>return nodep;
}
/* Entry Requirements:
* + A node that describes the setting of idx is not already present.
*
* Adds a new node to describe the setting of the bit at the index given
* by idx. Returns a pointer to the newly added node.
*
* TODO(lhuemill): Degenerate cases causes the tree to get unbalanced.
*/
static struct node *node_add(struct sparsebit *s, sparsebit_idx_t idx)
{
<------>struct node *nodep, *parentp, *prev;
<------>/* Allocate and initialize the new node. */
<------>nodep = calloc(1, sizeof(*nodep));
<------>if (!nodep) {
<------><------>perror("calloc");
<------><------>abort();
<------>}
<------>nodep->idx = idx & -MASK_BITS;
<------>/* If no nodes, set it up as the root node. */
<------>if (!s->root) {
<------><------>s->root = nodep;
<------><------>return nodep;
<------>}
<------>/*
<------> * Find the parent where the new node should be attached
<------> * and add the node there.
<------> */
<------>parentp = s->root;
<------>while (true) {
<------><------>if (idx < parentp->idx) {
<------><------><------>if (!parentp->left) {
<------><------><------><------>parentp->left = nodep;
<------><------><------><------>nodep->parent = parentp;
<------><------><------><------>break;
<------><------><------>}
<------><------><------>parentp = parentp->left;
<------><------>} else {
<------><------><------>assert(idx > parentp->idx + MASK_BITS + parentp->num_after - 1);
<------><------><------>if (!parentp->right) {
<------><------><------><------>parentp->right = nodep;
<------><------><------><------>nodep->parent = parentp;
<------><------><------><------>break;
<------><------><------>}
<------><------><------>parentp = parentp->right;
<------><------>}
<------>}
<------>/*
<------> * Does num_after bits of previous node overlap with the mask
<------> * of the new node? If so set the bits in the new nodes mask
<------> * and reduce the previous nodes num_after.
<------> */
<------>prev = node_prev(s, nodep);
<------>while (prev && prev->idx + MASK_BITS + prev->num_after - 1 >= nodep->idx) {
<------><------>unsigned int n1 = (prev->idx + MASK_BITS + prev->num_after - 1)
<------><------><------>- nodep->idx;
<------><------>assert(prev->num_after > 0);
<------><------>assert(n1 < MASK_BITS);
<------><------>assert(!(nodep->mask & (1 << n1)));
<------><------>nodep->mask |= (1 << n1);
<------><------>prev->num_after--;
<------>}
<------>return nodep;
}
/* Returns whether all the bits in the sparsebit array are set. */
bool sparsebit_all_set(struct sparsebit *s)
{
<------>/*
<------> * If any nodes there must be at least one bit set. Only case
<------> * where a bit is set and total num set is 0, is when all bits
<------> * are set.
<------> */
<------>return s->root && s->num_set == 0;
}
/* Clears all bits described by the node pointed to by nodep, then
* removes the node.
*/
static void node_rm(struct sparsebit *s, struct node *nodep)
{
<------>struct node *tmp;
<------>sparsebit_num_t num_set;
<------>num_set = node_num_set(nodep);
<------>assert(s->num_set >= num_set || sparsebit_all_set(s));
<------>s->num_set -= node_num_set(nodep);
<------>/* Have both left and right child */
<------>if (nodep->left && nodep->right) {
<------><------>/*
<------><------> * Move left children to the leftmost leaf node
<------><------> * of the right child.
<------><------> */
<------><------>for (tmp = nodep->right; tmp->left; tmp = tmp->left)
<------><------><------>;
<------><------>tmp->left = nodep->left;
<------><------>nodep->left = NULL;
<------><------>tmp->left->parent = tmp;
<------>}
<------>/* Left only child */
<------>if (nodep->left) {
<------><------>if (!nodep->parent) {
<------><------><------>s->root = nodep->left;
<------><------><------>nodep->left->parent = NULL;
<------><------>} else {
<------><------><------>nodep->left->parent = nodep->parent;
<------><------><------>if (nodep == nodep->parent->left)
<------><------><------><------>nodep->parent->left = nodep->left;
<------><------><------>else {
<------><------><------><------>assert(nodep == nodep->parent->right);
<------><------><------><------>nodep->parent->right = nodep->left;
<------><------><------>}
<------><------>}
<------><------>nodep->parent = nodep->left = nodep->right = NULL;
<------><------>free(nodep);
<------><------>return;
<------>}
<------>/* Right only child */
<------>if (nodep->right) {
<------><------>if (!nodep->parent) {
<------><------><------>s->root = nodep->right;
<------><------><------>nodep->right->parent = NULL;
<------><------>} else {
<------><------><------>nodep->right->parent = nodep->parent;
<------><------><------>if (nodep == nodep->parent->left)
<------><------><------><------>nodep->parent->left = nodep->right;
<------><------><------>else {
<------><------><------><------>assert(nodep == nodep->parent->right);
<------><------><------><------>nodep->parent->right = nodep->right;
<------><------><------>}
<------><------>}
<------><------>nodep->parent = nodep->left = nodep->right = NULL;
<------><------>free(nodep);
<------><------>return;
<------>}
<------>/* Leaf Node */
<------>if (!nodep->parent) {
<------><------>s->root = NULL;
<------>} else {
<------><------>if (nodep->parent->left == nodep)
<------><------><------>nodep->parent->left = NULL;
<------><------>else {
<------><------><------>assert(nodep == nodep->parent->right);
<------><------><------>nodep->parent->right = NULL;
<------><------>}
<------>}
<------>nodep->parent = nodep->left = nodep->right = NULL;
<------>free(nodep);
<------>return;
}
/* Splits the node containing the bit at idx so that there is a node
* that starts at the specified index. If no such node exists, a new
* node at the specified index is created. Returns the new node.
*
* idx must start of a mask boundary.
*/
static struct node *node_split(struct sparsebit *s, sparsebit_idx_t idx)
{
<------>struct node *nodep1, *nodep2;
<------>sparsebit_idx_t offset;
<------>sparsebit_num_t orig_num_after;
<------>assert(!(idx % MASK_BITS));
<------>/*
<------> * Is there a node that describes the setting of idx?
<------> * If not, add it.
<------> */
<------>nodep1 = node_find(s, idx);
<------>if (!nodep1)
<------><------>return node_add(s, idx);
<------>/*
<------> * All done if the starting index of the node is where the
<------> * split should occur.
<------> */
<------>if (nodep1->idx == idx)
<------><------>return nodep1;
<------>/*
<------> * Split point not at start of mask, so it must be part of
<------> * bits described by num_after.
<------> */
<------>/*
<------> * Calculate offset within num_after for where the split is
<------> * to occur.
<------> */
<------>offset = idx - (nodep1->idx + MASK_BITS);
<------>orig_num_after = nodep1->num_after;
<------>/*
<------> * Add a new node to describe the bits starting at
<------> * the split point.
<------> */
<------>nodep1->num_after = offset;
<------>nodep2 = node_add(s, idx);
<------>/* Move bits after the split point into the new node */
<------>nodep2->num_after = orig_num_after - offset;
<------>if (nodep2->num_after >= MASK_BITS) {
<------><------>nodep2->mask = ~(mask_t) 0;
<------><------>nodep2->num_after -= MASK_BITS;
<------>} else {
<------><------>nodep2->mask = (1 << nodep2->num_after) - 1;
<------><------>nodep2->num_after = 0;
<------>}
<------>return nodep2;
}
/* Iteratively reduces the node pointed to by nodep and its adjacent
* nodes into a more compact form. For example, a node with a mask with
* all bits set adjacent to a previous node, will get combined into a
* single node with an increased num_after setting.
*
* After each reduction, a further check is made to see if additional
* reductions are possible with the new previous and next nodes. Note,
* a search for a reduction is only done across the nodes nearest nodep
* and those that became part of a reduction. Reductions beyond nodep
* and the adjacent nodes that are reduced are not discovered. It is the
* responsibility of the caller to pass a nodep that is within one node
* of each possible reduction.
*
* This function does not fix the temporary violation of all invariants.
* For example it does not fix the case where the bit settings described
* by two or more nodes overlap. Such a violation introduces the potential
* complication of a bit setting for a specific index having different settings
* in different nodes. This would then introduce the further complication
* of which node has the correct setting of the bit and thus such conditions
* are not allowed.
*
* This function is designed to fix invariant violations that are introduced
* by node_split() and by changes to the nodes mask or num_after members.
* For example, when setting a bit within a nodes mask, the function that
* sets the bit doesn't have to worry about whether the setting of that
* bit caused the mask to have leading only or trailing only bits set.
* Instead, the function can call node_reduce(), with nodep equal to the
* node address that it set a mask bit in, and node_reduce() will notice
* the cases of leading or trailing only bits and that there is an
* adjacent node that the bit settings could be merged into.
*
* This implementation specifically detects and corrects violation of the
* following invariants:
*
* + Node are only used to represent bits that are set.
* Nodes with a mask of 0 and num_after of 0 are not allowed.
*
* + The setting of at least one bit is always described in a nodes
* mask (mask >= 1).
*
* + A node with all mask bits set only occurs when the last bit
* described by the previous node is not equal to this nodes
* starting index - 1. All such occurences of this condition are
* avoided by moving the setting of the nodes mask bits into
* the previous nodes num_after setting.
*/
static void node_reduce(struct sparsebit *s, struct node *nodep)
{
<------>bool reduction_performed;
<------>do {
<------><------>reduction_performed = false;
<------><------>struct node *prev, *next, *tmp;
<------><------>/* 1) Potential reductions within the current node. */
<------><------>/* Nodes with all bits cleared may be removed. */
<------><------>if (nodep->mask == 0 && nodep->num_after == 0) {
<------><------><------>/*
<------><------><------> * About to remove the node pointed to by
<------><------><------> * nodep, which normally would cause a problem
<------><------><------> * for the next pass through the reduction loop,
<------><------><------> * because the node at the starting point no longer
<------><------><------> * exists. This potential problem is handled
<------><------><------> * by first remembering the location of the next
<------><------><------> * or previous nodes. Doesn't matter which, because
<------><------><------> * once the node at nodep is removed, there will be
<------><------><------> * no other nodes between prev and next.
<------><------><------> *
<------><------><------> * Note, the checks performed on nodep against both
<------><------><------> * both prev and next both check for an adjacent
<------><------><------> * node that can be reduced into a single node. As
<------><------><------> * such, after removing the node at nodep, doesn't
<------><------><------> * matter whether the nodep for the next pass
<------><------><------> * through the loop is equal to the previous pass
<------><------><------> * prev or next node. Either way, on the next pass
<------><------><------> * the one not selected will become either the
<------><------><------> * prev or next node.
<------><------><------> */
<------><------><------>tmp = node_next(s, nodep);
<------><------><------>if (!tmp)
<------><------><------><------>tmp = node_prev(s, nodep);
<------><------><------>node_rm(s, nodep);
<------><------><------>nodep = NULL;
<------><------><------>nodep = tmp;
<------><------><------>reduction_performed = true;
<------><------><------>continue;
<------><------>}
<------><------>/*
<------><------> * When the mask is 0, can reduce the amount of num_after
<------><------> * bits by moving the initial num_after bits into the mask.
<------><------> */
<------><------>if (nodep->mask == 0) {
<------><------><------>assert(nodep->num_after != 0);
<------><------><------>assert(nodep->idx + MASK_BITS > nodep->idx);
<------><------><------>nodep->idx += MASK_BITS;
<------><------><------>if (nodep->num_after >= MASK_BITS) {
<------><------><------><------>nodep->mask = ~0;
<------><------><------><------>nodep->num_after -= MASK_BITS;
<------><------><------>} else {
<------><------><------><------>nodep->mask = (1u << nodep->num_after) - 1;
<------><------><------><------>nodep->num_after = 0;
<------><------><------>}
<------><------><------>reduction_performed = true;
<------><------><------>continue;
<------><------>}
<------><------>/*
<------><------> * 2) Potential reductions between the current and
<------><------> * previous nodes.
<------><------> */
<------><------>prev = node_prev(s, nodep);
<------><------>if (prev) {
<------><------><------>sparsebit_idx_t prev_highest_bit;
<------><------><------>/* Nodes with no bits set can be removed. */
<------><------><------>if (prev->mask == 0 && prev->num_after == 0) {
<------><------><------><------>node_rm(s, prev);
<------><------><------><------>reduction_performed = true;
<------><------><------><------>continue;
<------><------><------>}
<------><------><------>/*
<------><------><------> * All mask bits set and previous node has
<------><------><------> * adjacent index.
<------><------><------> */
<------><------><------>if (nodep->mask + 1 == 0 &&
<------><------><------> prev->idx + MASK_BITS == nodep->idx) {
<------><------><------><------>prev->num_after += MASK_BITS + nodep->num_after;
<------><------><------><------>nodep->mask = 0;
<------><------><------><------>nodep->num_after = 0;
<------><------><------><------>reduction_performed = true;
<------><------><------><------>continue;
<------><------><------>}
<------><------><------>/*
<------><------><------> * Is node adjacent to previous node and the node
<------><------><------> * contains a single contiguous range of bits
<------><------><------> * starting from the beginning of the mask?
<------><------><------> */
<------><------><------>prev_highest_bit = prev->idx + MASK_BITS - 1 + prev->num_after;
<------><------><------>if (prev_highest_bit + 1 == nodep->idx &&
<------><------><------> (nodep->mask | (nodep->mask >> 1)) == nodep->mask) {
<------><------><------><------>/*
<------><------><------><------> * How many contiguous bits are there?
<------><------><------><------> * Is equal to the total number of set
<------><------><------><------> * bits, due to an earlier check that
<------><------><------><------> * there is a single contiguous range of
<------><------><------><------> * set bits.
<------><------><------><------> */
<------><------><------><------>unsigned int num_contiguous
<------><------><------><------><------>= __builtin_popcount(nodep->mask);
<------><------><------><------>assert((num_contiguous > 0) &&
<------><------><------><------> ((1ULL << num_contiguous) - 1) == nodep->mask);
<------><------><------><------>prev->num_after += num_contiguous;
<------><------><------><------>nodep->mask = 0;
<------><------><------><------>/*
<------><------><------><------> * For predictable performance, handle special
<------><------><------><------> * case where all mask bits are set and there
<------><------><------><------> * is a non-zero num_after setting. This code
<------><------><------><------> * is functionally correct without the following
<------><------><------><------> * conditionalized statements, but without them
<------><------><------><------> * the value of num_after is only reduced by
<------><------><------><------> * the number of mask bits per pass. There are
<------><------><------><------> * cases where num_after can be close to 2^64.
<------><------><------><------> * Without this code it could take nearly
<------><------><------><------> * (2^64) / 32 passes to perform the full
<------><------><------><------> * reduction.
<------><------><------><------> */
<------><------><------><------>if (num_contiguous == MASK_BITS) {
<------><------><------><------><------>prev->num_after += nodep->num_after;
<------><------><------><------><------>nodep->num_after = 0;
<------><------><------><------>}
<------><------><------><------>reduction_performed = true;
<------><------><------><------>continue;
<------><------><------>}
<------><------>}
<------><------>/*
<------><------> * 3) Potential reductions between the current and
<------><------> * next nodes.
<------><------> */
<------><------>next = node_next(s, nodep);
<------><------>if (next) {
<------><------><------>/* Nodes with no bits set can be removed. */
<------><------><------>if (next->mask == 0 && next->num_after == 0) {
<------><------><------><------>node_rm(s, next);
<------><------><------><------>reduction_performed = true;
<------><------><------><------>continue;
<------><------><------>}
<------><------><------>/*
<------><------><------> * Is next node index adjacent to current node
<------><------><------> * and has a mask with all bits set?
<------><------><------> */
<------><------><------>if (next->idx == nodep->idx + MASK_BITS + nodep->num_after &&
<------><------><------> next->mask == ~(mask_t) 0) {
<------><------><------><------>nodep->num_after += MASK_BITS;
<------><------><------><------>next->mask = 0;
<------><------><------><------>nodep->num_after += next->num_after;
<------><------><------><------>next->num_after = 0;
<------><------><------><------>node_rm(s, next);
<------><------><------><------>next = NULL;
<------><------><------><------>reduction_performed = true;
<------><------><------><------>continue;
<------><------><------>}
<------><------>}
<------>} while (nodep && reduction_performed);
}
/* Returns whether the bit at the index given by idx, within the
* sparsebit array is set or not.
*/
bool sparsebit_is_set(struct sparsebit *s, sparsebit_idx_t idx)
{
<------>struct node *nodep;
<------>/* Find the node that describes the setting of the bit at idx */
<------>for (nodep = s->root; nodep;
<------> nodep = nodep->idx > idx ? nodep->left : nodep->right)
<------><------>if (idx >= nodep->idx &&
<------><------> idx <= nodep->idx + MASK_BITS + nodep->num_after - 1)
<------><------><------>goto have_node;
<------>return false;
have_node:
<------>/* Bit is set if it is any of the bits described by num_after */
<------>if (nodep->num_after && idx >= nodep->idx + MASK_BITS)
<------><------>return true;
<------>/* Is the corresponding mask bit set */
<------>assert(idx >= nodep->idx && idx - nodep->idx < MASK_BITS);
<------>return !!(nodep->mask & (1 << (idx - nodep->idx)));
}
/* Within the sparsebit array pointed to by s, sets the bit
* at the index given by idx.
*/
static void bit_set(struct sparsebit *s, sparsebit_idx_t idx)
{
<------>struct node *nodep;
<------>/* Skip bits that are already set */
<------>if (sparsebit_is_set(s, idx))
<------><------>return;
<------>/*
<------> * Get a node where the bit at idx is described by the mask.
<------> * The node_split will also create a node, if there isn't
<------> * already a node that describes the setting of bit.
<------> */
<------>nodep = node_split(s, idx & -MASK_BITS);
<------>/* Set the bit within the nodes mask */
<------>assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1);
<------>assert(!(nodep->mask & (1 << (idx - nodep->idx))));
<------>nodep->mask |= 1 << (idx - nodep->idx);
<------>s->num_set++;
<------>node_reduce(s, nodep);
}
/* Within the sparsebit array pointed to by s, clears the bit
* at the index given by idx.
*/
static void bit_clear(struct sparsebit *s, sparsebit_idx_t idx)
{
<------>struct node *nodep;
<------>/* Skip bits that are already cleared */
<------>if (!sparsebit_is_set(s, idx))
<------><------>return;
<------>/* Is there a node that describes the setting of this bit? */
<------>nodep = node_find(s, idx);
<------>if (!nodep)
<------><------>return;
<------>/*
<------> * If a num_after bit, split the node, so that the bit is
<------> * part of a node mask.
<------> */
<------>if (idx >= nodep->idx + MASK_BITS)
<------><------>nodep = node_split(s, idx & -MASK_BITS);
<------>/*
<------> * After node_split above, bit at idx should be within the mask.
<------> * Clear that bit.
<------> */
<------>assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1);
<------>assert(nodep->mask & (1 << (idx - nodep->idx)));
<------>nodep->mask &= ~(1 << (idx - nodep->idx));
<------>assert(s->num_set > 0 || sparsebit_all_set(s));
<------>s->num_set--;
<------>node_reduce(s, nodep);
}
/* Recursively dumps to the FILE stream given by stream the contents
* of the sub-tree of nodes pointed to by nodep. Each line of output
* is prefixed by the number of spaces given by indent. On each
* recursion, the indent amount is increased by 2. This causes nodes
* at each level deeper into the binary search tree to be displayed
* with a greater indent.
*/
static void dump_nodes(FILE *stream, struct node *nodep,
<------>unsigned int indent)
{
<------>char *node_type;
<------>/* Dump contents of node */
<------>if (!nodep->parent)
<------><------>node_type = "root";
<------>else if (nodep == nodep->parent->left)
<------><------>node_type = "left";
<------>else {
<------><------>assert(nodep == nodep->parent->right);
<------><------>node_type = "right";
<------>}
<------>fprintf(stream, "%*s---- %s nodep: %p\n", indent, "", node_type, nodep);
<------>fprintf(stream, "%*s parent: %p left: %p right: %p\n", indent, "",
<------><------>nodep->parent, nodep->left, nodep->right);
<------>fprintf(stream, "%*s idx: 0x%lx mask: 0x%x num_after: 0x%lx\n",
<------><------>indent, "", nodep->idx, nodep->mask, nodep->num_after);
<------>/* If present, dump contents of left child nodes */
<------>if (nodep->left)
<------><------>dump_nodes(stream, nodep->left, indent + 2);
<------>/* If present, dump contents of right child nodes */
<------>if (nodep->right)
<------><------>dump_nodes(stream, nodep->right, indent + 2);
}
static inline sparsebit_idx_t node_first_set(struct node *nodep, int start)
{
<------>mask_t leading = (mask_t)1 << start;
<------>int n1 = __builtin_ctz(nodep->mask & -leading);
<------>return nodep->idx + n1;
}
static inline sparsebit_idx_t node_first_clear(struct node *nodep, int start)
{
<------>mask_t leading = (mask_t)1 << start;
<------>int n1 = __builtin_ctz(~nodep->mask & -leading);
<------>return nodep->idx + n1;
}
/* Dumps to the FILE stream specified by stream, the implementation dependent
* internal state of s. Each line of output is prefixed with the number
* of spaces given by indent. The output is completely implementation
* dependent and subject to change. Output from this function should only
* be used for diagnostic purposes. For example, this function can be
* used by test cases after they detect an unexpected condition, as a means
* to capture diagnostic information.
*/
static void sparsebit_dump_internal(FILE *stream, struct sparsebit *s,
<------>unsigned int indent)
{
<------>/* Dump the contents of s */
<------>fprintf(stream, "%*sroot: %p\n", indent, "", s->root);
<------>fprintf(stream, "%*snum_set: 0x%lx\n", indent, "", s->num_set);
<------>if (s->root)
<------><------>dump_nodes(stream, s->root, indent);
}
/* Allocates and returns a new sparsebit array. The initial state
* of the newly allocated sparsebit array has all bits cleared.
*/
struct sparsebit *sparsebit_alloc(void)
{
<------>struct sparsebit *s;
<------>/* Allocate top level structure. */
<------>s = calloc(1, sizeof(*s));
<------>if (!s) {
<------><------>perror("calloc");
<------><------>abort();
<------>}
<------>return s;
}
/* Frees the implementation dependent data for the sparsebit array
* pointed to by s and poisons the pointer to that data.
*/
void sparsebit_free(struct sparsebit **sbitp)
{
<------>struct sparsebit *s = *sbitp;
<------>if (!s)
<------><------>return;
<------>sparsebit_clear_all(s);
<------>free(s);
<------>*sbitp = NULL;
}
/* Makes a copy of the sparsebit array given by s, to the sparsebit
* array given by d. Note, d must have already been allocated via
* sparsebit_alloc(). It can though already have bits set, which
* if different from src will be cleared.
*/
void sparsebit_copy(struct sparsebit *d, struct sparsebit *s)
{
<------>/* First clear any bits already set in the destination */
<------>sparsebit_clear_all(d);
<------>if (s->root) {
<------><------>d->root = node_copy_subtree(s->root);
<------><------>d->num_set = s->num_set;
<------>}
}
/* Returns whether num consecutive bits starting at idx are all set. */
bool sparsebit_is_set_num(struct sparsebit *s,
<------>sparsebit_idx_t idx, sparsebit_num_t num)
{
<------>sparsebit_idx_t next_cleared;
<------>assert(num > 0);
<------>assert(idx + num - 1 >= idx);
<------>/* With num > 0, the first bit must be set. */
<------>if (!sparsebit_is_set(s, idx))
<------><------>return false;
<------>/* Find the next cleared bit */
<------>next_cleared = sparsebit_next_clear(s, idx);
<------>/*
<------> * If no cleared bits beyond idx, then there are at least num
<------> * set bits. idx + num doesn't wrap. Otherwise check if
<------> * there are enough set bits between idx and the next cleared bit.
<------> */
<------>return next_cleared == 0 || next_cleared - idx >= num;
}
/* Returns whether the bit at the index given by idx. */
bool sparsebit_is_clear(struct sparsebit *s,
<------>sparsebit_idx_t idx)
{
<------>return !sparsebit_is_set(s, idx);
}
/* Returns whether num consecutive bits starting at idx are all cleared. */
bool sparsebit_is_clear_num(struct sparsebit *s,
<------>sparsebit_idx_t idx, sparsebit_num_t num)
{
<------>sparsebit_idx_t next_set;
<------>assert(num > 0);
<------>assert(idx + num - 1 >= idx);
<------>/* With num > 0, the first bit must be cleared. */
<------>if (!sparsebit_is_clear(s, idx))
<------><------>return false;
<------>/* Find the next set bit */
<------>next_set = sparsebit_next_set(s, idx);
<------>/*
<------> * If no set bits beyond idx, then there are at least num
<------> * cleared bits. idx + num doesn't wrap. Otherwise check if
<------> * there are enough cleared bits between idx and the next set bit.
<------> */
<------>return next_set == 0 || next_set - idx >= num;
}
/* Returns the total number of bits set. Note: 0 is also returned for
* the case of all bits set. This is because with all bits set, there
* is 1 additional bit set beyond what can be represented in the return
* value. Use sparsebit_any_set(), instead of sparsebit_num_set() > 0,
* to determine if the sparsebit array has any bits set.
*/
sparsebit_num_t sparsebit_num_set(struct sparsebit *s)
{
<------>return s->num_set;
}
/* Returns whether any bit is set in the sparsebit array. */
bool sparsebit_any_set(struct sparsebit *s)
{
<------>/*
<------> * Nodes only describe set bits. If any nodes then there
<------> * is at least 1 bit set.
<------> */
<------>if (!s->root)
<------><------>return false;
<------>/*
<------> * Every node should have a non-zero mask. For now will
<------> * just assure that the root node has a non-zero mask,
<------> * which is a quick check that at least 1 bit is set.
<------> */
<------>assert(s->root->mask != 0);
<------>assert(s->num_set > 0 ||
<------> (s->root->num_after == ((sparsebit_num_t) 0) - MASK_BITS &&
<------><------>s->root->mask == ~(mask_t) 0));
<------>return true;
}
/* Returns whether all the bits in the sparsebit array are cleared. */
bool sparsebit_all_clear(struct sparsebit *s)
{
<------>return !sparsebit_any_set(s);
}
/* Returns whether all the bits in the sparsebit array are set. */
bool sparsebit_any_clear(struct sparsebit *s)
{
<------>return !sparsebit_all_set(s);
}
/* Returns the index of the first set bit. Abort if no bits are set.
*/
sparsebit_idx_t sparsebit_first_set(struct sparsebit *s)
{
<------>struct node *nodep;
<------>/* Validate at least 1 bit is set */
<------>assert(sparsebit_any_set(s));
<------>nodep = node_first(s);
<------>return node_first_set(nodep, 0);
}
/* Returns the index of the first cleared bit. Abort if
* no bits are cleared.
*/
sparsebit_idx_t sparsebit_first_clear(struct sparsebit *s)
{
<------>struct node *nodep1, *nodep2;
<------>/* Validate at least 1 bit is cleared. */
<------>assert(sparsebit_any_clear(s));
<------>/* If no nodes or first node index > 0 then lowest cleared is 0 */
<------>nodep1 = node_first(s);
<------>if (!nodep1 || nodep1->idx > 0)
<------><------>return 0;
<------>/* Does the mask in the first node contain any cleared bits. */
<------>if (nodep1->mask != ~(mask_t) 0)
<------><------>return node_first_clear(nodep1, 0);
<------>/*
<------> * All mask bits set in first node. If there isn't a second node
<------> * then the first cleared bit is the first bit after the bits
<------> * described by the first node.
<------> */
<------>nodep2 = node_next(s, nodep1);
<------>if (!nodep2) {
<------><------>/*
<------><------> * No second node. First cleared bit is first bit beyond
<------><------> * bits described by first node.
<------><------> */
<------><------>assert(nodep1->mask == ~(mask_t) 0);
<------><------>assert(nodep1->idx + MASK_BITS + nodep1->num_after != (sparsebit_idx_t) 0);
<------><------>return nodep1->idx + MASK_BITS + nodep1->num_after;
<------>}
<------>/*
<------> * There is a second node.
<------> * If it is not adjacent to the first node, then there is a gap
<------> * of cleared bits between the nodes, and the first cleared bit
<------> * is the first bit within the gap.
<------> */
<------>if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx)
<------><------>return nodep1->idx + MASK_BITS + nodep1->num_after;
<------>/*
<------> * Second node is adjacent to the first node.
<------> * Because it is adjacent, its mask should be non-zero. If all
<------> * its mask bits are set, then with it being adjacent, it should
<------> * have had the mask bits moved into the num_after setting of the
<------> * previous node.
<------> */
<------>return node_first_clear(nodep2, 0);
}
/* Returns index of next bit set within s after the index given by prev.
* Returns 0 if there are no bits after prev that are set.
*/
sparsebit_idx_t sparsebit_next_set(struct sparsebit *s,
<------>sparsebit_idx_t prev)
{
<------>sparsebit_idx_t lowest_possible = prev + 1;
<------>sparsebit_idx_t start;
<------>struct node *nodep;
<------>/* A bit after the highest index can't be set. */
<------>if (lowest_possible == 0)
<------><------>return 0;
<------>/*
<------> * Find the leftmost 'candidate' overlapping or to the right
<------> * of lowest_possible.
<------> */
<------>struct node *candidate = NULL;
<------>/* True iff lowest_possible is within candidate */
<------>bool contains = false;
<------>/*
<------> * Find node that describes setting of bit at lowest_possible.
<------> * If such a node doesn't exist, find the node with the lowest
<------> * starting index that is > lowest_possible.
<------> */
<------>for (nodep = s->root; nodep;) {
<------><------>if ((nodep->idx + MASK_BITS + nodep->num_after - 1)
<------><------><------>>= lowest_possible) {
<------><------><------>candidate = nodep;
<------><------><------>if (candidate->idx <= lowest_possible) {
<------><------><------><------>contains = true;
<------><------><------><------>break;
<------><------><------>}
<------><------><------>nodep = nodep->left;
<------><------>} else {
<------><------><------>nodep = nodep->right;
<------><------>}
<------>}
<------>if (!candidate)
<------><------>return 0;
<------>assert(candidate->mask != 0);
<------>/* Does the candidate node describe the setting of lowest_possible? */
<------>if (!contains) {
<------><------>/*
<------><------> * Candidate doesn't describe setting of bit at lowest_possible.
<------><------> * Candidate points to the first node with a starting index
<------><------> * > lowest_possible.
<------><------> */
<------><------>assert(candidate->idx > lowest_possible);
<------><------>return node_first_set(candidate, 0);
<------>}
<------>/*
<------> * Candidate describes setting of bit at lowest_possible.
<------> * Note: although the node describes the setting of the bit
<------> * at lowest_possible, its possible that its setting and the
<------> * setting of all latter bits described by this node are 0.
<------> * For now, just handle the cases where this node describes
<------> * a bit at or after an index of lowest_possible that is set.
<------> */
<------>start = lowest_possible - candidate->idx;
<------>if (start < MASK_BITS && candidate->mask >= (1 << start))
<------><------>return node_first_set(candidate, start);
<------>if (candidate->num_after) {
<------><------>sparsebit_idx_t first_num_after_idx = candidate->idx + MASK_BITS;
<------><------>return lowest_possible < first_num_after_idx
<------><------><------>? first_num_after_idx : lowest_possible;
<------>}
<------>/*
<------> * Although candidate node describes setting of bit at
<------> * the index of lowest_possible, all bits at that index and
<------> * latter that are described by candidate are cleared. With
<------> * this, the next bit is the first bit in the next node, if
<------> * such a node exists. If a next node doesn't exist, then
<------> * there is no next set bit.
<------> */
<------>candidate = node_next(s, candidate);
<------>if (!candidate)
<------><------>return 0;
<------>return node_first_set(candidate, 0);
}
/* Returns index of next bit cleared within s after the index given by prev.
* Returns 0 if there are no bits after prev that are cleared.
*/
sparsebit_idx_t sparsebit_next_clear(struct sparsebit *s,
<------>sparsebit_idx_t prev)
{
<------>sparsebit_idx_t lowest_possible = prev + 1;
<------>sparsebit_idx_t idx;
<------>struct node *nodep1, *nodep2;
<------>/* A bit after the highest index can't be set. */
<------>if (lowest_possible == 0)
<------><------>return 0;
<------>/*
<------> * Does a node describing the setting of lowest_possible exist?
<------> * If not, the bit at lowest_possible is cleared.
<------> */
<------>nodep1 = node_find(s, lowest_possible);
<------>if (!nodep1)
<------><------>return lowest_possible;
<------>/* Does a mask bit in node 1 describe the next cleared bit. */
<------>for (idx = lowest_possible - nodep1->idx; idx < MASK_BITS; idx++)
<------><------>if (!(nodep1->mask & (1 << idx)))
<------><------><------>return nodep1->idx + idx;
<------>/*
<------> * Next cleared bit is not described by node 1. If there
<------> * isn't a next node, then next cleared bit is described
<------> * by bit after the bits described by the first node.
<------> */
<------>nodep2 = node_next(s, nodep1);
<------>if (!nodep2)
<------><------>return nodep1->idx + MASK_BITS + nodep1->num_after;
<------>/*
<------> * There is a second node.
<------> * If it is not adjacent to the first node, then there is a gap
<------> * of cleared bits between the nodes, and the next cleared bit
<------> * is the first bit within the gap.
<------> */
<------>if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx)
<------><------>return nodep1->idx + MASK_BITS + nodep1->num_after;
<------>/*
<------> * Second node is adjacent to the first node.
<------> * Because it is adjacent, its mask should be non-zero. If all
<------> * its mask bits are set, then with it being adjacent, it should
<------> * have had the mask bits moved into the num_after setting of the
<------> * previous node.
<------> */
<------>return node_first_clear(nodep2, 0);
}
/* Starting with the index 1 greater than the index given by start, finds
* and returns the index of the first sequence of num consecutively set
* bits. Returns a value of 0 of no such sequence exists.
*/
sparsebit_idx_t sparsebit_next_set_num(struct sparsebit *s,
<------>sparsebit_idx_t start, sparsebit_num_t num)
{
<------>sparsebit_idx_t idx;
<------>assert(num >= 1);
<------>for (idx = sparsebit_next_set(s, start);
<------><------>idx != 0 && idx + num - 1 >= idx;
<------><------>idx = sparsebit_next_set(s, idx)) {
<------><------>assert(sparsebit_is_set(s, idx));
<------><------>/*
<------><------> * Does the sequence of bits starting at idx consist of
<------><------> * num set bits?
<------><------> */
<------><------>if (sparsebit_is_set_num(s, idx, num))
<------><------><------>return idx;
<------><------>/*
<------><------> * Sequence of set bits at idx isn't large enough.
<------><------> * Skip this entire sequence of set bits.
<------><------> */
<------><------>idx = sparsebit_next_clear(s, idx);
<------><------>if (idx == 0)
<------><------><------>return 0;
<------>}
<------>return 0;
}
/* Starting with the index 1 greater than the index given by start, finds
* and returns the index of the first sequence of num consecutively cleared
* bits. Returns a value of 0 of no such sequence exists.
*/
sparsebit_idx_t sparsebit_next_clear_num(struct sparsebit *s,
<------>sparsebit_idx_t start, sparsebit_num_t num)
{
<------>sparsebit_idx_t idx;
<------>assert(num >= 1);
<------>for (idx = sparsebit_next_clear(s, start);
<------><------>idx != 0 && idx + num - 1 >= idx;
<------><------>idx = sparsebit_next_clear(s, idx)) {
<------><------>assert(sparsebit_is_clear(s, idx));
<------><------>/*
<------><------> * Does the sequence of bits starting at idx consist of
<------><------> * num cleared bits?
<------><------> */
<------><------>if (sparsebit_is_clear_num(s, idx, num))
<------><------><------>return idx;
<------><------>/*
<------><------> * Sequence of cleared bits at idx isn't large enough.
<------><------> * Skip this entire sequence of cleared bits.
<------><------> */
<------><------>idx = sparsebit_next_set(s, idx);
<------><------>if (idx == 0)
<------><------><------>return 0;
<------>}
<------>return 0;
}
/* Sets the bits * in the inclusive range idx through idx + num - 1. */
void sparsebit_set_num(struct sparsebit *s,
<------>sparsebit_idx_t start, sparsebit_num_t num)
{
<------>struct node *nodep, *next;
<------>unsigned int n1;
<------>sparsebit_idx_t idx;
<------>sparsebit_num_t n;
<------>sparsebit_idx_t middle_start, middle_end;
<------>assert(num > 0);
<------>assert(start + num - 1 >= start);
<------>/*
<------> * Leading - bits before first mask boundary.
<------> *
<------> * TODO(lhuemill): With some effort it may be possible to
<------> * replace the following loop with a sequential sequence
<------> * of statements. High level sequence would be:
<------> *
<------> * 1. Use node_split() to force node that describes setting
<------> * of idx to be within the mask portion of a node.
<------> * 2. Form mask of bits to be set.
<------> * 3. Determine number of mask bits already set in the node
<------> * and store in a local variable named num_already_set.
<------> * 4. Set the appropriate mask bits within the node.
<------> * 5. Increment struct sparsebit_pvt num_set member
<------> * by the number of bits that were actually set.
<------> * Exclude from the counts bits that were already set.
<------> * 6. Before returning to the caller, use node_reduce() to
<------> * handle the multiple corner cases that this method
<------> * introduces.
<------> */
<------>for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--)
<------><------>bit_set(s, idx);
<------>/* Middle - bits spanning one or more entire mask */
<------>middle_start = idx;
<------>middle_end = middle_start + (n & -MASK_BITS) - 1;
<------>if (n >= MASK_BITS) {
<------><------>nodep = node_split(s, middle_start);
<------><------>/*
<------><------> * As needed, split just after end of middle bits.
<------><------> * No split needed if end of middle bits is at highest
<------><------> * supported bit index.
<------><------> */
<------><------>if (middle_end + 1 > middle_end)
<------><------><------>(void) node_split(s, middle_end + 1);
<------><------>/* Delete nodes that only describe bits within the middle. */
<------><------>for (next = node_next(s, nodep);
<------><------><------>next && (next->idx < middle_end);
<------><------><------>next = node_next(s, nodep)) {
<------><------><------>assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end);
<------><------><------>node_rm(s, next);
<------><------><------>next = NULL;
<------><------>}
<------><------>/* As needed set each of the mask bits */
<------><------>for (n1 = 0; n1 < MASK_BITS; n1++) {
<------><------><------>if (!(nodep->mask & (1 << n1))) {
<------><------><------><------>nodep->mask |= 1 << n1;
<------><------><------><------>s->num_set++;
<------><------><------>}
<------><------>}
<------><------>s->num_set -= nodep->num_after;
<------><------>nodep->num_after = middle_end - middle_start + 1 - MASK_BITS;
<------><------>s->num_set += nodep->num_after;
<------><------>node_reduce(s, nodep);
<------>}
<------>idx = middle_end + 1;
<------>n -= middle_end - middle_start + 1;
<------>/* Trailing - bits at and beyond last mask boundary */
<------>assert(n < MASK_BITS);
<------>for (; n > 0; idx++, n--)
<------><------>bit_set(s, idx);
}
/* Clears the bits * in the inclusive range idx through idx + num - 1. */
void sparsebit_clear_num(struct sparsebit *s,
<------>sparsebit_idx_t start, sparsebit_num_t num)
{
<------>struct node *nodep, *next;
<------>unsigned int n1;
<------>sparsebit_idx_t idx;
<------>sparsebit_num_t n;
<------>sparsebit_idx_t middle_start, middle_end;
<------>assert(num > 0);
<------>assert(start + num - 1 >= start);
<------>/* Leading - bits before first mask boundary */
<------>for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--)
<------><------>bit_clear(s, idx);
<------>/* Middle - bits spanning one or more entire mask */
<------>middle_start = idx;
<------>middle_end = middle_start + (n & -MASK_BITS) - 1;
<------>if (n >= MASK_BITS) {
<------><------>nodep = node_split(s, middle_start);
<------><------>/*
<------><------> * As needed, split just after end of middle bits.
<------><------> * No split needed if end of middle bits is at highest
<------><------> * supported bit index.
<------><------> */
<------><------>if (middle_end + 1 > middle_end)
<------><------><------>(void) node_split(s, middle_end + 1);
<------><------>/* Delete nodes that only describe bits within the middle. */
<------><------>for (next = node_next(s, nodep);
<------><------><------>next && (next->idx < middle_end);
<------><------><------>next = node_next(s, nodep)) {
<------><------><------>assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end);
<------><------><------>node_rm(s, next);
<------><------><------>next = NULL;
<------><------>}
<------><------>/* As needed clear each of the mask bits */
<------><------>for (n1 = 0; n1 < MASK_BITS; n1++) {
<------><------><------>if (nodep->mask & (1 << n1)) {
<------><------><------><------>nodep->mask &= ~(1 << n1);
<------><------><------><------>s->num_set--;
<------><------><------>}
<------><------>}
<------><------>/* Clear any bits described by num_after */
<------><------>s->num_set -= nodep->num_after;
<------><------>nodep->num_after = 0;
<------><------>/*
<------><------> * Delete the node that describes the beginning of
<------><------> * the middle bits and perform any allowed reductions
<------><------> * with the nodes prev or next of nodep.
<------><------> */
<------><------>node_reduce(s, nodep);
<------><------>nodep = NULL;
<------>}
<------>idx = middle_end + 1;
<------>n -= middle_end - middle_start + 1;
<------>/* Trailing - bits at and beyond last mask boundary */
<------>assert(n < MASK_BITS);
<------>for (; n > 0; idx++, n--)
<------><------>bit_clear(s, idx);
}
/* Sets the bit at the index given by idx. */
void sparsebit_set(struct sparsebit *s, sparsebit_idx_t idx)
{
<------>sparsebit_set_num(s, idx, 1);
}
/* Clears the bit at the index given by idx. */
void sparsebit_clear(struct sparsebit *s, sparsebit_idx_t idx)
{
<------>sparsebit_clear_num(s, idx, 1);
}
/* Sets the bits in the entire addressable range of the sparsebit array. */
void sparsebit_set_all(struct sparsebit *s)
{
<------>sparsebit_set(s, 0);
<------>sparsebit_set_num(s, 1, ~(sparsebit_idx_t) 0);
<------>assert(sparsebit_all_set(s));
}
/* Clears the bits in the entire addressable range of the sparsebit array. */
void sparsebit_clear_all(struct sparsebit *s)
{
<------>sparsebit_clear(s, 0);
<------>sparsebit_clear_num(s, 1, ~(sparsebit_idx_t) 0);
<------>assert(!sparsebit_any_set(s));
}
static size_t display_range(FILE *stream, sparsebit_idx_t low,
<------>sparsebit_idx_t high, bool prepend_comma_space)
{
<------>char *fmt_str;
<------>size_t sz;
<------>/* Determine the printf format string */
<------>if (low == high)
<------><------>fmt_str = prepend_comma_space ? ", 0x%lx" : "0x%lx";
<------>else
<------><------>fmt_str = prepend_comma_space ? ", 0x%lx:0x%lx" : "0x%lx:0x%lx";
<------>/*
<------> * When stream is NULL, just determine the size of what would
<------> * have been printed, else print the range.
<------> */
<------>if (!stream)
<------><------>sz = snprintf(NULL, 0, fmt_str, low, high);
<------>else
<------><------>sz = fprintf(stream, fmt_str, low, high);
<------>return sz;
}
/* Dumps to the FILE stream given by stream, the bit settings
* of s. Each line of output is prefixed with the number of
* spaces given by indent. The length of each line is implementation
* dependent and does not depend on the indent amount. The following
* is an example output of a sparsebit array that has bits:
*
* 0x5, 0x8, 0xa:0xe, 0x12
*
* This corresponds to a sparsebit whose bits 5, 8, 10, 11, 12, 13, 14, 18
* are set. Note that a ':', instead of a '-' is used to specify a range of
* contiguous bits. This is done because '-' is used to specify command-line
* options, and sometimes ranges are specified as command-line arguments.
*/
void sparsebit_dump(FILE *stream, struct sparsebit *s,
<------>unsigned int indent)
{
<------>size_t current_line_len = 0;
<------>size_t sz;
<------>struct node *nodep;
<------>if (!sparsebit_any_set(s))
<------><------>return;
<------>/* Display initial indent */
<------>fprintf(stream, "%*s", indent, "");
<------>/* For each node */
<------>for (nodep = node_first(s); nodep; nodep = node_next(s, nodep)) {
<------><------>unsigned int n1;
<------><------>sparsebit_idx_t low, high;
<------><------>/* For each group of bits in the mask */
<------><------>for (n1 = 0; n1 < MASK_BITS; n1++) {
<------><------><------>if (nodep->mask & (1 << n1)) {
<------><------><------><------>low = high = nodep->idx + n1;
<------><------><------><------>for (; n1 < MASK_BITS; n1++) {
<------><------><------><------><------>if (nodep->mask & (1 << n1))
<------><------><------><------><------><------>high = nodep->idx + n1;
<------><------><------><------><------>else
<------><------><------><------><------><------>break;
<------><------><------><------>}
<------><------><------><------>if ((n1 == MASK_BITS) && nodep->num_after)
<------><------><------><------><------>high += nodep->num_after;
<------><------><------><------>/*
<------><------><------><------> * How much room will it take to display
<------><------><------><------> * this range.
<------><------><------><------> */
<------><------><------><------>sz = display_range(NULL, low, high,
<------><------><------><------><------>current_line_len != 0);
<------><------><------><------>/*
<------><------><------><------> * If there is not enough room, display
<------><------><------><------> * a newline plus the indent of the next
<------><------><------><------> * line.
<------><------><------><------> */
<------><------><------><------>if (current_line_len + sz > DUMP_LINE_MAX) {
<------><------><------><------><------>fputs("\n", stream);
<------><------><------><------><------>fprintf(stream, "%*s", indent, "");
<------><------><------><------><------>current_line_len = 0;
<------><------><------><------>}
<------><------><------><------>/* Display the range */
<------><------><------><------>sz = display_range(stream, low, high,
<------><------><------><------><------>current_line_len != 0);
<------><------><------><------>current_line_len += sz;
<------><------><------>}
<------><------>}
<------><------>/*
<------><------> * If num_after and most significant-bit of mask is not
<------><------> * set, then still need to display a range for the bits
<------><------> * described by num_after.
<------><------> */
<------><------>if (!(nodep->mask & (1 << (MASK_BITS - 1))) && nodep->num_after) {
<------><------><------>low = nodep->idx + MASK_BITS;
<------><------><------>high = nodep->idx + MASK_BITS + nodep->num_after - 1;
<------><------><------>/*
<------><------><------> * How much room will it take to display
<------><------><------> * this range.
<------><------><------> */
<------><------><------>sz = display_range(NULL, low, high,
<------><------><------><------>current_line_len != 0);
<------><------><------>/*
<------><------><------> * If there is not enough room, display
<------><------><------> * a newline plus the indent of the next
<------><------><------> * line.
<------><------><------> */
<------><------><------>if (current_line_len + sz > DUMP_LINE_MAX) {
<------><------><------><------>fputs("\n", stream);
<------><------><------><------>fprintf(stream, "%*s", indent, "");
<------><------><------><------>current_line_len = 0;
<------><------><------>}
<------><------><------>/* Display the range */
<------><------><------>sz = display_range(stream, low, high,
<------><------><------><------>current_line_len != 0);
<------><------><------>current_line_len += sz;
<------><------>}
<------>}
<------>fputs("\n", stream);
}
/* Validates the internal state of the sparsebit array given by
* s. On error, diagnostic information is printed to stderr and
* abort is called.
*/
void sparsebit_validate_internal(struct sparsebit *s)
{
<------>bool error_detected = false;
<------>struct node *nodep, *prev = NULL;
<------>sparsebit_num_t total_bits_set = 0;
<------>unsigned int n1;
<------>/* For each node */
<------>for (nodep = node_first(s); nodep;
<------><------>prev = nodep, nodep = node_next(s, nodep)) {
<------><------>/*
<------><------> * Increase total bits set by the number of bits set
<------><------> * in this node.
<------><------> */
<------><------>for (n1 = 0; n1 < MASK_BITS; n1++)
<------><------><------>if (nodep->mask & (1 << n1))
<------><------><------><------>total_bits_set++;
<------><------>total_bits_set += nodep->num_after;
<------><------>/*
<------><------> * Arbitrary choice as to whether a mask of 0 is allowed
<------><------> * or not. For diagnostic purposes it is beneficial to
<------><------> * have only one valid means to represent a set of bits.
<------><------> * To support this an arbitrary choice has been made
<------><------> * to not allow a mask of zero.
<------><------> */
<------><------>if (nodep->mask == 0) {
<------><------><------>fprintf(stderr, "Node mask of zero, "
<------><------><------><------>"nodep: %p nodep->mask: 0x%x",
<------><------><------><------>nodep, nodep->mask);
<------><------><------>error_detected = true;
<------><------><------>break;
<------><------>}
<------><------>/*
<------><------> * Validate num_after is not greater than the max index
<------><------> * - the number of mask bits. The num_after member
<------><------> * uses 0-based indexing and thus has no value that
<------><------> * represents all bits set. This limitation is handled
<------><------> * by requiring a non-zero mask. With a non-zero mask,
<------><------> * MASK_BITS worth of bits are described by the mask,
<------><------> * which makes the largest needed num_after equal to:
<------><------> *
<------><------> * (~(sparsebit_num_t) 0) - MASK_BITS + 1
<------><------> */
<------><------>if (nodep->num_after
<------><------><------>> (~(sparsebit_num_t) 0) - MASK_BITS + 1) {
<------><------><------>fprintf(stderr, "num_after too large, "
<------><------><------><------>"nodep: %p nodep->num_after: 0x%lx",
<------><------><------><------>nodep, nodep->num_after);
<------><------><------>error_detected = true;
<------><------><------>break;
<------><------>}
<------><------>/* Validate node index is divisible by the mask size */
<------><------>if (nodep->idx % MASK_BITS) {
<------><------><------>fprintf(stderr, "Node index not divisible by "
<------><------><------><------>"mask size,\n"
<------><------><------><------>" nodep: %p nodep->idx: 0x%lx "
<------><------><------><------>"MASK_BITS: %lu\n",
<------><------><------><------>nodep, nodep->idx, MASK_BITS);
<------><------><------>error_detected = true;
<------><------><------>break;
<------><------>}
<------><------>/*
<------><------> * Validate bits described by node don't wrap beyond the
<------><------> * highest supported index.
<------><------> */
<------><------>if ((nodep->idx + MASK_BITS + nodep->num_after - 1) < nodep->idx) {
<------><------><------>fprintf(stderr, "Bits described by node wrap "
<------><------><------><------>"beyond highest supported index,\n"
<------><------><------><------>" nodep: %p nodep->idx: 0x%lx\n"
<------><------><------><------>" MASK_BITS: %lu nodep->num_after: 0x%lx",
<------><------><------><------>nodep, nodep->idx, MASK_BITS, nodep->num_after);
<------><------><------>error_detected = true;
<------><------><------>break;
<------><------>}
<------><------>/* Check parent pointers. */
<------><------>if (nodep->left) {
<------><------><------>if (nodep->left->parent != nodep) {
<------><------><------><------>fprintf(stderr, "Left child parent pointer "
<------><------><------><------><------>"doesn't point to this node,\n"
<------><------><------><------><------>" nodep: %p nodep->left: %p "
<------><------><------><------><------>"nodep->left->parent: %p",
<------><------><------><------><------>nodep, nodep->left,
<------><------><------><------><------>nodep->left->parent);
<------><------><------><------>error_detected = true;
<------><------><------><------>break;
<------><------><------>}
<------><------>}
<------><------>if (nodep->right) {
<------><------><------>if (nodep->right->parent != nodep) {
<------><------><------><------>fprintf(stderr, "Right child parent pointer "
<------><------><------><------><------>"doesn't point to this node,\n"
<------><------><------><------><------>" nodep: %p nodep->right: %p "
<------><------><------><------><------>"nodep->right->parent: %p",
<------><------><------><------><------>nodep, nodep->right,
<------><------><------><------><------>nodep->right->parent);
<------><------><------><------>error_detected = true;
<------><------><------><------>break;
<------><------><------>}
<------><------>}
<------><------>if (!nodep->parent) {
<------><------><------>if (s->root != nodep) {
<------><------><------><------>fprintf(stderr, "Unexpected root node, "
<------><------><------><------><------>"s->root: %p nodep: %p",
<------><------><------><------><------>s->root, nodep);
<------><------><------><------>error_detected = true;
<------><------><------><------>break;
<------><------><------>}
<------><------>}
<------><------>if (prev) {
<------><------><------>/*
<------><------><------> * Is index of previous node before index of
<------><------><------> * current node?
<------><------><------> */
<------><------><------>if (prev->idx >= nodep->idx) {
<------><------><------><------>fprintf(stderr, "Previous node index "
<------><------><------><------><------>">= current node index,\n"
<------><------><------><------><------>" prev: %p prev->idx: 0x%lx\n"
<------><------><------><------><------>" nodep: %p nodep->idx: 0x%lx",
<------><------><------><------><------>prev, prev->idx, nodep, nodep->idx);
<------><------><------><------>error_detected = true;
<------><------><------><------>break;
<------><------><------>}
<------><------><------>/*
<------><------><------> * Nodes occur in asscending order, based on each
<------><------><------> * nodes starting index.
<------><------><------> */
<------><------><------>if ((prev->idx + MASK_BITS + prev->num_after - 1)
<------><------><------><------>>= nodep->idx) {
<------><------><------><------>fprintf(stderr, "Previous node bit range "
<------><------><------><------><------>"overlap with current node bit range,\n"
<------><------><------><------><------>" prev: %p prev->idx: 0x%lx "
<------><------><------><------><------>"prev->num_after: 0x%lx\n"
<------><------><------><------><------>" nodep: %p nodep->idx: 0x%lx "
<------><------><------><------><------>"nodep->num_after: 0x%lx\n"
<------><------><------><------><------>" MASK_BITS: %lu",
<------><------><------><------><------>prev, prev->idx, prev->num_after,
<------><------><------><------><------>nodep, nodep->idx, nodep->num_after,
<------><------><------><------><------>MASK_BITS);
<------><------><------><------>error_detected = true;
<------><------><------><------>break;
<------><------><------>}
<------><------><------>/*
<------><------><------> * When the node has all mask bits set, it shouldn't
<------><------><------> * be adjacent to the last bit described by the
<------><------><------> * previous node.
<------><------><------> */
<------><------><------>if (nodep->mask == ~(mask_t) 0 &&
<------><------><------> prev->idx + MASK_BITS + prev->num_after == nodep->idx) {
<------><------><------><------>fprintf(stderr, "Current node has mask with "
<------><------><------><------><------>"all bits set and is adjacent to the "
<------><------><------><------><------>"previous node,\n"
<------><------><------><------><------>" prev: %p prev->idx: 0x%lx "
<------><------><------><------><------>"prev->num_after: 0x%lx\n"
<------><------><------><------><------>" nodep: %p nodep->idx: 0x%lx "
<------><------><------><------><------>"nodep->num_after: 0x%lx\n"
<------><------><------><------><------>" MASK_BITS: %lu",
<------><------><------><------><------>prev, prev->idx, prev->num_after,
<------><------><------><------><------>nodep, nodep->idx, nodep->num_after,
<------><------><------><------><------>MASK_BITS);
<------><------><------><------>error_detected = true;
<------><------><------><------>break;
<------><------><------>}
<------><------>}
<------>}
<------>if (!error_detected) {
<------><------>/*
<------><------> * Is sum of bits set in each node equal to the count
<------><------> * of total bits set.
<------><------> */
<------><------>if (s->num_set != total_bits_set) {
<------><------><------>fprintf(stderr, "Number of bits set missmatch,\n"
<------><------><------><------>" s->num_set: 0x%lx total_bits_set: 0x%lx",
<------><------><------><------>s->num_set, total_bits_set);
<------><------><------>error_detected = true;
<------><------>}
<------>}
<------>if (error_detected) {
<------><------>fputs(" dump_internal:\n", stderr);
<------><------>sparsebit_dump_internal(stderr, s, 4);
<------><------>abort();
<------>}
}
#ifdef FUZZ
/* A simple but effective fuzzing driver. Look for bugs with the help
* of some invariants and of a trivial representation of sparsebit.
* Just use 512 bytes of /dev/zero and /dev/urandom as inputs, and let
* afl-fuzz do the magic. :)
*/
#include <stdlib.h>
#include <assert.h>
struct range {
<------>sparsebit_idx_t first, last;
<------>bool set;
};
struct sparsebit *s;
struct range ranges[1000];
int num_ranges;
static bool get_value(sparsebit_idx_t idx)
{
<------>int i;
<------>for (i = num_ranges; --i >= 0; )
<------><------>if (ranges[i].first <= idx && idx <= ranges[i].last)
<------><------><------>return ranges[i].set;
<------>return false;
}
static void operate(int code, sparsebit_idx_t first, sparsebit_idx_t last)
{
<------>sparsebit_num_t num;
<------>sparsebit_idx_t next;
<------>if (first < last) {
<------><------>num = last - first + 1;
<------>} else {
<------><------>num = first - last + 1;
<------><------>first = last;
<------><------>last = first + num - 1;
<------>}
<------>switch (code) {
<------>case 0:
<------><------>sparsebit_set(s, first);
<------><------>assert(sparsebit_is_set(s, first));
<------><------>assert(!sparsebit_is_clear(s, first));
<------><------>assert(sparsebit_any_set(s));
<------><------>assert(!sparsebit_all_clear(s));
<------><------>if (get_value(first))
<------><------><------>return;
<------><------>if (num_ranges == 1000)
<------><------><------>exit(0);
<------><------>ranges[num_ranges++] = (struct range)
<------><------><------>{ .first = first, .last = first, .set = true };
<------><------>break;
<------>case 1:
<------><------>sparsebit_clear(s, first);
<------><------>assert(!sparsebit_is_set(s, first));
<------><------>assert(sparsebit_is_clear(s, first));
<------><------>assert(sparsebit_any_clear(s));
<------><------>assert(!sparsebit_all_set(s));
<------><------>if (!get_value(first))
<------><------><------>return;
<------><------>if (num_ranges == 1000)
<------><------><------>exit(0);
<------><------>ranges[num_ranges++] = (struct range)
<------><------><------>{ .first = first, .last = first, .set = false };
<------><------>break;
<------>case 2:
<------><------>assert(sparsebit_is_set(s, first) == get_value(first));
<------><------>assert(sparsebit_is_clear(s, first) == !get_value(first));
<------><------>break;
<------>case 3:
<------><------>if (sparsebit_any_set(s))
<------><------><------>assert(get_value(sparsebit_first_set(s)));
<------><------>if (sparsebit_any_clear(s))
<------><------><------>assert(!get_value(sparsebit_first_clear(s)));
<------><------>sparsebit_set_all(s);
<------><------>assert(!sparsebit_any_clear(s));
<------><------>assert(sparsebit_all_set(s));
<------><------>num_ranges = 0;
<------><------>ranges[num_ranges++] = (struct range)
<------><------><------>{ .first = 0, .last = ~(sparsebit_idx_t)0, .set = true };
<------><------>break;
<------>case 4:
<------><------>if (sparsebit_any_set(s))
<------><------><------>assert(get_value(sparsebit_first_set(s)));
<------><------>if (sparsebit_any_clear(s))
<------><------><------>assert(!get_value(sparsebit_first_clear(s)));
<------><------>sparsebit_clear_all(s);
<------><------>assert(!sparsebit_any_set(s));
<------><------>assert(sparsebit_all_clear(s));
<------><------>num_ranges = 0;
<------><------>break;
<------>case 5:
<------><------>next = sparsebit_next_set(s, first);
<------><------>assert(next == 0 || next > first);
<------><------>assert(next == 0 || get_value(next));
<------><------>break;
<------>case 6:
<------><------>next = sparsebit_next_clear(s, first);
<------><------>assert(next == 0 || next > first);
<------><------>assert(next == 0 || !get_value(next));
<------><------>break;
<------>case 7:
<------><------>next = sparsebit_next_clear(s, first);
<------><------>if (sparsebit_is_set_num(s, first, num)) {
<------><------><------>assert(next == 0 || next > last);
<------><------><------>if (first)
<------><------><------><------>next = sparsebit_next_set(s, first - 1);
<------><------><------>else if (sparsebit_any_set(s))
<------><------><------><------>next = sparsebit_first_set(s);
<------><------><------>else
<------><------><------><------>return;
<------><------><------>assert(next == first);
<------><------>} else {
<------><------><------>assert(sparsebit_is_clear(s, first) || next <= last);
<------><------>}
<------><------>break;
<------>case 8:
<------><------>next = sparsebit_next_set(s, first);
<------><------>if (sparsebit_is_clear_num(s, first, num)) {
<------><------><------>assert(next == 0 || next > last);
<------><------><------>if (first)
<------><------><------><------>next = sparsebit_next_clear(s, first - 1);
<------><------><------>else if (sparsebit_any_clear(s))
<------><------><------><------>next = sparsebit_first_clear(s);
<------><------><------>else
<------><------><------><------>return;
<------><------><------>assert(next == first);
<------><------>} else {
<------><------><------>assert(sparsebit_is_set(s, first) || next <= last);
<------><------>}
<------><------>break;
<------>case 9:
<------><------>sparsebit_set_num(s, first, num);
<------><------>assert(sparsebit_is_set_num(s, first, num));
<------><------>assert(!sparsebit_is_clear_num(s, first, num));
<------><------>assert(sparsebit_any_set(s));
<------><------>assert(!sparsebit_all_clear(s));
<------><------>if (num_ranges == 1000)
<------><------><------>exit(0);
<------><------>ranges[num_ranges++] = (struct range)
<------><------><------>{ .first = first, .last = last, .set = true };
<------><------>break;
<------>case 10:
<------><------>sparsebit_clear_num(s, first, num);
<------><------>assert(!sparsebit_is_set_num(s, first, num));
<------><------>assert(sparsebit_is_clear_num(s, first, num));
<------><------>assert(sparsebit_any_clear(s));
<------><------>assert(!sparsebit_all_set(s));
<------><------>if (num_ranges == 1000)
<------><------><------>exit(0);
<------><------>ranges[num_ranges++] = (struct range)
<------><------><------>{ .first = first, .last = last, .set = false };
<------><------>break;
<------>case 11:
<------><------>sparsebit_validate_internal(s);
<------><------>break;
<------>default:
<------><------>break;
<------>}
}
unsigned char get8(void)
{
<------>int ch;
<------>ch = getchar();
<------>if (ch == EOF)
<------><------>exit(0);
<------>return ch;
}
uint64_t get64(void)
{
<------>uint64_t x;
<------>x = get8();
<------>x = (x << 8) | get8();
<------>x = (x << 8) | get8();
<------>x = (x << 8) | get8();
<------>x = (x << 8) | get8();
<------>x = (x << 8) | get8();
<------>x = (x << 8) | get8();
<------>return (x << 8) | get8();
}
int main(void)
{
<------>s = sparsebit_alloc();
<------>for (;;) {
<------><------>uint8_t op = get8() & 0xf;
<------><------>uint64_t first = get64();
<------><------>uint64_t last = get64();
<------><------>operate(op, first, last);
<------>}
}
#endif