Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * Driver for Digigram VX222 V2/Mic soundcards
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * VX222-specific low-level routines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11) #include <linux/device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12) #include <linux/firmware.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) #include <sound/core.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) #include <sound/control.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) #include <sound/tlv.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) #include "vx222.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) static const int vx2_reg_offset[VX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) 	[VX_ICR]    = 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) 	[VX_CVR]    = 0x04,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) 	[VX_ISR]    = 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) 	[VX_IVR]    = 0x0c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) 	[VX_RXH]    = 0x14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) 	[VX_RXM]    = 0x18,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) 	[VX_RXL]    = 0x1c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) 	[VX_DMA]    = 0x10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) 	[VX_CDSP]   = 0x20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) 	[VX_CFG]    = 0x24,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) 	[VX_RUER]   = 0x28,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) 	[VX_DATA]   = 0x2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) 	[VX_STATUS] = 0x30,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) 	[VX_LOFREQ] = 0x34,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) 	[VX_HIFREQ] = 0x38,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) 	[VX_CSUER]  = 0x3c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) 	[VX_SELMIC] = 0x40,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) 	[VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) 	[VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) 	[VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) 	[VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) 	[VX_CNTRL]  = 0x50,		// VX_CNTRL_REGISTER_OFFSET
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) 	[VX_GPIOC]  = 0x54,		// VX_GPIOC (new with PLX9030)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) static const int vx2_reg_index[VX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) 	[VX_ICR]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) 	[VX_CVR]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) 	[VX_ISR]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) 	[VX_IVR]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) 	[VX_RXH]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) 	[VX_RXM]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) 	[VX_RXL]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) 	[VX_DMA]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) 	[VX_CDSP]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) 	[VX_CFG]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) 	[VX_RUER]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) 	[VX_DATA]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) 	[VX_STATUS]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) 	[VX_LOFREQ]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) 	[VX_HIFREQ]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) 	[VX_CSUER]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) 	[VX_SELMIC]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) 	[VX_COMPOT]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) 	[VX_SCOMPR]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) 	[VX_GLIMIT]	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) 	[VX_INTCSR]	= 0,	/* on the PLX */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) 	[VX_CNTRL]	= 0,	/* on the PLX */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) 	[VX_GPIOC]	= 0,	/* on the PLX */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) 	struct snd_vx222 *chip = to_vx222(_chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) 	return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81)  * snd_vx_inb - read a byte from the register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82)  * @chip: VX core instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83)  * @offset: register enum
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) static unsigned char vx2_inb(struct vx_core *chip, int offset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) 	return inb(vx2_reg_addr(chip, offset));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91)  * snd_vx_outb - write a byte on the register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92)  * @chip: VX core instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93)  * @offset: the register offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94)  * @val: the value to write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) 	outb(val, vx2_reg_addr(chip, offset));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 	dev_dbg(chip->card->dev, "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) 	*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105)  * snd_vx_inl - read a 32bit word from the register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106)  * @chip: VX core instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107)  * @offset: register enum
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) static unsigned int vx2_inl(struct vx_core *chip, int offset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) 	return inl(vx2_reg_addr(chip, offset));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115)  * snd_vx_outl - write a 32bit word on the register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116)  * @chip: VX core instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117)  * @offset: the register enum
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118)  * @val: the value to write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 	dev_dbg(chip->card->dev, "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) 	*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) 	outl(val, vx2_reg_addr(chip, offset));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129)  * redefine macros to call directly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) #undef vx_inb
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) #define vx_inb(chip,reg)	vx2_inb((struct vx_core*)(chip), VX_##reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) #undef vx_outb
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) #define vx_outb(chip,reg,val)	vx2_outb((struct vx_core*)(chip), VX_##reg, val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) #undef vx_inl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) #define vx_inl(chip,reg)	vx2_inl((struct vx_core*)(chip), VX_##reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) #undef vx_outl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) #define vx_outl(chip,reg,val)	vx2_outl((struct vx_core*)(chip), VX_##reg, val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142)  * vx_reset_dsp - reset the DSP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) #define XX_DSP_RESET_WAIT_TIME		2	/* ms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) static void vx2_reset_dsp(struct vx_core *_chip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 	struct snd_vx222 *chip = to_vx222(_chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 	/* set the reset dsp bit to 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) 	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) 	mdelay(XX_DSP_RESET_WAIT_TIME);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) 	chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 	/* set the reset dsp bit to 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 	vx_outl(chip, CDSP, chip->regCDSP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) static int vx2_test_xilinx(struct vx_core *_chip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 	struct snd_vx222 *chip = to_vx222(_chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 	unsigned int data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) 	dev_dbg(_chip->card->dev, "testing xilinx...\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) 	/* This test uses several write/read sequences on TEST0 and TEST1 bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 	 * to figure out whever or not the xilinx was correctly loaded
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 	/* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 	vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) 	vx_inl(chip, ISR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) 	data = vx_inl(chip, STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 	if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 		dev_dbg(_chip->card->dev, "bad!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) 	/* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) 	vx_inl(chip, ISR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 	data = vx_inl(chip, STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) 	if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 		dev_dbg(_chip->card->dev, "bad! #2\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 	if (_chip->type == VX_TYPE_BOARD) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 		/* not implemented on VX_2_BOARDS */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 		/* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 		vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 		vx_inl(chip, ISR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 		data = vx_inl(chip, STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) 		if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 			dev_dbg(_chip->card->dev, "bad! #3\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 		/* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 		vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 		vx_inl(chip, ISR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 		data = vx_inl(chip, STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 		if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 			dev_dbg(_chip->card->dev, "bad! #4\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 	dev_dbg(_chip->card->dev, "ok, xilinx fine.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216)  * vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217)  * @chip: VX core instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218)  * @do_write: 0 = read, 1 = set up for DMA write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 	/* Interrupt mode and HREQ pin enabled for host transmit data transfers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 	 * (in case of the use of the pseudo-dma facility).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) 	vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) 	/* Reset the pseudo-dma register (in case of the use of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 	 * pseudo-dma facility).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 	vx_outl(chip, RESET_DMA, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234)  * vx_release_pseudo_dma - disable the pseudo-DMA mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) static inline void vx2_release_pseudo_dma(struct vx_core *chip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 	/* HREQ pin disabled. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 	vx_outl(chip, ICR, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) /* pseudo-dma write */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 			  struct vx_pipe *pipe, int count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 	unsigned long port = vx2_reg_addr(chip, VX_DMA);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 	int offset = pipe->hw_ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 	u32 *addr = (u32 *)(runtime->dma_area + offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 	if (snd_BUG_ON(count % 4))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) 	vx2_setup_pseudo_dma(chip, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) 	/* Transfer using pseudo-dma.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 	if (offset + count >= pipe->buffer_bytes) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 		int length = pipe->buffer_bytes - offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 		count -= length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 		length >>= 2; /* in 32bit words */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 		/* Transfer using pseudo-dma. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 		for (; length > 0; length--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 			outl(*addr, port);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 			addr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 		addr = (u32 *)runtime->dma_area;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) 		pipe->hw_ptr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 	pipe->hw_ptr += count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 	count >>= 2; /* in 32bit words */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 	/* Transfer using pseudo-dma. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 	for (; count > 0; count--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 		outl(*addr, port);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 		addr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 	vx2_release_pseudo_dma(chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) /* pseudo dma read */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 			 struct vx_pipe *pipe, int count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 	int offset = pipe->hw_ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 	u32 *addr = (u32 *)(runtime->dma_area + offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 	unsigned long port = vx2_reg_addr(chip, VX_DMA);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 	if (snd_BUG_ON(count % 4))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 	vx2_setup_pseudo_dma(chip, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 	/* Transfer using pseudo-dma.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 	if (offset + count >= pipe->buffer_bytes) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 		int length = pipe->buffer_bytes - offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 		count -= length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 		length >>= 2; /* in 32bit words */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 		/* Transfer using pseudo-dma. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 		for (; length > 0; length--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 			*addr++ = inl(port);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 		addr = (u32 *)runtime->dma_area;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 		pipe->hw_ptr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 	pipe->hw_ptr += count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 	count >>= 2; /* in 32bit words */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 	/* Transfer using pseudo-dma. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 	for (; count > 0; count--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 		*addr++ = inl(port);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 	vx2_release_pseudo_dma(chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) #define VX_XILINX_RESET_MASK        0x40000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) #define VX_USERBIT0_MASK            0x00000004
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) #define VX_USERBIT1_MASK            0x00000020
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) #define VX_CNTRL_REGISTER_VALUE     0x00172012
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322)  * transfer counts bits to PLX
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 	for (i = 0; i < counts; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 		unsigned int val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 		/* set the clock bit to 0. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 		val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 		vx2_outl(chip, port, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 		vx2_inl(chip, port);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 		udelay(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 		if (data & (1 << i))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 			val |= VX_USERBIT1_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) 			val &= ~VX_USERBIT1_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 		vx2_outl(chip, port, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 		vx2_inl(chip, port);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 		/* set the clock bit to 1. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 		val |= VX_USERBIT0_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 		vx2_outl(chip, port, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 		vx2_inl(chip, port);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 		udelay(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354)  * load the xilinx image
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 	unsigned int port;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 	const unsigned char *image;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 	/* XILINX reset (wait at least 1 millisecond between reset on and off). */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 	vx_inl(chip, CNTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 	msleep(10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 	vx_inl(chip, CNTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 	msleep(10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 	if (chip->type == VX_TYPE_BOARD)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 		port = VX_CNTRL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 		port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 	image = xilinx->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 	for (i = 0; i < xilinx->size; i++, image++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 		if (put_xilinx_data(chip, port, 8, *image) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 		/* don't take too much time in this loop... */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 		cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 	put_xilinx_data(chip, port, 4, 0xff); /* end signature */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 	msleep(200);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 	/* test after loading (is buggy with VX222) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 	if (chip->type != VX_TYPE_BOARD) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 		/* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 		i = vx_inl(chip, GPIOC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 		if (i & 0x0100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 		dev_err(chip->card->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 			"xilinx test failed after load, GPIOC=0x%x\n", i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 	
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402)  * load the boot/dsp images
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 	switch (index) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 		/* xilinx image */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 		if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 			return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 		if ((err = vx2_test_xilinx(vx)) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 			return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 		/* DSP boot */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 		return snd_vx_dsp_boot(vx, dsp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 		/* DSP image */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 		return snd_vx_dsp_load(vx, dsp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 		snd_BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430)  * vx_test_and_ack - test and acknowledge interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432)  * called from irq hander, too
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434)  * spinlock held!
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) static int vx2_test_and_ack(struct vx_core *chip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 	/* not booted yet? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 	if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 		return -ENXIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 	if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 	
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 	/* ok, interrupts generated, now ack it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 	/* set ACQUIT bit up and down */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 	vx_outl(chip, STATUS, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 	/* useless read just to spend some time and maintain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 	 * the ACQUIT signal up for a while ( a bus cycle )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 	vx_inl(chip, STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 	/* ack */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 	vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 	/* useless read just to spend some time and maintain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 	 * the ACQUIT signal up for a while ( a bus cycle ) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 	vx_inl(chip, STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 	/* clear */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 	vx_outl(chip, STATUS, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465)  * vx_validate_irq - enable/disable IRQ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) static void vx2_validate_irq(struct vx_core *_chip, int enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 	struct snd_vx222 *chip = to_vx222(_chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 	/* Set the interrupt enable bit to 1 in CDSP register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 	if (enable) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 		/* Set the PCI interrupt enable bit to 1.*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 		vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 		chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 		/* Set the PCI interrupt enable bit to 0. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 		vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 		chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 	vx_outl(chip, CDSP, chip->regCDSP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486)  * write an AKM codec data (24bit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 	vx_inl(chip, HIFREQ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 	/* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 	for (i = 0; i < 24; i++, data <<= 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 	/* Terminate access to codec registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 	vx_inl(chip, RUER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) #define AKM_CODEC_POWER_CONTROL_CMD 0xA007
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) #define AKM_CODEC_RESET_ON_CMD      0xA100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) #define AKM_CODEC_RESET_OFF_CMD     0xA103
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) #define AKM_CODEC_CLOCK_FORMAT_CMD  0xA240
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) #define AKM_CODEC_MUTE_CMD          0xA38D
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) #define AKM_CODEC_UNMUTE_CMD        0xA30D
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) #define AKM_CODEC_LEFT_LEVEL_CMD    0xA400
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) #define AKM_CODEC_RIGHT_LEVEL_CMD   0xA500
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512)     0x7f,       // [000] =  +0.000 dB  ->  AKM(0x7f) =  +0.000 dB  error(+0.000 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513)     0x7d,       // [001] =  -0.500 dB  ->  AKM(0x7d) =  -0.572 dB  error(-0.072 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514)     0x7c,       // [002] =  -1.000 dB  ->  AKM(0x7c) =  -0.873 dB  error(+0.127 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515)     0x7a,       // [003] =  -1.500 dB  ->  AKM(0x7a) =  -1.508 dB  error(-0.008 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516)     0x79,       // [004] =  -2.000 dB  ->  AKM(0x79) =  -1.844 dB  error(+0.156 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517)     0x77,       // [005] =  -2.500 dB  ->  AKM(0x77) =  -2.557 dB  error(-0.057 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518)     0x76,       // [006] =  -3.000 dB  ->  AKM(0x76) =  -2.937 dB  error(+0.063 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519)     0x75,       // [007] =  -3.500 dB  ->  AKM(0x75) =  -3.334 dB  error(+0.166 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520)     0x73,       // [008] =  -4.000 dB  ->  AKM(0x73) =  -4.188 dB  error(-0.188 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521)     0x72,       // [009] =  -4.500 dB  ->  AKM(0x72) =  -4.648 dB  error(-0.148 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522)     0x71,       // [010] =  -5.000 dB  ->  AKM(0x71) =  -5.134 dB  error(-0.134 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523)     0x70,       // [011] =  -5.500 dB  ->  AKM(0x70) =  -5.649 dB  error(-0.149 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524)     0x6f,       // [012] =  -6.000 dB  ->  AKM(0x6f) =  -6.056 dB  error(-0.056 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525)     0x6d,       // [013] =  -6.500 dB  ->  AKM(0x6d) =  -6.631 dB  error(-0.131 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526)     0x6c,       // [014] =  -7.000 dB  ->  AKM(0x6c) =  -6.933 dB  error(+0.067 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527)     0x6a,       // [015] =  -7.500 dB  ->  AKM(0x6a) =  -7.571 dB  error(-0.071 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528)     0x69,       // [016] =  -8.000 dB  ->  AKM(0x69) =  -7.909 dB  error(+0.091 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529)     0x67,       // [017] =  -8.500 dB  ->  AKM(0x67) =  -8.626 dB  error(-0.126 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530)     0x66,       // [018] =  -9.000 dB  ->  AKM(0x66) =  -9.008 dB  error(-0.008 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531)     0x65,       // [019] =  -9.500 dB  ->  AKM(0x65) =  -9.407 dB  error(+0.093 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532)     0x64,       // [020] = -10.000 dB  ->  AKM(0x64) =  -9.826 dB  error(+0.174 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533)     0x62,       // [021] = -10.500 dB  ->  AKM(0x62) = -10.730 dB  error(-0.230 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534)     0x61,       // [022] = -11.000 dB  ->  AKM(0x61) = -11.219 dB  error(-0.219 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535)     0x60,       // [023] = -11.500 dB  ->  AKM(0x60) = -11.738 dB  error(-0.238 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536)     0x5f,       // [024] = -12.000 dB  ->  AKM(0x5f) = -12.149 dB  error(-0.149 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537)     0x5e,       // [025] = -12.500 dB  ->  AKM(0x5e) = -12.434 dB  error(+0.066 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538)     0x5c,       // [026] = -13.000 dB  ->  AKM(0x5c) = -13.033 dB  error(-0.033 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539)     0x5b,       // [027] = -13.500 dB  ->  AKM(0x5b) = -13.350 dB  error(+0.150 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540)     0x59,       // [028] = -14.000 dB  ->  AKM(0x59) = -14.018 dB  error(-0.018 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541)     0x58,       // [029] = -14.500 dB  ->  AKM(0x58) = -14.373 dB  error(+0.127 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542)     0x56,       // [030] = -15.000 dB  ->  AKM(0x56) = -15.130 dB  error(-0.130 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543)     0x55,       // [031] = -15.500 dB  ->  AKM(0x55) = -15.534 dB  error(-0.034 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544)     0x54,       // [032] = -16.000 dB  ->  AKM(0x54) = -15.958 dB  error(+0.042 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545)     0x53,       // [033] = -16.500 dB  ->  AKM(0x53) = -16.404 dB  error(+0.096 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546)     0x52,       // [034] = -17.000 dB  ->  AKM(0x52) = -16.874 dB  error(+0.126 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547)     0x51,       // [035] = -17.500 dB  ->  AKM(0x51) = -17.371 dB  error(+0.129 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548)     0x50,       // [036] = -18.000 dB  ->  AKM(0x50) = -17.898 dB  error(+0.102 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549)     0x4e,       // [037] = -18.500 dB  ->  AKM(0x4e) = -18.605 dB  error(-0.105 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550)     0x4d,       // [038] = -19.000 dB  ->  AKM(0x4d) = -18.905 dB  error(+0.095 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551)     0x4b,       // [039] = -19.500 dB  ->  AKM(0x4b) = -19.538 dB  error(-0.038 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552)     0x4a,       // [040] = -20.000 dB  ->  AKM(0x4a) = -19.872 dB  error(+0.128 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553)     0x48,       // [041] = -20.500 dB  ->  AKM(0x48) = -20.583 dB  error(-0.083 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554)     0x47,       // [042] = -21.000 dB  ->  AKM(0x47) = -20.961 dB  error(+0.039 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555)     0x46,       // [043] = -21.500 dB  ->  AKM(0x46) = -21.356 dB  error(+0.144 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556)     0x44,       // [044] = -22.000 dB  ->  AKM(0x44) = -22.206 dB  error(-0.206 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557)     0x43,       // [045] = -22.500 dB  ->  AKM(0x43) = -22.664 dB  error(-0.164 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558)     0x42,       // [046] = -23.000 dB  ->  AKM(0x42) = -23.147 dB  error(-0.147 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559)     0x41,       // [047] = -23.500 dB  ->  AKM(0x41) = -23.659 dB  error(-0.159 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560)     0x40,       // [048] = -24.000 dB  ->  AKM(0x40) = -24.203 dB  error(-0.203 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561)     0x3f,       // [049] = -24.500 dB  ->  AKM(0x3f) = -24.635 dB  error(-0.135 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562)     0x3e,       // [050] = -25.000 dB  ->  AKM(0x3e) = -24.935 dB  error(+0.065 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563)     0x3c,       // [051] = -25.500 dB  ->  AKM(0x3c) = -25.569 dB  error(-0.069 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564)     0x3b,       // [052] = -26.000 dB  ->  AKM(0x3b) = -25.904 dB  error(+0.096 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565)     0x39,       // [053] = -26.500 dB  ->  AKM(0x39) = -26.615 dB  error(-0.115 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566)     0x38,       // [054] = -27.000 dB  ->  AKM(0x38) = -26.994 dB  error(+0.006 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567)     0x37,       // [055] = -27.500 dB  ->  AKM(0x37) = -27.390 dB  error(+0.110 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568)     0x36,       // [056] = -28.000 dB  ->  AKM(0x36) = -27.804 dB  error(+0.196 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569)     0x34,       // [057] = -28.500 dB  ->  AKM(0x34) = -28.699 dB  error(-0.199 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570)     0x33,       // [058] = -29.000 dB  ->  AKM(0x33) = -29.183 dB  error(-0.183 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571)     0x32,       // [059] = -29.500 dB  ->  AKM(0x32) = -29.696 dB  error(-0.196 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572)     0x31,       // [060] = -30.000 dB  ->  AKM(0x31) = -30.241 dB  error(-0.241 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573)     0x31,       // [061] = -30.500 dB  ->  AKM(0x31) = -30.241 dB  error(+0.259 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574)     0x30,       // [062] = -31.000 dB  ->  AKM(0x30) = -30.823 dB  error(+0.177 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575)     0x2e,       // [063] = -31.500 dB  ->  AKM(0x2e) = -31.610 dB  error(-0.110 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576)     0x2d,       // [064] = -32.000 dB  ->  AKM(0x2d) = -31.945 dB  error(+0.055 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577)     0x2b,       // [065] = -32.500 dB  ->  AKM(0x2b) = -32.659 dB  error(-0.159 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578)     0x2a,       // [066] = -33.000 dB  ->  AKM(0x2a) = -33.038 dB  error(-0.038 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579)     0x29,       // [067] = -33.500 dB  ->  AKM(0x29) = -33.435 dB  error(+0.065 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580)     0x28,       // [068] = -34.000 dB  ->  AKM(0x28) = -33.852 dB  error(+0.148 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581)     0x27,       // [069] = -34.500 dB  ->  AKM(0x27) = -34.289 dB  error(+0.211 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582)     0x25,       // [070] = -35.000 dB  ->  AKM(0x25) = -35.235 dB  error(-0.235 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583)     0x24,       // [071] = -35.500 dB  ->  AKM(0x24) = -35.750 dB  error(-0.250 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584)     0x24,       // [072] = -36.000 dB  ->  AKM(0x24) = -35.750 dB  error(+0.250 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585)     0x23,       // [073] = -36.500 dB  ->  AKM(0x23) = -36.297 dB  error(+0.203 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586)     0x22,       // [074] = -37.000 dB  ->  AKM(0x22) = -36.881 dB  error(+0.119 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587)     0x21,       // [075] = -37.500 dB  ->  AKM(0x21) = -37.508 dB  error(-0.008 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588)     0x20,       // [076] = -38.000 dB  ->  AKM(0x20) = -38.183 dB  error(-0.183 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589)     0x1f,       // [077] = -38.500 dB  ->  AKM(0x1f) = -38.726 dB  error(-0.226 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590)     0x1e,       // [078] = -39.000 dB  ->  AKM(0x1e) = -39.108 dB  error(-0.108 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591)     0x1d,       // [079] = -39.500 dB  ->  AKM(0x1d) = -39.507 dB  error(-0.007 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592)     0x1c,       // [080] = -40.000 dB  ->  AKM(0x1c) = -39.926 dB  error(+0.074 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593)     0x1b,       // [081] = -40.500 dB  ->  AKM(0x1b) = -40.366 dB  error(+0.134 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594)     0x1a,       // [082] = -41.000 dB  ->  AKM(0x1a) = -40.829 dB  error(+0.171 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595)     0x19,       // [083] = -41.500 dB  ->  AKM(0x19) = -41.318 dB  error(+0.182 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596)     0x18,       // [084] = -42.000 dB  ->  AKM(0x18) = -41.837 dB  error(+0.163 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597)     0x17,       // [085] = -42.500 dB  ->  AKM(0x17) = -42.389 dB  error(+0.111 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598)     0x16,       // [086] = -43.000 dB  ->  AKM(0x16) = -42.978 dB  error(+0.022 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599)     0x15,       // [087] = -43.500 dB  ->  AKM(0x15) = -43.610 dB  error(-0.110 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600)     0x14,       // [088] = -44.000 dB  ->  AKM(0x14) = -44.291 dB  error(-0.291 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601)     0x14,       // [089] = -44.500 dB  ->  AKM(0x14) = -44.291 dB  error(+0.209 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602)     0x13,       // [090] = -45.000 dB  ->  AKM(0x13) = -45.031 dB  error(-0.031 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603)     0x12,       // [091] = -45.500 dB  ->  AKM(0x12) = -45.840 dB  error(-0.340 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604)     0x12,       // [092] = -46.000 dB  ->  AKM(0x12) = -45.840 dB  error(+0.160 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605)     0x11,       // [093] = -46.500 dB  ->  AKM(0x11) = -46.731 dB  error(-0.231 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606)     0x11,       // [094] = -47.000 dB  ->  AKM(0x11) = -46.731 dB  error(+0.269 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607)     0x10,       // [095] = -47.500 dB  ->  AKM(0x10) = -47.725 dB  error(-0.225 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608)     0x10,       // [096] = -48.000 dB  ->  AKM(0x10) = -47.725 dB  error(+0.275 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609)     0x0f,       // [097] = -48.500 dB  ->  AKM(0x0f) = -48.553 dB  error(-0.053 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610)     0x0e,       // [098] = -49.000 dB  ->  AKM(0x0e) = -49.152 dB  error(-0.152 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611)     0x0d,       // [099] = -49.500 dB  ->  AKM(0x0d) = -49.796 dB  error(-0.296 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612)     0x0d,       // [100] = -50.000 dB  ->  AKM(0x0d) = -49.796 dB  error(+0.204 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613)     0x0c,       // [101] = -50.500 dB  ->  AKM(0x0c) = -50.491 dB  error(+0.009 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614)     0x0b,       // [102] = -51.000 dB  ->  AKM(0x0b) = -51.247 dB  error(-0.247 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615)     0x0b,       // [103] = -51.500 dB  ->  AKM(0x0b) = -51.247 dB  error(+0.253 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616)     0x0a,       // [104] = -52.000 dB  ->  AKM(0x0a) = -52.075 dB  error(-0.075 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617)     0x0a,       // [105] = -52.500 dB  ->  AKM(0x0a) = -52.075 dB  error(+0.425 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618)     0x09,       // [106] = -53.000 dB  ->  AKM(0x09) = -52.990 dB  error(+0.010 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619)     0x09,       // [107] = -53.500 dB  ->  AKM(0x09) = -52.990 dB  error(+0.510 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620)     0x08,       // [108] = -54.000 dB  ->  AKM(0x08) = -54.013 dB  error(-0.013 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621)     0x08,       // [109] = -54.500 dB  ->  AKM(0x08) = -54.013 dB  error(+0.487 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622)     0x07,       // [110] = -55.000 dB  ->  AKM(0x07) = -55.173 dB  error(-0.173 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623)     0x07,       // [111] = -55.500 dB  ->  AKM(0x07) = -55.173 dB  error(+0.327 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624)     0x06,       // [112] = -56.000 dB  ->  AKM(0x06) = -56.512 dB  error(-0.512 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625)     0x06,       // [113] = -56.500 dB  ->  AKM(0x06) = -56.512 dB  error(-0.012 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626)     0x06,       // [114] = -57.000 dB  ->  AKM(0x06) = -56.512 dB  error(+0.488 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627)     0x05,       // [115] = -57.500 dB  ->  AKM(0x05) = -58.095 dB  error(-0.595 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628)     0x05,       // [116] = -58.000 dB  ->  AKM(0x05) = -58.095 dB  error(-0.095 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629)     0x05,       // [117] = -58.500 dB  ->  AKM(0x05) = -58.095 dB  error(+0.405 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630)     0x05,       // [118] = -59.000 dB  ->  AKM(0x05) = -58.095 dB  error(+0.905 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631)     0x04,       // [119] = -59.500 dB  ->  AKM(0x04) = -60.034 dB  error(-0.534 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632)     0x04,       // [120] = -60.000 dB  ->  AKM(0x04) = -60.034 dB  error(-0.034 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633)     0x04,       // [121] = -60.500 dB  ->  AKM(0x04) = -60.034 dB  error(+0.466 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634)     0x04,       // [122] = -61.000 dB  ->  AKM(0x04) = -60.034 dB  error(+0.966 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635)     0x03,       // [123] = -61.500 dB  ->  AKM(0x03) = -62.532 dB  error(-1.032 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636)     0x03,       // [124] = -62.000 dB  ->  AKM(0x03) = -62.532 dB  error(-0.532 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637)     0x03,       // [125] = -62.500 dB  ->  AKM(0x03) = -62.532 dB  error(-0.032 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638)     0x03,       // [126] = -63.000 dB  ->  AKM(0x03) = -62.532 dB  error(+0.468 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639)     0x03,       // [127] = -63.500 dB  ->  AKM(0x03) = -62.532 dB  error(+0.968 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640)     0x03,       // [128] = -64.000 dB  ->  AKM(0x03) = -62.532 dB  error(+1.468 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641)     0x02,       // [129] = -64.500 dB  ->  AKM(0x02) = -66.054 dB  error(-1.554 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642)     0x02,       // [130] = -65.000 dB  ->  AKM(0x02) = -66.054 dB  error(-1.054 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643)     0x02,       // [131] = -65.500 dB  ->  AKM(0x02) = -66.054 dB  error(-0.554 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644)     0x02,       // [132] = -66.000 dB  ->  AKM(0x02) = -66.054 dB  error(-0.054 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645)     0x02,       // [133] = -66.500 dB  ->  AKM(0x02) = -66.054 dB  error(+0.446 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646)     0x02,       // [134] = -67.000 dB  ->  AKM(0x02) = -66.054 dB  error(+0.946 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647)     0x02,       // [135] = -67.500 dB  ->  AKM(0x02) = -66.054 dB  error(+1.446 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648)     0x02,       // [136] = -68.000 dB  ->  AKM(0x02) = -66.054 dB  error(+1.946 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649)     0x02,       // [137] = -68.500 dB  ->  AKM(0x02) = -66.054 dB  error(+2.446 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650)     0x02,       // [138] = -69.000 dB  ->  AKM(0x02) = -66.054 dB  error(+2.946 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651)     0x01,       // [139] = -69.500 dB  ->  AKM(0x01) = -72.075 dB  error(-2.575 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652)     0x01,       // [140] = -70.000 dB  ->  AKM(0x01) = -72.075 dB  error(-2.075 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653)     0x01,       // [141] = -70.500 dB  ->  AKM(0x01) = -72.075 dB  error(-1.575 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654)     0x01,       // [142] = -71.000 dB  ->  AKM(0x01) = -72.075 dB  error(-1.075 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655)     0x01,       // [143] = -71.500 dB  ->  AKM(0x01) = -72.075 dB  error(-0.575 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656)     0x01,       // [144] = -72.000 dB  ->  AKM(0x01) = -72.075 dB  error(-0.075 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657)     0x01,       // [145] = -72.500 dB  ->  AKM(0x01) = -72.075 dB  error(+0.425 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658)     0x01,       // [146] = -73.000 dB  ->  AKM(0x01) = -72.075 dB  error(+0.925 dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659)     0x00};      // [147] = -73.500 dB  ->  AKM(0x00) =  mute       error(+infini)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662)  * pseudo-codec write entry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 	unsigned int val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 	if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 		vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 	/* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 	   a look up table, as there is no linear matching between the driver codec values
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 	   and the real dBu value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 	*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 	if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 	switch (reg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 	case XX_CODEC_LEVEL_LEFT_REGISTER:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 		val = AKM_CODEC_LEFT_LEVEL_CMD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 	case XX_CODEC_LEVEL_RIGHT_REGISTER:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 		val = AKM_CODEC_RIGHT_LEVEL_CMD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 		snd_BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 	val |= vx2_akm_gains_lut[data];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 	vx2_write_codec_reg(chip, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698)  * write codec bit for old VX222 board
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 	/* activate access to codec registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 	vx_inl(chip, HIFREQ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 	for (i = 0; i < 24; i++, data <<= 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 	/* Terminate access to codec registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 	vx_inl(chip, RUER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716)  * reset codec bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) static void vx2_reset_codec(struct vx_core *_chip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 	struct snd_vx222 *chip = to_vx222(_chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 	/* Set the reset CODEC bit to 0. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 	vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 	vx_inl(chip, CDSP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 	msleep(10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 	/* Set the reset CODEC bit to 1. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 	chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 	vx_outl(chip, CDSP, chip->regCDSP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 	vx_inl(chip, CDSP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 	if (_chip->type == VX_TYPE_BOARD) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 		msleep(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 	msleep(5);  /* additionnel wait time for AKM's */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 	vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 	
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 	vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 	vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 	vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 	if (_chip->type == VX_TYPE_MIC) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 		/* set up the micro input selector */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 		chip->regSELMIC =  MICRO_SELECT_INPUT_NORM |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 			MICRO_SELECT_PREAMPLI_G_0 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 			MICRO_SELECT_NOISE_T_52DB;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 		/* reset phantom power supply */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 		chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 		vx_outl(_chip, SELMIC, chip->regSELMIC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758)  * change the audio source
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) static void vx2_change_audio_source(struct vx_core *_chip, int src)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 	struct snd_vx222 *chip = to_vx222(_chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 	switch (src) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 	case VX_AUDIO_SRC_DIGITAL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 		chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 		chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 	vx_outl(chip, CFG, chip->regCFG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777)  * set the clock source
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) static void vx2_set_clock_source(struct vx_core *_chip, int source)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 	struct snd_vx222 *chip = to_vx222(_chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 	if (source == INTERNAL_QUARTZ)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 		chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 		chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 	vx_outl(chip, CFG, chip->regCFG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791)  * reset the board
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 	struct snd_vx222 *chip = to_vx222(_chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 	/* initialize the register values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 	chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 	chip->regCFG = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805)  * input level controls for VX222 Mic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) /* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809)  * 318 = 210 + 36 + 36 + 36   (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810)  * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) #define V2_MICRO_LEVEL_RANGE        (318 - 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) static void vx2_set_input_level(struct snd_vx222 *chip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 	int i, miclevel, preamp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 	unsigned int data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 	miclevel = chip->mic_level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 	miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 	preamp = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822)         while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 		preamp++;	/* raise pre ampli + 18dB */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 		miclevel -= (18 * 2);   /* lower level 18 dB (*2 because of 0.5 dB steps !) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825)         }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 	if (snd_BUG_ON(preamp >= 4))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 	/* set pre-amp level */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 	chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 	chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 	vx_outl(chip, SELMIC, chip->regSELMIC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 	data = (unsigned int)miclevel << 16 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 		(unsigned int)chip->input_level[1] << 8 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 		(unsigned int)chip->input_level[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 	vx_inl(chip, DATA); /* Activate input level programming */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 	/* We have to send 32 bits (4 x 8 bits) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 	for (i = 0; i < 32; i++, data <<= 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 		vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 	vx_inl(chip, RUER); /* Terminate input level programming */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) #define MIC_LEVEL_MAX	0xff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852)  * controls API for input levels
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) /* input levels */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 	uinfo->count = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 	uinfo->value.integer.min = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 	uinfo->value.integer.max = MIC_LEVEL_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 	struct snd_vx222 *chip = to_vx222(_chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 	mutex_lock(&_chip->mixer_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 	ucontrol->value.integer.value[0] = chip->input_level[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 	ucontrol->value.integer.value[1] = chip->input_level[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 	mutex_unlock(&_chip->mixer_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 	struct snd_vx222 *chip = to_vx222(_chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 	if (ucontrol->value.integer.value[0] < 0 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 	    ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 	if (ucontrol->value.integer.value[1] < 0 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 	    ucontrol->value.integer.value[1] > MIC_LEVEL_MAX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 	mutex_lock(&_chip->mixer_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 	if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 	    chip->input_level[1] != ucontrol->value.integer.value[1]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 		chip->input_level[0] = ucontrol->value.integer.value[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 		chip->input_level[1] = ucontrol->value.integer.value[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 		vx2_set_input_level(chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 		mutex_unlock(&_chip->mixer_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 	mutex_unlock(&_chip->mixer_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) /* mic level */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 	uinfo->count = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 	uinfo->value.integer.min = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 	uinfo->value.integer.max = MIC_LEVEL_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 	struct snd_vx222 *chip = to_vx222(_chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 	ucontrol->value.integer.value[0] = chip->mic_level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 	struct snd_vx222 *chip = to_vx222(_chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 	if (ucontrol->value.integer.value[0] < 0 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 	    ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 	mutex_lock(&_chip->mixer_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 	if (chip->mic_level != ucontrol->value.integer.value[0]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 		chip->mic_level = ucontrol->value.integer.value[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 		vx2_set_input_level(chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 		mutex_unlock(&_chip->mixer_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 	mutex_unlock(&_chip->mixer_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) static const struct snd_kcontrol_new vx_control_input_level = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 	.name =		"Capture Volume",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 	.info =		vx_input_level_info,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 	.get =		vx_input_level_get,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 	.put =		vx_input_level_put,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 	.tlv = { .p = db_scale_mic },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) static const struct snd_kcontrol_new vx_control_mic_level = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 	.name =		"Mic Capture Volume",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 	.info =		vx_mic_level_info,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 	.get =		vx_mic_level_get,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 	.put =		vx_mic_level_put,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 	.tlv = { .p = db_scale_mic },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958)  * FIXME: compressor/limiter implementation is missing yet...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) static int vx2_add_mic_controls(struct vx_core *_chip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 	struct snd_vx222 *chip = to_vx222(_chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 	if (_chip->type != VX_TYPE_MIC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 	/* mute input levels */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 	chip->input_level[0] = chip->input_level[1] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 	chip->mic_level = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 	vx2_set_input_level(chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 	/* controls */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 	if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 	if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985)  * callbacks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) const struct snd_vx_ops vx222_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 	.in8 = vx2_inb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 	.in32 = vx2_inl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 	.out8 = vx2_outb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 	.out32 = vx2_outl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 	.test_and_ack = vx2_test_and_ack,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 	.validate_irq = vx2_validate_irq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 	.akm_write = vx2_write_akm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 	.reset_codec = vx2_reset_codec,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 	.change_audio_source = vx2_change_audio_source,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 	.set_clock_source = vx2_set_clock_source,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 	.load_dsp = vx2_load_dsp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 	.reset_dsp = vx2_reset_dsp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 	.reset_board = vx2_reset_board,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 	.dma_write = vx2_dma_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 	.dma_read = vx2_dma_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 	.add_controls = vx2_add_mic_controls,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) /* for old VX222 board */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) const struct snd_vx_ops vx222_old_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 	.in8 = vx2_inb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 	.in32 = vx2_inl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 	.out8 = vx2_outb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 	.out32 = vx2_outl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 	.test_and_ack = vx2_test_and_ack,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 	.validate_irq = vx2_validate_irq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 	.write_codec = vx2_old_write_codec_bit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 	.reset_codec = vx2_reset_codec,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 	.change_audio_source = vx2_change_audio_source,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 	.set_clock_source = vx2_set_clock_source,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 	.load_dsp = vx2_load_dsp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 	.reset_dsp = vx2_reset_dsp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 	.reset_board = vx2_reset_board,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 	.dma_write = vx2_dma_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 	.dma_read = vx2_dma_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024)