^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) // Serial Sound Interface (I2S) support for SH7760/SH7780
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) // Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) // dont forget to set IPSEL/OMSEL register bits (in your board code) to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) // enable SSI output pins!
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) * LIMITATIONS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) * The SSI unit has only one physical data line, so full duplex is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) * impossible. This can be remedied on the SH7760 by using the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) * other SSI unit for recording; however the SH7780 has only 1 SSI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) * unit, and its pins are shared with the AC97 unit, among others.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) * FEATURES:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) * The SSI features "compressed mode": in this mode it continuously
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) * streams PCM data over the I2S lines and uses LRCK as a handshake
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) * signal. Can be used to send compressed data (AC3/DTS) to a DSP.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) * The number of bits sent over the wire in a frame can be adjusted
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) * and can be independent from the actual sample bit depth. This is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) * useful to support TDM mode codecs like the AD1939 which have a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) * fixed TDM slot size, regardless of sample resolution.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #include <sound/core.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #include <sound/pcm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #include <sound/initval.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #include <sound/soc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #include <asm/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #define SSICR 0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #define SSISR 0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #define CR_DMAEN (1 << 28)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #define CR_CHNL_SHIFT 22
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) #define CR_CHNL_MASK (3 << CR_CHNL_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) #define CR_DWL_SHIFT 19
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) #define CR_DWL_MASK (7 << CR_DWL_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) #define CR_SWL_SHIFT 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) #define CR_SWL_MASK (7 << CR_SWL_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) #define CR_SCK_MASTER (1 << 15) /* bitclock master bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) #define CR_SWS_MASTER (1 << 14) /* wordselect master bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) #define CR_SCKP (1 << 13) /* I2Sclock polarity */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) #define CR_SWSP (1 << 12) /* LRCK polarity */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) #define CR_SPDP (1 << 11)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) #define CR_SDTA (1 << 10) /* i2s alignment (msb/lsb) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) #define CR_PDTA (1 << 9) /* fifo data alignment */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) #define CR_DEL (1 << 8) /* delay data by 1 i2sclk */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) #define CR_BREN (1 << 7) /* clock gating in burst mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) #define CR_CKDIV_SHIFT 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) #define CR_CKDIV_MASK (7 << CR_CKDIV_SHIFT) /* bitclock divider */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) #define CR_MUTE (1 << 3) /* SSI mute */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) #define CR_CPEN (1 << 2) /* compressed mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) #define CR_TRMD (1 << 1) /* transmit/receive select */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) #define CR_EN (1 << 0) /* enable SSI */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) #define SSIREG(reg) (*(unsigned long *)(ssi->mmio + (reg)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) struct ssi_priv {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) unsigned long mmio;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) unsigned long sysclk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) int inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) } ssi_cpu_data[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) #if defined(CONFIG_CPU_SUBTYPE_SH7760)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) .mmio = 0xFE680000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) .mmio = 0xFE690000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) #elif defined(CONFIG_CPU_SUBTYPE_SH7780)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) .mmio = 0xFFE70000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) #error "Unsupported SuperH SoC"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) * track usage of the SSI; it is simplex-only so prevent attempts of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) * concurrent playback + capture. FIXME: any locking required?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) static int ssi_startup(struct snd_pcm_substream *substream,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) struct snd_soc_dai *dai)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) if (ssi->inuse) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) pr_debug("ssi: already in use!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) } else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) ssi->inuse = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) static void ssi_shutdown(struct snd_pcm_substream *substream,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) struct snd_soc_dai *dai)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) ssi->inuse = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) static int ssi_trigger(struct snd_pcm_substream *substream, int cmd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) struct snd_soc_dai *dai)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) switch (cmd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) case SNDRV_PCM_TRIGGER_START:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) SSIREG(SSICR) |= CR_DMAEN | CR_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) case SNDRV_PCM_TRIGGER_STOP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) SSIREG(SSICR) &= ~(CR_DMAEN | CR_EN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) static int ssi_hw_params(struct snd_pcm_substream *substream,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) struct snd_pcm_hw_params *params,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) struct snd_soc_dai *dai)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) unsigned long ssicr = SSIREG(SSICR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) unsigned int bits, channels, swl, recv, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) channels = params_channels(params);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) bits = params->msbits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) recv = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? 0 : 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) pr_debug("ssi_hw_params() enter\nssicr was %08lx\n", ssicr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) pr_debug("bits: %u channels: %u\n", bits, channels);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) ssicr &= ~(CR_TRMD | CR_CHNL_MASK | CR_DWL_MASK | CR_PDTA |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) CR_SWL_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) /* direction (send/receive) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) if (!recv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) ssicr |= CR_TRMD; /* transmit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) /* channels */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) if ((channels < 2) || (channels > 8) || (channels & 1)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) pr_debug("ssi: invalid number of channels\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) ssicr |= ((channels >> 1) - 1) << CR_CHNL_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) /* DATA WORD LENGTH (DWL): databits in audio sample */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) switch (bits) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) case 32: ++i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) case 24: ++i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) case 22: ++i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) case 20: ++i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) case 18: ++i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) case 16: ++i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) ssicr |= i << CR_DWL_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) case 8: break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) pr_debug("ssi: invalid sample width\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) * SYSTEM WORD LENGTH: size in bits of half a frame over the I2S
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) * wires. This is usually bits_per_sample x channels/2; i.e. in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) * Stereo mode the SWL equals DWL. SWL can be bigger than the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) * product of (channels_per_slot x samplebits), e.g. for codecs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) * like the AD1939 which only accept 32bit wide TDM slots. For
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) * "standard" I2S operation we set SWL = chans / 2 * DWL here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) * Waiting for ASoC to get TDM support ;-)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) if ((bits > 16) && (bits <= 24)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) bits = 24; /* these are padded by the SSI */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) /*ssicr |= CR_PDTA;*/ /* cpu/data endianness ? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) swl = (bits * channels) / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) switch (swl) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) case 256: ++i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) case 128: ++i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) case 64: ++i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) case 48: ++i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) case 32: ++i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) case 16: ++i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) ssicr |= i << CR_SWL_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) case 8: break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) pr_debug("ssi: invalid system word length computed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) SSIREG(SSICR) = ssicr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) pr_debug("ssi_hw_params() leave\nssicr is now %08lx\n", ssicr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) static int ssi_set_sysclk(struct snd_soc_dai *cpu_dai, int clk_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) unsigned int freq, int dir)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) struct ssi_priv *ssi = &ssi_cpu_data[cpu_dai->id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) ssi->sysclk = freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) * This divider is used to generate the SSI_SCK (I2S bitclock) from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) * clock at the HAC_BIT_CLK ("oversampling clock") pin.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) static int ssi_set_clkdiv(struct snd_soc_dai *dai, int did, int div)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) unsigned long ssicr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) ssicr = SSIREG(SSICR) & ~CR_CKDIV_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) switch (div) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) case 16: ++i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) case 8: ++i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) case 4: ++i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) case 2: ++i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) SSIREG(SSICR) = ssicr | (i << CR_CKDIV_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) case 1: break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) pr_debug("ssi: invalid sck divider %d\n", div);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) static int ssi_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) unsigned long ssicr = SSIREG(SSICR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) pr_debug("ssi_set_fmt()\nssicr was 0x%08lx\n", ssicr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) ssicr &= ~(CR_DEL | CR_PDTA | CR_BREN | CR_SWSP | CR_SCKP |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) CR_SWS_MASTER | CR_SCK_MASTER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) case SND_SOC_DAIFMT_I2S:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) case SND_SOC_DAIFMT_RIGHT_J:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) ssicr |= CR_DEL | CR_PDTA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) case SND_SOC_DAIFMT_LEFT_J:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) ssicr |= CR_DEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) pr_debug("ssi: unsupported format\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) switch (fmt & SND_SOC_DAIFMT_CLOCK_MASK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) case SND_SOC_DAIFMT_CONT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) case SND_SOC_DAIFMT_GATED:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) ssicr |= CR_BREN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) case SND_SOC_DAIFMT_NB_NF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) ssicr |= CR_SCKP; /* sample data at low clkedge */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) case SND_SOC_DAIFMT_NB_IF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) ssicr |= CR_SCKP | CR_SWSP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) case SND_SOC_DAIFMT_IB_NF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) case SND_SOC_DAIFMT_IB_IF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) ssicr |= CR_SWSP; /* word select starts low */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) pr_debug("ssi: invalid inversion\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) case SND_SOC_DAIFMT_CBM_CFM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) case SND_SOC_DAIFMT_CBS_CFM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) ssicr |= CR_SCK_MASTER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) case SND_SOC_DAIFMT_CBM_CFS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) ssicr |= CR_SWS_MASTER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) case SND_SOC_DAIFMT_CBS_CFS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) ssicr |= CR_SWS_MASTER | CR_SCK_MASTER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) pr_debug("ssi: invalid master/secondary configuration\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) SSIREG(SSICR) = ssicr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) pr_debug("ssi_set_fmt() leave\nssicr is now 0x%08lx\n", ssicr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) /* the SSI depends on an external clocksource (at HAC_BIT_CLK) even in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) * Master mode, so really this is board specific; the SSI can do any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) * rate with the right bitclk and divider settings.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) #define SSI_RATES \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) SNDRV_PCM_RATE_8000_192000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) /* the SSI can do 8-32 bit samples, with 8 possible channels */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) #define SSI_FMTS \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_U20_3LE | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3LE | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_U32_LE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) static const struct snd_soc_dai_ops ssi_dai_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) .startup = ssi_startup,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) .shutdown = ssi_shutdown,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) .trigger = ssi_trigger,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) .hw_params = ssi_hw_params,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) .set_sysclk = ssi_set_sysclk,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) .set_clkdiv = ssi_set_clkdiv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) .set_fmt = ssi_set_fmt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) static struct snd_soc_dai_driver sh4_ssi_dai[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) .name = "ssi-dai.0",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) .playback = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) .rates = SSI_RATES,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) .formats = SSI_FMTS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) .channels_min = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) .channels_max = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) .capture = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) .rates = SSI_RATES,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) .formats = SSI_FMTS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) .channels_min = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) .channels_max = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) .ops = &ssi_dai_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) #ifdef CONFIG_CPU_SUBTYPE_SH7760
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) .name = "ssi-dai.1",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) .playback = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) .rates = SSI_RATES,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) .formats = SSI_FMTS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) .channels_min = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) .channels_max = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) .capture = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) .rates = SSI_RATES,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) .formats = SSI_FMTS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) .channels_min = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) .channels_max = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) .ops = &ssi_dai_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) static const struct snd_soc_component_driver sh4_ssi_component = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) .name = "sh4-ssi",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) static int sh4_soc_dai_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) return devm_snd_soc_register_component(&pdev->dev, &sh4_ssi_component,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) sh4_ssi_dai,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) ARRAY_SIZE(sh4_ssi_dai));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) static struct platform_driver sh4_ssi_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) .name = "sh4-ssi-dai",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) .probe = sh4_soc_dai_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) module_platform_driver(sh4_ssi_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) MODULE_LICENSE("GPL v2");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) MODULE_DESCRIPTION("SuperH onchip SSI (I2S) audio driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) MODULE_AUTHOR("Manuel Lauss <mano@roarinelk.homelinux.net>");