Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) // Freescale DMA ALSA SoC PCM driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) // Author: Timur Tabi <timur@freescale.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) // Copyright 2007-2010 Freescale Semiconductor, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) // This driver implements ASoC support for the Elo DMA controller, which is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) // the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) // the PCM driver is what handles the DMA buffer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/dma-mapping.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/gfp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/of_address.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/of_irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <linux/of_platform.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include <linux/list.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #include <sound/core.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #include <sound/pcm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #include <sound/pcm_params.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #include <sound/soc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #include <asm/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #include "fsl_dma.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) #define DRV_NAME "fsl_dma"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39)  * The formats that the DMA controller supports, which is anything
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)  * that is 8, 16, or 32 bits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 			    SNDRV_PCM_FMTBIT_U8 	| \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 			    SNDRV_PCM_FMTBIT_S16_LE     | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 			    SNDRV_PCM_FMTBIT_S16_BE     | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 			    SNDRV_PCM_FMTBIT_U16_LE     | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 			    SNDRV_PCM_FMTBIT_U16_BE     | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 			    SNDRV_PCM_FMTBIT_S24_LE     | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 			    SNDRV_PCM_FMTBIT_S24_BE     | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 			    SNDRV_PCM_FMTBIT_U24_LE     | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 			    SNDRV_PCM_FMTBIT_U24_BE     | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 			    SNDRV_PCM_FMTBIT_S32_LE     | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 			    SNDRV_PCM_FMTBIT_S32_BE     | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 			    SNDRV_PCM_FMTBIT_U32_LE     | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 			    SNDRV_PCM_FMTBIT_U32_BE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) struct dma_object {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	struct snd_soc_component_driver dai;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	dma_addr_t ssi_stx_phys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	dma_addr_t ssi_srx_phys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	unsigned int ssi_fifo_depth;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 	struct ccsr_dma_channel __iomem *channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	unsigned int irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	bool assigned;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)  * The number of DMA links to use.  Two is the bare minimum, but if you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68)  * have really small links you might need more.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) #define NUM_DMA_LINKS   2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) /** fsl_dma_private: p-substream DMA data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74)  * Each substream has a 1-to-1 association with a DMA channel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76)  * The link[] array is first because it needs to be aligned on a 32-byte
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77)  * boundary, so putting it first will ensure alignment without padding the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78)  * structure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80)  * @link[]: array of link descriptors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81)  * @dma_channel: pointer to the DMA channel's registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82)  * @irq: IRQ for this DMA channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83)  * @substream: pointer to the substream object, needed by the ISR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84)  * @ssi_sxx_phys: bus address of the STX or SRX register to use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85)  * @ld_buf_phys: physical address of the LD buffer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86)  * @current_link: index into link[] of the link currently being processed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87)  * @dma_buf_phys: physical address of the DMA buffer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88)  * @dma_buf_next: physical address of the next period to process
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89)  * @dma_buf_end: physical address of the byte after the end of the DMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90)  * @buffer period_size: the size of a single period
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91)  * @num_periods: the number of periods in the DMA buffer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) struct fsl_dma_private {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	struct ccsr_dma_channel __iomem *dma_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	unsigned int irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	struct snd_pcm_substream *substream;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	dma_addr_t ssi_sxx_phys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	unsigned int ssi_fifo_depth;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	dma_addr_t ld_buf_phys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	unsigned int current_link;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	dma_addr_t dma_buf_phys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	dma_addr_t dma_buf_next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	dma_addr_t dma_buf_end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	size_t period_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	unsigned int num_periods;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)  * fsl_dma_hardare: define characteristics of the PCM hardware.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)  * The PCM hardware is the Freescale DMA controller.  This structure defines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)  * the capabilities of that hardware.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115)  * Since the sampling rate and data format are not controlled by the DMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)  * controller, we specify no limits for those values.  The only exception is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)  * period_bytes_min, which is set to a reasonably low value to prevent the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118)  * DMA controller from generating too many interrupts per second.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)  * Since each link descriptor has a 32-bit byte count field, we set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121)  * period_bytes_max to the largest 32-bit number.  We also have no maximum
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)  * number of periods.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125)  * limitation in the SSI driver requires the sample rates for playback and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126)  * capture to be the same.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) static const struct snd_pcm_hardware fsl_dma_hardware = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 				  SNDRV_PCM_INFO_MMAP |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 				  SNDRV_PCM_INFO_MMAP_VALID |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 				  SNDRV_PCM_INFO_JOINT_DUPLEX |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 				  SNDRV_PCM_INFO_PAUSE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	.formats		= FSLDMA_PCM_FORMATS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	.period_bytes_min       = 512,  	/* A reasonable limit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	.period_bytes_max       = (u32) -1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	.periods_min    	= NUM_DMA_LINKS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	.periods_max    	= (unsigned int) -1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144)  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)  * This function should be called by the ISR whenever the DMA controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)  * halts data transfer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	snd_pcm_stop_xrun(substream);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)  * fsl_dma_update_pointers - update LD pointers to point to the next period
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157)  * As each period is completed, this function changes the link
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)  * descriptor pointers for that period to point to the next period.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	struct fsl_dma_link_descriptor *link =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 		&dma_private->link[dma_private->current_link];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	/* Update our link descriptors to point to the next period. On a 36-bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	 * system, we also need to update the ESAD bits.  We also set (keep) the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 		link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) #ifdef CONFIG_PHYS_64BIT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 			upper_32_bits(dma_private->dma_buf_next));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) #ifdef CONFIG_PHYS_64BIT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 			upper_32_bits(dma_private->dma_buf_next));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	/* Update our variables for next time */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	dma_private->dma_buf_next += dma_private->period_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	if (++dma_private->current_link >= NUM_DMA_LINKS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 		dma_private->current_link = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194)  * fsl_dma_isr: interrupt handler for the DMA controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)  * @irq: IRQ of the DMA channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)  * @dev_id: pointer to the dma_private structure for this DMA channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	struct fsl_dma_private *dma_private = dev_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	struct snd_pcm_substream *substream = dma_private->substream;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	struct device *dev = rtd->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	irqreturn_t ret = IRQ_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	u32 sr, sr2 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	/* We got an interrupt, so read the status register to see what we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	   were interrupted for.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	sr = in_be32(&dma_channel->sr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	if (sr & CCSR_DMA_SR_TE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 		dev_err(dev, "dma transmit error\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 		fsl_dma_abort_stream(substream);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 		sr2 |= CCSR_DMA_SR_TE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 		ret = IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	if (sr & CCSR_DMA_SR_CH)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 		ret = IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	if (sr & CCSR_DMA_SR_PE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 		dev_err(dev, "dma programming error\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 		fsl_dma_abort_stream(substream);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 		sr2 |= CCSR_DMA_SR_PE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 		ret = IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	if (sr & CCSR_DMA_SR_EOLNI) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 		sr2 |= CCSR_DMA_SR_EOLNI;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 		ret = IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	if (sr & CCSR_DMA_SR_CB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 		ret = IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	if (sr & CCSR_DMA_SR_EOSI) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 		/* Tell ALSA we completed a period. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 		snd_pcm_period_elapsed(substream);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 		 * Update our link descriptors to point to the next period. We
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 		 * only need to do this if the number of periods is not equal to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 		 * the number of links.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 		if (dma_private->num_periods != NUM_DMA_LINKS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 			fsl_dma_update_pointers(dma_private);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 		sr2 |= CCSR_DMA_SR_EOSI;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 		ret = IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	if (sr & CCSR_DMA_SR_EOLSI) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 		sr2 |= CCSR_DMA_SR_EOLSI;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 		ret = IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	/* Clear the bits that we set */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	if (sr2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 		out_be32(&dma_channel->sr, sr2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268)  * fsl_dma_new: initialize this PCM driver.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270)  * This function is called when the codec driver calls snd_soc_new_pcms(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271)  * once for each .dai_link in the machine driver's snd_soc_card
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)  * structure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274)  * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275)  * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276)  * is specified. Therefore, any DMA buffers we allocate will always be in low
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277)  * memory, but we support for 36-bit physical addresses anyway.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279)  * Regardless of where the memory is actually allocated, since the device can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280)  * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) static int fsl_dma_new(struct snd_soc_component *component,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 		       struct snd_soc_pcm_runtime *rtd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	struct snd_card *card = rtd->card->snd_card;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	struct snd_pcm *pcm = rtd->pcm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	/* Some codecs have separate DAIs for playback and capture, so we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	 * should allocate a DMA buffer only for the streams that are valid.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 	if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 			fsl_dma_hardware.buffer_bytes_max,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 			&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 		if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 			dev_err(card->dev, "can't alloc playback dma buffer\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 			fsl_dma_hardware.buffer_bytes_max,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 			&pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 		if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 			dev_err(card->dev, "can't alloc capture dma buffer\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 			snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322)  * fsl_dma_open: open a new substream.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324)  * Each substream has its own DMA buffer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326)  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327)  * descriptors that ping-pong from one period to the next.  For example, if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328)  * there are six periods and two link descriptors, this is how they look
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329)  * before playback starts:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331)  *      	   The last link descriptor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332)  *   ____________  points back to the first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333)  *  |   	 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334)  *  V   	 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335)  *  ___    ___   |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336)  * |   |->|   |->|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337)  * |___|  |___|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338)  *   |      |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339)  *   |      |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340)  *   V      V
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341)  *  _________________________________________
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342)  * |      |      |      |      |      |      |  The DMA buffer is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343)  * |      |      |      |      |      |      |    divided into 6 parts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344)  * |______|______|______|______|______|______|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346)  * and here's how they look after the first period is finished playing:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348)  *   ____________
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349)  *  |   	 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350)  *  V   	 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351)  *  ___    ___   |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352)  * |   |->|   |->|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353)  * |___|  |___|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354)  *   |      |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355)  *   |______________
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356)  *          |       |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357)  *          V       V
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358)  *  _________________________________________
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359)  * |      |      |      |      |      |      |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360)  * |      |      |      |      |      |      |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361)  * |______|______|______|______|______|______|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363)  * The first link descriptor now points to the third period.  The DMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364)  * controller is currently playing the second period.  When it finishes, it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365)  * will jump back to the first descriptor and play the third period.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367)  * There are four reasons we do this:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369)  * 1. The only way to get the DMA controller to automatically restart the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370)  *    transfer when it gets to the end of the buffer is to use chaining
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371)  *    mode.  Basic direct mode doesn't offer that feature.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372)  * 2. We need to receive an interrupt at the end of every period.  The DMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373)  *    controller can generate an interrupt at the end of every link transfer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374)  *    (aka segment).  Making each period into a DMA segment will give us the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375)  *    interrupts we need.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376)  * 3. By creating only two link descriptors, regardless of the number of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377)  *    periods, we do not need to reallocate the link descriptors if the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378)  *    number of periods changes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379)  * 4. All of the audio data is still stored in a single, contiguous DMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380)  *    buffer, which is what ALSA expects.  We're just dividing it into
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381)  *    contiguous parts, and creating a link descriptor for each one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) static int fsl_dma_open(struct snd_soc_component *component,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 			struct snd_pcm_substream *substream)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	struct snd_pcm_runtime *runtime = substream->runtime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	struct device *dev = component->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	struct dma_object *dma =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 		container_of(component->driver, struct dma_object, dai);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 	struct fsl_dma_private *dma_private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	struct ccsr_dma_channel __iomem *dma_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	dma_addr_t ld_buf_phys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 	u64 temp_link;  	/* Pointer to next link descriptor */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	u32 mr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	unsigned int channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 	 * Reject any DMA buffer whose size is not a multiple of the period
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	 * size.  We need to make sure that the DMA buffer can be evenly divided
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 	 * into periods.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	ret = snd_pcm_hw_constraint_integer(runtime,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 		SNDRV_PCM_HW_PARAM_PERIODS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 		dev_err(dev, "invalid buffer size\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 	if (dma->assigned) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 		dev_err(dev, "dma channel already assigned\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 		return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 					 &ld_buf_phys, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 	if (!dma_private) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 		dev_err(dev, "can't allocate dma private data\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 	dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 	dma_private->dma_channel = dma->channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	dma_private->irq = dma->irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 	dma_private->substream = substream;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 	dma_private->ld_buf_phys = ld_buf_phys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 			  dma_private);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 			dma_private->irq, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 			dma_private, dma_private->ld_buf_phys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	dma->assigned = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 	runtime->private_data = dma_private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	/* Program the fixed DMA controller parameters */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	dma_channel = dma_private->dma_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 	temp_link = dma_private->ld_buf_phys +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 		sizeof(struct fsl_dma_link_descriptor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 	for (i = 0; i < NUM_DMA_LINKS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 		dma_private->link[i].next = cpu_to_be64(temp_link);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 		temp_link += sizeof(struct fsl_dma_link_descriptor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 	/* The last link descriptor points to the first */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	/* Tell the DMA controller where the first link descriptor is */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 	out_be32(&dma_channel->clndar,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 	out_be32(&dma_channel->eclndar,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 	/* The manual says the BCR must be clear before enabling EMP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 	out_be32(&dma_channel->bcr, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 	 * Program the mode register for interrupts, external master control,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 	 * and source/destination hold.  Also clear the Channel Abort bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 	mr = in_be32(&dma_channel->mr) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 	 * We want External Master Start and External Master Pause enabled,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 	 * because the SSI is controlling the DMA controller.  We want the DMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 	 * controller to be set up in advance, and then we signal only the SSI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 	 * to start transferring.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 	 * We want End-Of-Segment Interrupts enabled, because this will generate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 	 * an interrupt at the end of each segment (each link descriptor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 	 * represents one segment).  Each DMA segment is the same thing as an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 	 * ALSA period, so this is how we get an interrupt at the end of every
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 	 * period.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 	 * We want Error Interrupt enabled, so that we can get an error if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 	 * the DMA controller is mis-programmed somehow.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 		CCSR_DMA_MR_EMS_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 	/* For playback, we want the destination address to be held.  For
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 	   capture, set the source address to be held. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 	out_be32(&dma_channel->mr, mr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512)  * fsl_dma_hw_params: continue initializing the DMA links
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514)  * This function obtains hardware parameters about the opened stream and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515)  * programs the DMA controller accordingly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517)  * One drawback of big-endian is that when copying integers of different
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518)  * sizes to a fixed-sized register, the address to which the integer must be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519)  * copied is dependent on the size of the integer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521)  * For example, if P is the address of a 32-bit register, and X is a 32-bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522)  * integer, then X should be copied to address P.  However, if X is a 16-bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523)  * integer, then it should be copied to P+2.  If X is an 8-bit register,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524)  * then it should be copied to P+3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526)  * So for playback of 8-bit samples, the DMA controller must transfer single
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527)  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528)  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530)  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531)  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532)  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533)  * 24-bit data must be padded to 32 bits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) static int fsl_dma_hw_params(struct snd_soc_component *component,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 			     struct snd_pcm_substream *substream,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 			     struct snd_pcm_hw_params *hw_params)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 	struct snd_pcm_runtime *runtime = substream->runtime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 	struct fsl_dma_private *dma_private = runtime->private_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 	struct device *dev = component->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 	/* Number of bits per sample */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 	unsigned int sample_bits =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 		snd_pcm_format_physical_width(params_format(hw_params));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 	/* Number of bytes per frame */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 	unsigned int sample_bytes = sample_bits / 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 	/* Bus address of SSI STX register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 	/* Size of the DMA buffer, in bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 	size_t buffer_size = params_buffer_bytes(hw_params);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 	/* Number of bytes per period */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 	size_t period_size = params_period_bytes(hw_params);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 	/* Pointer to next period */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 	dma_addr_t temp_addr = substream->dma_buffer.addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 	/* Pointer to DMA controller */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 	u32 mr; /* DMA Mode Register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 	/* Initialize our DMA tracking variables */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 	dma_private->period_size = period_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 	dma_private->num_periods = params_periods(hw_params);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 		(NUM_DMA_LINKS * period_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 		/* This happens if the number of periods == NUM_DMA_LINKS */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 	/* Due to a quirk of the SSI's STX register, the target address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 	 * for the DMA operations depends on the sample size.  So we calculate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 	 * that offset here.  While we're at it, also tell the DMA controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 	 * how much data to transfer per sample.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 	switch (sample_bits) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 	case 8:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 		ssi_sxx_phys += 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 	case 16:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 		ssi_sxx_phys += 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 	case 32:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 		/* We should never get here */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 		dev_err(dev, "unsupported sample size %u\n", sample_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 	 * BWC determines how many bytes are sent/received before the DMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 	 * controller checks the SSI to see if it needs to stop. BWC should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 	 * always be a multiple of the frame size, so that we always transmit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 	 * whole frames.  Each frame occupies two slots in the FIFO.  The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 	 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) 	 * (MR[BWC] can only represent even powers of two).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 	 * To simplify the process, we set BWC to the largest value that is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 	 * less than or equal to the FIFO watermark.  For playback, this ensures
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) 	 * that we transfer the maximum amount without overrunning the FIFO.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 	 * For capture, this ensures that we transfer the maximum amount without
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) 	 * underrunning the FIFO.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) 	 * f = SSI FIFO depth
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 	 * w = SSI watermark value (which equals f - 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 	 * b = DMA bandwidth count (in bytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 	 * s = sample size (in bytes, which equals frame_size * 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 	 * For playback, we never transmit more than the transmit FIFO
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) 	 * watermark, otherwise we might write more data than the FIFO can hold.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 	 * The watermark is equal to the FIFO depth minus two.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) 	 * For capture, two equations must hold:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) 	 *	w > f - (b / s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) 	 *	w >= b / s
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 	 * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 	 * b = s * w, which is equal to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 	 *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) 	mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) 	out_be32(&dma_channel->mr, mr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 	for (i = 0; i < NUM_DMA_LINKS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) 		link->count = cpu_to_be32(period_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) 		/* The snoop bit tells the DMA controller whether it should tell
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) 		 * the ECM to snoop during a read or write to an address. For
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) 		 * audio, we use DMA to transfer data between memory and an I/O
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) 		 * device (the SSI's STX0 or SRX0 register). Snooping is only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) 		 * needed if there is a cache, so we need to snoop memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) 		 * addresses only.  For playback, that means we snoop the source
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) 		 * but not the destination.  For capture, we snoop the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) 		 * destination but not the source.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) 		 * Note that failing to snoop properly is unlikely to cause
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) 		 * cache incoherency if the period size is larger than the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) 		 * size of L1 cache.  This is because filling in one period will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) 		 * flush out the data for the previous period.  So if you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) 		 * increased period_bytes_min to a large enough size, you might
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) 		 * get more performance by not snooping, and you'll still be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) 		 * okay.  You'll need to update fsl_dma_update_pointers() also.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) 			link->source_addr = cpu_to_be32(temp_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) 				upper_32_bits(temp_addr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) 				upper_32_bits(ssi_sxx_phys));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 				upper_32_bits(ssi_sxx_phys));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) 			link->dest_addr = cpu_to_be32(temp_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) 				upper_32_bits(temp_addr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) 		temp_addr += period_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688)  * fsl_dma_pointer: determine the current position of the DMA transfer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690)  * This function is called by ALSA when ALSA wants to know where in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691)  * stream buffer the hardware currently is.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693)  * For playback, the SAR register contains the physical address of the most
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694)  * recent DMA transfer.  For capture, the value is in the DAR register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696)  * The base address of the buffer is stored in the source_addr field of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697)  * first link descriptor.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) static snd_pcm_uframes_t fsl_dma_pointer(struct snd_soc_component *component,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) 					 struct snd_pcm_substream *substream)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) 	struct snd_pcm_runtime *runtime = substream->runtime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) 	struct fsl_dma_private *dma_private = runtime->private_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) 	struct device *dev = component->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) 	dma_addr_t position;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) 	snd_pcm_uframes_t frames;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) 	/* Obtain the current DMA pointer, but don't read the ESAD bits if we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) 	 * only have 32-bit DMA addresses.  This function is typically called
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) 	 * in interrupt context, so we need to optimize it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) 		position = in_be32(&dma_channel->sar);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) #ifdef CONFIG_PHYS_64BIT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) 		position |= (u64)(in_be32(&dma_channel->satr) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) 		position = in_be32(&dma_channel->dar);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) #ifdef CONFIG_PHYS_64BIT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) 		position |= (u64)(in_be32(&dma_channel->datr) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) 	 * When capture is started, the SSI immediately starts to fill its FIFO.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) 	 * This means that the DMA controller is not started until the FIFO is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) 	 * full.  However, ALSA calls this function before that happens, when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) 	 * MR.DAR is still zero.  In this case, just return zero to indicate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) 	 * that nothing has been received yet.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) 	if (!position)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) 	if ((position < dma_private->dma_buf_phys) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) 	    (position > dma_private->dma_buf_end)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) 		dev_err(dev, "dma pointer is out of range, halting stream\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) 		return SNDRV_PCM_POS_XRUN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) 	 * If the current address is just past the end of the buffer, wrap it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) 	 * around.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) 	if (frames == runtime->buffer_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) 		frames = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) 	return frames;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756)  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758)  * Release the resources allocated in fsl_dma_hw_params() and de-program the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759)  * registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761)  * This function can be called multiple times.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) static int fsl_dma_hw_free(struct snd_soc_component *component,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) 			   struct snd_pcm_substream *substream)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) 	struct snd_pcm_runtime *runtime = substream->runtime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) 	struct fsl_dma_private *dma_private = runtime->private_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) 	if (dma_private) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) 		struct ccsr_dma_channel __iomem *dma_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) 		dma_channel = dma_private->dma_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) 		/* Stop the DMA */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) 		out_be32(&dma_channel->mr, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) 		/* Reset all the other registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) 		out_be32(&dma_channel->sr, -1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) 		out_be32(&dma_channel->clndar, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) 		out_be32(&dma_channel->eclndar, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) 		out_be32(&dma_channel->satr, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) 		out_be32(&dma_channel->sar, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) 		out_be32(&dma_channel->datr, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) 		out_be32(&dma_channel->dar, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) 		out_be32(&dma_channel->bcr, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) 		out_be32(&dma_channel->nlndar, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) 		out_be32(&dma_channel->enlndar, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795)  * fsl_dma_close: close the stream.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) static int fsl_dma_close(struct snd_soc_component *component,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) 			 struct snd_pcm_substream *substream)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) 	struct snd_pcm_runtime *runtime = substream->runtime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) 	struct fsl_dma_private *dma_private = runtime->private_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) 	struct device *dev = component->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) 	struct dma_object *dma =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) 		container_of(component->driver, struct dma_object, dai);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) 	if (dma_private) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) 		if (dma_private->irq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) 			free_irq(dma_private->irq, dma_private);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) 		/* Deallocate the fsl_dma_private structure */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) 				  dma_private, dma_private->ld_buf_phys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) 		substream->runtime->private_data = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) 	dma->assigned = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822)  * Remove this PCM driver.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) static void fsl_dma_free_dma_buffers(struct snd_soc_component *component,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) 				     struct snd_pcm *pcm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) 	struct snd_pcm_substream *substream;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) 		substream = pcm->streams[i].substream;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) 		if (substream) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) 			snd_dma_free_pages(&substream->dma_buffer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) 			substream->dma_buffer.area = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) 			substream->dma_buffer.addr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841)  * find_ssi_node -- returns the SSI node that points to its DMA channel node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843)  * Although this DMA driver attempts to operate independently of the other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844)  * devices, it still needs to determine some information about the SSI device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845)  * that it's working with.  Unfortunately, the device tree does not contain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846)  * a pointer from the DMA channel node to the SSI node -- the pointer goes the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847)  * other way.  So we need to scan the device tree for SSI nodes until we find
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848)  * the one that points to the given DMA channel node.  It's ugly, but at least
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849)  * it's contained in this one function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) 	struct device_node *ssi_np, *np;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) 	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) 		/* Check each DMA phandle to see if it points to us.  We
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) 		 * assume that device_node pointers are a valid comparison.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) 		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) 		of_node_put(np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) 		if (np == dma_channel_np)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) 			return ssi_np;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) 		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) 		of_node_put(np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) 		if (np == dma_channel_np)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) 			return ssi_np;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) static int fsl_soc_dma_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) 	struct dma_object *dma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) 	struct device_node *np = pdev->dev.of_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) 	struct device_node *ssi_np;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) 	struct resource res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) 	const uint32_t *iprop;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) 	/* Find the SSI node that points to us. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) 	ssi_np = find_ssi_node(np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) 	if (!ssi_np) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) 		dev_err(&pdev->dev, "cannot find parent SSI node\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) 	ret = of_address_to_resource(ssi_np, 0, &res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) 		dev_err(&pdev->dev, "could not determine resources for %pOF\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) 			ssi_np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) 		of_node_put(ssi_np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) 	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) 	if (!dma) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899) 		of_node_put(ssi_np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) 	dma->dai.name = DRV_NAME;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) 	dma->dai.open = fsl_dma_open;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) 	dma->dai.close = fsl_dma_close;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) 	dma->dai.hw_params = fsl_dma_hw_params;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907) 	dma->dai.hw_free = fsl_dma_hw_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) 	dma->dai.pointer = fsl_dma_pointer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) 	dma->dai.pcm_construct = fsl_dma_new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) 	dma->dai.pcm_destruct = fsl_dma_free_dma_buffers;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912) 	/* Store the SSI-specific information that we need */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) 	dma->ssi_stx_phys = res.start + REG_SSI_STX0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) 	dma->ssi_srx_phys = res.start + REG_SSI_SRX0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916) 	iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) 	if (iprop)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) 		dma->ssi_fifo_depth = be32_to_cpup(iprop);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920)                 /* Older 8610 DTs didn't have the fifo-depth property */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921) 		dma->ssi_fifo_depth = 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) 	of_node_put(ssi_np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925) 	ret = devm_snd_soc_register_component(&pdev->dev, &dma->dai, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) 		dev_err(&pdev->dev, "could not register platform\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) 		kfree(dma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) 	dma->channel = of_iomap(np, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) 	dma->irq = irq_of_parse_and_map(np, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935) 	dev_set_drvdata(&pdev->dev, dma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) static int fsl_soc_dma_remove(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942) 	struct dma_object *dma = dev_get_drvdata(&pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944) 	iounmap(dma->channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) 	irq_dispose_mapping(dma->irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) 	kfree(dma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951) static const struct of_device_id fsl_soc_dma_ids[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952) 	{ .compatible = "fsl,ssi-dma-channel", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953) 	{}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955) MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 956) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 957) static struct platform_driver fsl_soc_dma_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 958) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 959) 		.name = "fsl-pcm-audio",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 960) 		.of_match_table = fsl_soc_dma_ids,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 961) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 962) 	.probe = fsl_soc_dma_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 963) 	.remove = fsl_soc_dma_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 964) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 965) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 966) module_platform_driver(fsl_soc_dma_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 967) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 968) MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 969) MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 970) MODULE_LICENSE("GPL v2");