^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) Using TopDown metrics in user space
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) -----------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) Intel CPUs (since Sandy Bridge and Silvermont) support a TopDown
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) methology to break down CPU pipeline execution into 4 bottlenecks:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) frontend bound, backend bound, bad speculation, retiring.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) For more details on Topdown see [1][5]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) Traditionally this was implemented by events in generic counters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) and specific formulas to compute the bottlenecks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) perf stat --topdown implements this.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) Full Top Down includes more levels that can break down the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) bottlenecks further. This is not directly implemented in perf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) but available in other tools that can run on top of perf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) such as toplev[2] or vtune[3]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) New Topdown features in Ice Lake
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) ===============================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) With Ice Lake CPUs the TopDown metrics are directly available as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) fixed counters and do not require generic counters. This allows
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) to collect TopDown always in addition to other events.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) % perf stat -a --topdown -I1000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) # time retiring bad speculation frontend bound backend bound
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) 1.001281330 23.0% 15.3% 29.6% 32.1%
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) 2.003009005 5.0% 6.8% 46.6% 41.6%
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) 3.004646182 6.7% 6.7% 46.0% 40.6%
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) 4.006326375 5.0% 6.4% 47.6% 41.0%
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) 5.007991804 5.1% 6.3% 46.3% 42.3%
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) 6.009626773 6.2% 7.1% 47.3% 39.3%
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) 7.011296356 4.7% 6.7% 46.2% 42.4%
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) 8.012951831 4.7% 6.7% 47.5% 41.1%
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) This also enables measuring TopDown per thread/process instead
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) of only per core.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) Using TopDown through RDPMC in applications on Ice Lake
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) ======================================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) For more fine grained measurements it can be useful to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) access the new directly from user space. This is more complicated,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) but drastically lowers overhead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) On Ice Lake, there is a new fixed counter 3: SLOTS, which reports
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) "pipeline SLOTS" (cycles multiplied by core issue width) and a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) metric register that reports slots ratios for the different bottleneck
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) categories.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) The metrics counter is CPU model specific and is not available on older
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) CPUs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) Example code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) ============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) Library functions to do the functionality described below
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) is also available in libjevents [4]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) The application opens a group with fixed counter 3 (SLOTS) and any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) metric event, and allow user programs to read the performance counters.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) Fixed counter 3 is mapped to a pseudo event event=0x00, umask=04,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) so the perf_event_attr structure should be initialized with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) { .config = 0x0400, .type = PERF_TYPE_RAW }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) The metric events are mapped to the pseudo event event=0x00, umask=0x8X.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) For example, the perf_event_attr structure can be initialized with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) { .config = 0x8000, .type = PERF_TYPE_RAW } for Retiring metric event
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) The Fixed counter 3 must be the leader of the group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) #include <linux/perf_event.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) #include <sys/syscall.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) #include <unistd.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) /* Provide own perf_event_open stub because glibc doesn't */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) __attribute__((weak))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) int perf_event_open(struct perf_event_attr *attr, pid_t pid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) int cpu, int group_fd, unsigned long flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) return syscall(__NR_perf_event_open, attr, pid, cpu, group_fd, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) /* Open slots counter file descriptor for current task. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) struct perf_event_attr slots = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) .type = PERF_TYPE_RAW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) .size = sizeof(struct perf_event_attr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) .config = 0x400,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) .exclude_kernel = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) int slots_fd = perf_event_open(&slots, 0, -1, -1, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) if (slots_fd < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) ... error ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) * Open metrics event file descriptor for current task.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) * Set slots event as the leader of the group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) struct perf_event_attr metrics = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) .type = PERF_TYPE_RAW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) .size = sizeof(struct perf_event_attr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) .config = 0x8000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) .exclude_kernel = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) int metrics_fd = perf_event_open(&metrics, 0, -1, slots_fd, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) if (metrics_fd < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) ... error ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) The RDPMC instruction (or _rdpmc compiler intrinsic) can now be used
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) to read slots and the topdown metrics at different points of the program:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) #include <stdint.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) #include <x86intrin.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) #define RDPMC_FIXED (1 << 30) /* return fixed counters */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) #define RDPMC_METRIC (1 << 29) /* return metric counters */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) #define FIXED_COUNTER_SLOTS 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) #define METRIC_COUNTER_TOPDOWN_L1 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) static inline uint64_t read_slots(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) return _rdpmc(RDPMC_FIXED | FIXED_COUNTER_SLOTS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) static inline uint64_t read_metrics(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) return _rdpmc(RDPMC_METRIC | METRIC_COUNTER_TOPDOWN_L1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) Then the program can be instrumented to read these metrics at different
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) points.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) It's not a good idea to do this with too short code regions,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) as the parallelism and overlap in the CPU program execution will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) cause too much measurement inaccuracy. For example instrumenting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) individual basic blocks is definitely too fine grained.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) Decoding metrics values
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) =======================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) The value reported by read_metrics() contains four 8 bit fields
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) that represent a scaled ratio that represent the Level 1 bottleneck.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) All four fields add up to 0xff (= 100%)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) The binary ratios in the metric value can be converted to float ratios:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) #define GET_METRIC(m, i) (((m) >> (i*8)) & 0xff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) #define TOPDOWN_RETIRING(val) ((float)GET_METRIC(val, 0) / 0xff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) #define TOPDOWN_BAD_SPEC(val) ((float)GET_METRIC(val, 1) / 0xff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) #define TOPDOWN_FE_BOUND(val) ((float)GET_METRIC(val, 2) / 0xff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) #define TOPDOWN_BE_BOUND(val) ((float)GET_METRIC(val, 3) / 0xff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) and then converted to percent for printing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) The ratios in the metric accumulate for the time when the counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) is enabled. For measuring programs it is often useful to measure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) specific sections. For this it is needed to deltas on metrics.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) This can be done by scaling the metrics with the slots counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) read at the same time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) Then it's possible to take deltas of these slots counts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) measured at different points, and determine the metrics
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) for that time period.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) slots_a = read_slots();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) metric_a = read_metrics();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) ... larger code region ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) slots_b = read_slots()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) metric_b = read_metrics()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) # compute scaled metrics for measurement a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) retiring_slots_a = GET_METRIC(metric_a, 0) * slots_a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) bad_spec_slots_a = GET_METRIC(metric_a, 1) * slots_a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) fe_bound_slots_a = GET_METRIC(metric_a, 2) * slots_a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) be_bound_slots_a = GET_METRIC(metric_a, 3) * slots_a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) # compute delta scaled metrics between b and a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) retiring_slots = GET_METRIC(metric_b, 0) * slots_b - retiring_slots_a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) bad_spec_slots = GET_METRIC(metric_b, 1) * slots_b - bad_spec_slots_a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) fe_bound_slots = GET_METRIC(metric_b, 2) * slots_b - fe_bound_slots_a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) be_bound_slots = GET_METRIC(metric_b, 3) * slots_b - be_bound_slots_a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) Later the individual ratios for the measurement period can be recreated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) from these counts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) slots_delta = slots_b - slots_a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) retiring_ratio = (float)retiring_slots / slots_delta
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) bad_spec_ratio = (float)bad_spec_slots / slots_delta
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) fe_bound_ratio = (float)fe_bound_slots / slots_delta
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) be_bound_ratio = (float)be_bound_slots / slota_delta
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) printf("Retiring %.2f%% Bad Speculation %.2f%% FE Bound %.2f%% BE Bound %.2f%%\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) retiring_ratio * 100.,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) bad_spec_ratio * 100.,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) fe_bound_ratio * 100.,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) be_bound_ratio * 100.);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) Resetting metrics counters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) ==========================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) Since the individual metrics are only 8bit they lose precision for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) short regions over time because the number of cycles covered by each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) fraction bit shrinks. So the counters need to be reset regularly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) When using the kernel perf API the kernel resets on every read.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) So as long as the reading is at reasonable intervals (every few
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) seconds) the precision is good.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) When using perf stat it is recommended to always use the -I option,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) with no longer interval than a few seconds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) perf stat -I 1000 --topdown ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) For user programs using RDPMC directly the counter can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) be reset explicitly using ioctl:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) ioctl(perf_fd, PERF_EVENT_IOC_RESET, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) This "opens" a new measurement period.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) A program using RDPMC for TopDown should schedule such a reset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) regularly, as in every few seconds.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) Limits on Ice Lake
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) ==================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) Four pseudo TopDown metric events are exposed for the end-users,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) topdown-retiring, topdown-bad-spec, topdown-fe-bound and topdown-be-bound.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) They can be used to collect the TopDown value under the following
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) rules:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) - All the TopDown metric events must be in a group with the SLOTS event.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) - The SLOTS event must be the leader of the group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) - The PERF_FORMAT_GROUP flag must be applied for each TopDown metric
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) events
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) The SLOTS event and the TopDown metric events can be counting members of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) a sampling read group. Since the SLOTS event must be the leader of a TopDown
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) group, the second event of the group is the sampling event.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) For example, perf record -e '{slots, $sampling_event, topdown-retiring}:S'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) [1] https://software.intel.com/en-us/top-down-microarchitecture-analysis-method-win
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) [2] https://github.com/andikleen/pmu-tools/wiki/toplev-manual
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) [3] https://software.intel.com/en-us/intel-vtune-amplifier-xe
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) [4] https://github.com/andikleen/pmu-tools/tree/master/jevents
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) [5] https://sites.google.com/site/analysismethods/yasin-pubs