^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Copyright (c) 2020, The Linux Foundation. All rights reserved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * lpass-sc7180.c -- ALSA SoC platform-machine driver for QTi LPASS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) #include <linux/clk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <dt-bindings/sound/sc7180-lpass.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <sound/pcm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <sound/soc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include "lpass-lpaif-reg.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include "lpass.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) static struct snd_soc_dai_driver sc7180_lpass_cpu_dai_driver[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) .id = MI2S_PRIMARY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) .name = "Primary MI2S",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) .playback = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) .stream_name = "Primary Playback",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) .formats = SNDRV_PCM_FMTBIT_S16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) .rates = SNDRV_PCM_RATE_48000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) .rate_min = 48000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) .rate_max = 48000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) .channels_min = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) .channels_max = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) .capture = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) .stream_name = "Primary Capture",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) .formats = SNDRV_PCM_FMTBIT_S16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) .rates = SNDRV_PCM_RATE_48000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) .rate_min = 48000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) .rate_max = 48000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) .channels_min = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) .channels_max = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) .probe = &asoc_qcom_lpass_cpu_dai_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) .ops = &asoc_qcom_lpass_cpu_dai_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) .id = MI2S_SECONDARY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) .name = "Secondary MI2S",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) .playback = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) .stream_name = "Secondary Playback",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) .formats = SNDRV_PCM_FMTBIT_S16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) .rates = SNDRV_PCM_RATE_48000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) .rate_min = 48000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) .rate_max = 48000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) .channels_min = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) .channels_max = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) .probe = &asoc_qcom_lpass_cpu_dai_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) .ops = &asoc_qcom_lpass_cpu_dai_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) .id = LPASS_DP_RX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) .name = "Hdmi",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) .playback = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) .stream_name = "Hdmi Playback",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) .formats = SNDRV_PCM_FMTBIT_S24,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) .rates = SNDRV_PCM_RATE_48000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) .rate_min = 48000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) .rate_max = 48000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) .channels_min = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) .channels_max = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) .ops = &asoc_qcom_lpass_hdmi_dai_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) static int sc7180_lpass_alloc_dma_channel(struct lpass_data *drvdata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) int direction, unsigned int dai_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) struct lpass_variant *v = drvdata->variant;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) int chan = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) if (dai_id == LPASS_DP_RX) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) if (direction == SNDRV_PCM_STREAM_PLAYBACK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) chan = find_first_zero_bit(&drvdata->hdmi_dma_ch_bit_map,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) v->hdmi_rdma_channels);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) if (chan >= v->hdmi_rdma_channels)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) set_bit(chan, &drvdata->hdmi_dma_ch_bit_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) if (direction == SNDRV_PCM_STREAM_PLAYBACK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) chan = find_first_zero_bit(&drvdata->dma_ch_bit_map,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) v->rdma_channels);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) if (chan >= v->rdma_channels)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) chan = find_next_zero_bit(&drvdata->dma_ch_bit_map,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) v->wrdma_channel_start +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) v->wrdma_channels,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) v->wrdma_channel_start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) if (chan >= v->wrdma_channel_start + v->wrdma_channels)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) set_bit(chan, &drvdata->dma_ch_bit_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) return chan;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) static int sc7180_lpass_free_dma_channel(struct lpass_data *drvdata, int chan, unsigned int dai_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) if (dai_id == LPASS_DP_RX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) clear_bit(chan, &drvdata->hdmi_dma_ch_bit_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) clear_bit(chan, &drvdata->dma_ch_bit_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) static int sc7180_lpass_init(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) struct lpass_data *drvdata = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) struct lpass_variant *variant = drvdata->variant;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) struct device *dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) int ret, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) drvdata->clks = devm_kcalloc(dev, variant->num_clks,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) sizeof(*drvdata->clks), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) drvdata->num_clks = variant->num_clks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) for (i = 0; i < drvdata->num_clks; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) drvdata->clks[i].id = variant->clk_name[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) ret = devm_clk_bulk_get(dev, drvdata->num_clks, drvdata->clks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) dev_err(dev, "Failed to get clocks %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) ret = clk_bulk_prepare_enable(drvdata->num_clks, drvdata->clks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) dev_err(dev, "sc7180 clk_enable failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) static int sc7180_lpass_exit(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) struct lpass_data *drvdata = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) clk_bulk_disable_unprepare(drvdata->num_clks, drvdata->clks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) static struct lpass_variant sc7180_data = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) .i2sctrl_reg_base = 0x1000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) .i2sctrl_reg_stride = 0x1000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) .i2s_ports = 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) .irq_reg_base = 0x9000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) .irq_reg_stride = 0x1000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) .irq_ports = 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) .rdma_reg_base = 0xC000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) .rdma_reg_stride = 0x1000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) .rdma_channels = 5,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) .hdmi_rdma_reg_base = 0x64000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) .hdmi_rdma_reg_stride = 0x1000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) .hdmi_rdma_channels = 4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) .dmactl_audif_start = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) .wrdma_reg_base = 0x18000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) .wrdma_reg_stride = 0x1000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) .wrdma_channel_start = 5,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) .wrdma_channels = 4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) .loopback = REG_FIELD_ID(0x1000, 17, 17, 3, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) .spken = REG_FIELD_ID(0x1000, 16, 16, 3, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) .spkmode = REG_FIELD_ID(0x1000, 11, 15, 3, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) .spkmono = REG_FIELD_ID(0x1000, 10, 10, 3, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) .micen = REG_FIELD_ID(0x1000, 9, 9, 3, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) .micmode = REG_FIELD_ID(0x1000, 4, 8, 3, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) .micmono = REG_FIELD_ID(0x1000, 3, 3, 3, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) .wssrc = REG_FIELD_ID(0x1000, 2, 2, 3, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) .bitwidth = REG_FIELD_ID(0x1000, 0, 1, 3, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) .rdma_dyncclk = REG_FIELD_ID(0xC000, 21, 21, 5, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) .rdma_bursten = REG_FIELD_ID(0xC000, 20, 20, 5, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) .rdma_wpscnt = REG_FIELD_ID(0xC000, 16, 19, 5, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) .rdma_intf = REG_FIELD_ID(0xC000, 12, 15, 5, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) .rdma_fifowm = REG_FIELD_ID(0xC000, 1, 5, 5, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) .rdma_enable = REG_FIELD_ID(0xC000, 0, 0, 5, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) .wrdma_dyncclk = REG_FIELD_ID(0x18000, 22, 22, 4, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) .wrdma_bursten = REG_FIELD_ID(0x18000, 21, 21, 4, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) .wrdma_wpscnt = REG_FIELD_ID(0x18000, 17, 20, 4, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) .wrdma_intf = REG_FIELD_ID(0x18000, 12, 16, 4, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) .wrdma_fifowm = REG_FIELD_ID(0x18000, 1, 5, 4, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) .wrdma_enable = REG_FIELD_ID(0x18000, 0, 0, 4, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) .hdmi_tx_ctl_addr = 0x1000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) .hdmi_legacy_addr = 0x1008,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) .hdmi_vbit_addr = 0x610c0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) .hdmi_ch_lsb_addr = 0x61048,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) .hdmi_ch_msb_addr = 0x6104c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) .ch_stride = 0x8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) .hdmi_parity_addr = 0x61034,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) .hdmi_dmactl_addr = 0x61038,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) .hdmi_dma_stride = 0x4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) .hdmi_DP_addr = 0x610c8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) .hdmi_sstream_addr = 0x6101c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) .hdmi_irq_reg_base = 0x63000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) .hdmi_irq_ports = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) .hdmi_rdma_dyncclk = REG_FIELD_ID(0x64000, 14, 14, 4, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) .hdmi_rdma_bursten = REG_FIELD_ID(0x64000, 13, 13, 4, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) .hdmi_rdma_burst8 = REG_FIELD_ID(0x64000, 15, 15, 4, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) .hdmi_rdma_burst16 = REG_FIELD_ID(0x64000, 16, 16, 4, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) .hdmi_rdma_dynburst = REG_FIELD_ID(0x64000, 18, 18, 4, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) .hdmi_rdma_wpscnt = REG_FIELD_ID(0x64000, 10, 12, 4, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) .hdmi_rdma_fifowm = REG_FIELD_ID(0x64000, 1, 5, 4, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) .hdmi_rdma_enable = REG_FIELD_ID(0x64000, 0, 0, 4, 0x1000),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) .sstream_en = REG_FIELD(0x6101c, 0, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) .dma_sel = REG_FIELD(0x6101c, 1, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) .auto_bbit_en = REG_FIELD(0x6101c, 3, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) .layout = REG_FIELD(0x6101c, 4, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) .layout_sp = REG_FIELD(0x6101c, 5, 8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) .set_sp_on_en = REG_FIELD(0x6101c, 10, 10),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) .dp_audio = REG_FIELD(0x6101c, 11, 11),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) .dp_staffing_en = REG_FIELD(0x6101c, 12, 12),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) .dp_sp_b_hw_en = REG_FIELD(0x6101c, 13, 13),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) .mute = REG_FIELD(0x610c8, 0, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) .as_sdp_cc = REG_FIELD(0x610c8, 1, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) .as_sdp_ct = REG_FIELD(0x610c8, 4, 7),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) .aif_db4 = REG_FIELD(0x610c8, 8, 15),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) .frequency = REG_FIELD(0x610c8, 16, 21),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) .mst_index = REG_FIELD(0x610c8, 28, 29),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) .dptx_index = REG_FIELD(0x610c8, 30, 31),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) .soft_reset = REG_FIELD(0x1000, 31, 31),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) .force_reset = REG_FIELD(0x1000, 30, 30),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) .use_hw_chs = REG_FIELD(0x61038, 0, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) .use_hw_usr = REG_FIELD(0x61038, 1, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) .hw_chs_sel = REG_FIELD(0x61038, 2, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) .hw_usr_sel = REG_FIELD(0x61038, 5, 6),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) .replace_vbit = REG_FIELD(0x610c0, 0, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) .vbit_stream = REG_FIELD(0x610c0, 1, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) .legacy_en = REG_FIELD(0x1008, 0, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) .calc_en = REG_FIELD(0x61034, 0, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) .lsb_bits = REG_FIELD(0x61048, 0, 31),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) .msb_bits = REG_FIELD(0x6104c, 0, 31),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) .clk_name = (const char*[]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) "pcnoc-sway-clk",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) "audio-core",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) "pcnoc-mport-clk",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) .num_clks = 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) .dai_driver = sc7180_lpass_cpu_dai_driver,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) .num_dai = ARRAY_SIZE(sc7180_lpass_cpu_dai_driver),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) .dai_osr_clk_names = (const char *[]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) "mclk0",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) "null",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) .dai_bit_clk_names = (const char *[]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) "mi2s-bit-clk0",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) "mi2s-bit-clk1",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) .init = sc7180_lpass_init,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) .exit = sc7180_lpass_exit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) .alloc_dma_channel = sc7180_lpass_alloc_dma_channel,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) .free_dma_channel = sc7180_lpass_free_dma_channel,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) static const struct of_device_id sc7180_lpass_cpu_device_id[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) {.compatible = "qcom,sc7180-lpass-cpu", .data = &sc7180_data},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) {}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) MODULE_DEVICE_TABLE(of, sc7180_lpass_cpu_device_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) static struct platform_driver sc7180_lpass_cpu_platform_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) .name = "sc7180-lpass-cpu",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) .of_match_table = of_match_ptr(sc7180_lpass_cpu_device_id),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) .probe = asoc_qcom_lpass_cpu_platform_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) .remove = asoc_qcom_lpass_cpu_platform_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) module_platform_driver(sc7180_lpass_cpu_platform_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) MODULE_DESCRIPTION("SC7180 LPASS CPU DRIVER");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) MODULE_LICENSE("GPL v2");