Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) ============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) LITMUS TESTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) ============
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) CoRR+poonceonce+Once.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) 	Test of read-read coherence, that is, whether or not two
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) 	successive reads from the same variable are ordered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) CoRW+poonceonce+Once.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) 	Test of read-write coherence, that is, whether or not a read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) 	from a given variable followed by a write to that same variable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) 	are ordered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) CoWR+poonceonce+Once.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) 	Test of write-read coherence, that is, whether or not a write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) 	to a given variable followed by a read from that same variable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) 	are ordered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) CoWW+poonceonce.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) 	Test of write-write coherence, that is, whether or not two
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 	successive writes to the same variable are ordered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) IRIW+fencembonceonces+OnceOnce.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 	Test of independent reads from independent writes with smp_mb()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 	between each pairs of reads.  In other words, is smp_mb()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) 	sufficient to cause two different reading processes to agree on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 	the order of a pair of writes, where each write is to a different
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 	variable by a different process?  This litmus test is forbidden
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) 	by LKMM's propagation rule.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) IRIW+poonceonces+OnceOnce.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 	Test of independent reads from independent writes with nothing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 	between each pairs of reads.  In other words, is anything at all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 	needed to cause two different reading processes to agree on the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 	order of a pair of writes, where each write is to a different
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 	variable by a different process?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) ISA2+pooncelock+pooncelock+pombonce.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 	Tests whether the ordering provided by a lock-protected S
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 	litmus test is visible to an external process whose accesses are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	separated by smp_mb().  This addition of an external process to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	S is otherwise known as ISA2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) ISA2+poonceonces.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	As below, but with store-release replaced with WRITE_ONCE()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	and load-acquire replaced with READ_ONCE().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) ISA2+pooncerelease+poacquirerelease+poacquireonce.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 	Can a release-acquire chain order a prior store against
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 	a later load?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) LB+fencembonceonce+ctrlonceonce.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 	Does a control dependency and an smp_mb() suffice for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 	load-buffering litmus test, where each process reads from one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 	of two variables then writes to the other?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) LB+poacquireonce+pooncerelease.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	Does a release-acquire pair suffice for the load-buffering
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	litmus test, where each process reads from one of two variables then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	writes to the other?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) LB+poonceonces.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	As above, but with store-release replaced with WRITE_ONCE()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	and load-acquire replaced with READ_ONCE().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) MP+onceassign+derefonce.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 	As below, but with rcu_assign_pointer() and an rcu_dereference().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) MP+polockmbonce+poacquiresilsil.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	Protect the access with a lock and an smp_mb__after_spinlock()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	in one process, and use an acquire load followed by a pair of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	spin_is_locked() calls in the other process.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) MP+polockonce+poacquiresilsil.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	Protect the access with a lock in one process, and use an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	acquire load followed by a pair of spin_is_locked() calls
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	in the other process.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) MP+polocks.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	As below, but with the second access of the writer process
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	and the first access of reader process protected by a lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) MP+poonceonces.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	As below, but without the smp_rmb() and smp_wmb().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) MP+pooncerelease+poacquireonce.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	As below, but with a release-acquire chain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) MP+porevlocks.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	As below, but with the first access of the writer process
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	and the second access of reader process protected by a lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) MP+fencewmbonceonce+fencermbonceonce.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	Does a smp_wmb() (between the stores) and an smp_rmb() (between
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	the loads) suffice for the message-passing litmus test, where one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	process writes data and then a flag, and the other process reads
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	the flag and then the data.  (This is similar to the ISA2 tests,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	but with two processes instead of three.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) R+fencembonceonces.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	This is the fully ordered (via smp_mb()) version of one of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	the classic counterintuitive litmus tests that illustrates the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	effects of store propagation delays.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) R+poonceonces.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	As above, but without the smp_mb() invocations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) SB+fencembonceonces.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	This is the fully ordered (again, via smp_mb() version of store
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	buffering, which forms the core of Dekker's mutual-exclusion
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	algorithm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) SB+poonceonces.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	As above, but without the smp_mb() invocations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) SB+rfionceonce-poonceonces.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	This litmus test demonstrates that LKMM is not fully multicopy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	atomic.  (Neither is it other multicopy atomic.)  This litmus test
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	also demonstrates the "locations" debugging aid, which designates
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	additional registers and locations to be printed out in the dump
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	of final states in the herd7 output.  Without the "locations"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	statement, only those registers and locations mentioned in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	"exists" clause will be printed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) S+poonceonces.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	As below, but without the smp_wmb() and acquire load.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) S+fencewmbonceonce+poacquireonce.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	Can a smp_wmb(), instead of a release, and an acquire order
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	a prior store against a subsequent store?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) WRC+poonceonces+Once.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) WRC+pooncerelease+fencermbonceonce+Once.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	These two are members of an extension of the MP litmus-test
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	class in which the first write is moved to a separate process.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	The second is forbidden because smp_store_release() is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	A-cumulative in LKMM.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) Z6.0+pooncelock+pooncelock+pombonce.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	Is the ordering provided by a spin_unlock() and a subsequent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	spin_lock() sufficient to make ordering apparent to accesses
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	by a process not holding the lock?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) Z6.0+pooncelock+poonceLock+pombonce.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	As above, but with smp_mb__after_spinlock() immediately
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	following the spin_lock().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) Z6.0+pooncerelease+poacquirerelease+fencembonceonce.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	Is the ordering provided by a release-acquire chain sufficient
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	to make ordering apparent to accesses by a process that does
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	not participate in that release-acquire chain?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) A great many more litmus tests are available here:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	https://github.com/paulmckrcu/litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) ==================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) LITMUS TEST NAMING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) ==================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) Litmus tests are usually named based on their contents, which means that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) looking at the name tells you what the litmus test does.  The naming
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) scheme covers litmus tests having a single cycle that passes through
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) each process exactly once, so litmus tests not fitting this description
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) are named on an ad-hoc basis.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) The structure of a litmus-test name is the litmus-test class, a plus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) sign ("+"), and one string for each process, separated by plus signs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) The end of the name is ".litmus".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) The litmus-test classes may be found in the infamous test6.pdf:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) https://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test6.pdf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) Each class defines the pattern of accesses and of the variables accessed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) For example, if the one process writes to a pair of variables, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) the other process reads from these same variables, the corresponding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) litmus-test class is "MP" (message passing), which may be found on the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) left-hand end of the second row of tests on page one of test6.pdf.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) The strings used to identify the actions carried out by each process are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) complex due to a desire to have short(er) names.  Thus, there is a tool to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) generate these strings from a given litmus test's actions.  For example,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) consider the processes from SB+rfionceonce-poonceonces.litmus:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	P0(int *x, int *y)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 		int r1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 		int r2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 		WRITE_ONCE(*x, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 		r1 = READ_ONCE(*x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 		r2 = READ_ONCE(*y);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	P1(int *x, int *y)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 		int r3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 		int r4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 		WRITE_ONCE(*y, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 		r3 = READ_ONCE(*y);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 		r4 = READ_ONCE(*x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) The next step is to construct a space-separated list of descriptors,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) interleaving descriptions of the relation between a pair of consecutive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) accesses with descriptions of the second access in the pair.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) P0()'s WRITE_ONCE() is read by its first READ_ONCE(), which is a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) reads-from link (rf) and internal to the P0() process.  This is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) "rfi", which is an abbreviation for "reads-from internal".  Because
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) some of the tools string these abbreviations together with space
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) characters separating processes, the first character is capitalized,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) resulting in "Rfi".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) P0()'s second access is a READ_ONCE(), as opposed to (for example)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) smp_load_acquire(), so next is "Once".  Thus far, we have "Rfi Once".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) P0()'s third access is also a READ_ONCE(), but to y rather than x.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) This is related to P0()'s second access by program order ("po"),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) to a different variable ("d"), and both accesses are reads ("RR").
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) The resulting descriptor is "PodRR".  Because P0()'s third access is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) READ_ONCE(), we add another "Once" descriptor.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) A from-read ("fre") relation links P0()'s third to P1()'s first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) access, and the resulting descriptor is "Fre".  P1()'s first access is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) WRITE_ONCE(), which as before gives the descriptor "Once".  The string
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) thus far is thus "Rfi Once PodRR Once Fre Once".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) The remainder of P1() is similar to P0(), which means we add
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) "Rfi Once PodRR Once".  Another fre links P1()'s last access to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) P0()'s first access, which is WRITE_ONCE(), so we add "Fre Once".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) The full string is thus:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	Rfi Once PodRR Once Fre Once Rfi Once PodRR Once Fre Once
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) This string can be given to the "norm7" and "classify7" tools to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) produce the name:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	$ norm7 -bell linux-kernel.bell \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 		Rfi Once PodRR Once Fre Once Rfi Once PodRR Once Fre Once | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	  sed -e 's/:.*//g'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	SB+rfionceonce-poonceonces
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) Adding the ".litmus" suffix: SB+rfionceonce-poonceonces.litmus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) The descriptors that describe connections between consecutive accesses
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) within the cycle through a given litmus test can be provided by the herd7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) tool (Rfi, Po, Fre, and so on) or by the linux-kernel.bell file (Once,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) Release, Acquire, and so on).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) To see the full list of descriptors, execute the following command:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	$ diyone7 -bell linux-kernel.bell -show edges