Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) // ff-protocol-former.c - a part of driver for RME Fireface series
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) // Copyright (c) 2019 Takashi Sakamoto
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) // Licensed under the terms of the GNU General Public License, version 2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include "ff.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #define FORMER_REG_SYNC_STATUS		0x0000801c0000ull
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) /* For block write request. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #define FORMER_REG_FETCH_PCM_FRAMES	0x0000801c0000ull
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #define FORMER_REG_CLOCK_CONFIG		0x0000801c0004ull
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) static int parse_clock_bits(u32 data, unsigned int *rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) 			    enum snd_ff_clock_src *src)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) 	static const struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 		unsigned int rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) 		u32 mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 	} *rate_entry, rate_entries[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 		{  32000, 0x00000002, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 		{  44100, 0x00000000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) 		{  48000, 0x00000006, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 		{  64000, 0x0000000a, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 		{  88200, 0x00000008, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) 		{  96000, 0x0000000e, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 		{ 128000, 0x00000012, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 		{ 176400, 0x00000010, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 		{ 192000, 0x00000016, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 	static const struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 		enum snd_ff_clock_src src;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 		u32 mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 	} *clk_entry, clk_entries[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 		{ SND_FF_CLOCK_SRC_ADAT1,	0x00000000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 		{ SND_FF_CLOCK_SRC_ADAT2,	0x00000400, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 		{ SND_FF_CLOCK_SRC_SPDIF,	0x00000c00, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 		{ SND_FF_CLOCK_SRC_WORD,	0x00001000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 		{ SND_FF_CLOCK_SRC_LTC,		0x00001800, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	for (i = 0; i < ARRAY_SIZE(rate_entries); ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 		rate_entry = rate_entries + i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 		if ((data & 0x0000001e) == rate_entry->mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 			*rate = rate_entry->rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 	if (i == ARRAY_SIZE(rate_entries))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 	if (data & 0x00000001) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 		*src = SND_FF_CLOCK_SRC_INTERNAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 		for (i = 0; i < ARRAY_SIZE(clk_entries); ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 			clk_entry = clk_entries + i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 			if ((data & 0x00001c00) == clk_entry->mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 				*src = clk_entry->src;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 		if (i == ARRAY_SIZE(clk_entries))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 			return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) static int former_get_clock(struct snd_ff *ff, unsigned int *rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 			    enum snd_ff_clock_src *src)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	__le32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	u32 data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 				 FORMER_REG_CLOCK_CONFIG, &reg, sizeof(reg), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	data = le32_to_cpu(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	return parse_clock_bits(data, rate, src);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) static int former_switch_fetching_mode(struct snd_ff *ff, bool enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	unsigned int count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	__le32 *reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	for (i = 0; i < SND_FF_STREAM_MODE_COUNT; ++i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 		count = max(count, ff->spec->pcm_playback_channels[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	reg = kcalloc(count, sizeof(__le32), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	if (!reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	if (!enable) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 		 * Each quadlet is corresponding to data channels in a data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 		 * blocks in reverse order. Precisely, quadlets for available
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 		 * data channels should be enabled. Here, I take second best
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 		 * to fetch PCM frames from all of data channels regardless of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 		 * stf.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 		for (i = 0; i < count; ++i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 			reg[i] = cpu_to_le32(0x00000001);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	err = snd_fw_transaction(ff->unit, TCODE_WRITE_BLOCK_REQUEST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 				 FORMER_REG_FETCH_PCM_FRAMES, reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 				 sizeof(__le32) * count, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	kfree(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) static void dump_clock_config(struct snd_ff *ff, struct snd_info_buffer *buffer)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	__le32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	u32 data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	unsigned int rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	enum snd_ff_clock_src src;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	const char *label;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	err = snd_fw_transaction(ff->unit, TCODE_READ_BLOCK_REQUEST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 				 FORMER_REG_CLOCK_CONFIG, &reg, sizeof(reg), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	data = le32_to_cpu(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	snd_iprintf(buffer, "Output S/PDIF format: %s (Emphasis: %s)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 		    (data & 0x00000020) ? "Professional" : "Consumer",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 		    (data & 0x00000040) ? "on" : "off");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	snd_iprintf(buffer, "Optical output interface format: %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 		    (data & 0x00000100) ? "S/PDIF" : "ADAT");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	snd_iprintf(buffer, "Word output single speed: %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 		    (data & 0x00002000) ? "on" : "off");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	snd_iprintf(buffer, "S/PDIF input interface: %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 		    (data & 0x00000200) ? "Optical" : "Coaxial");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	err = parse_clock_bits(data, &rate, &src);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	label = snd_ff_proc_get_clk_label(src);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	if (!label)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	snd_iprintf(buffer, "Clock configuration: %d %s\n", rate, label);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) static void dump_sync_status(struct snd_ff *ff, struct snd_info_buffer *buffer)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	static const struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 		char *const label;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 		u32 locked_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 		u32 synced_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	} *clk_entry, clk_entries[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 		{ "WDClk",	0x40000000, 0x20000000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 		{ "S/PDIF",	0x00080000, 0x00040000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 		{ "ADAT1",	0x00000400, 0x00001000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 		{ "ADAT2",	0x00000800, 0x00002000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	static const struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 		char *const label;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 		u32 mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	} *referred_entry, referred_entries[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 		{ "ADAT1",	0x00000000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 		{ "ADAT2",	0x00400000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 		{ "S/PDIF",	0x00c00000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 		{ "WDclk",	0x01000000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 		{ "TCO",	0x01400000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	static const struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 		unsigned int rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 		u32 mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	} *rate_entry, rate_entries[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 		{ 32000,	0x02000000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 		{ 44100,	0x04000000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 		{ 48000,	0x06000000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 		{ 64000,	0x08000000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 		{ 88200,	0x0a000000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 		{ 96000,	0x0c000000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 		{ 128000,	0x0e000000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 		{ 176400,	0x10000000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 		{ 192000,	0x12000000, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	__le32 reg[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	u32 data[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	err = snd_fw_transaction(ff->unit, TCODE_READ_BLOCK_REQUEST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 				 FORMER_REG_SYNC_STATUS, reg, sizeof(reg), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	data[0] = le32_to_cpu(reg[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	data[1] = le32_to_cpu(reg[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	snd_iprintf(buffer, "External source detection:\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	for (i = 0; i < ARRAY_SIZE(clk_entries); ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 		const char *state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 		clk_entry = clk_entries + i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 		if (data[0] & clk_entry->locked_mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 			if (data[0] & clk_entry->synced_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 				state = "sync";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 				state = "lock";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 			state = "none";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 		snd_iprintf(buffer, "%s: %s\n", clk_entry->label, state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	snd_iprintf(buffer, "Referred clock:\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	if (data[1] & 0x00000001) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 		snd_iprintf(buffer, "Internal\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 		unsigned int rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 		const char *label;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 		for (i = 0; i < ARRAY_SIZE(referred_entries); ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 			referred_entry = referred_entries + i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 			if ((data[0] & 0x1e0000) == referred_entry->mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 				label = referred_entry->label;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 		if (i == ARRAY_SIZE(referred_entries))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 			label = "none";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 		for (i = 0; i < ARRAY_SIZE(rate_entries); ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 			rate_entry = rate_entries + i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 			if ((data[0] & 0x1e000000) == rate_entry->mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 				rate = rate_entry->rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 		if (i == ARRAY_SIZE(rate_entries))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 			rate = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 		snd_iprintf(buffer, "%s %d\n", label, rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) static void former_dump_status(struct snd_ff *ff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 			       struct snd_info_buffer *buffer)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	dump_clock_config(ff, buffer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	dump_sync_status(ff, buffer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) static int former_fill_midi_msg(struct snd_ff *ff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 				struct snd_rawmidi_substream *substream,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 				unsigned int port)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	u8 *buf = (u8 *)ff->msg_buf[port];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	int len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	len = snd_rawmidi_transmit_peek(substream, buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 					SND_FF_MAXIMIM_MIDI_QUADS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	if (len <= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 		return len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 	// One quadlet includes one byte.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	for (i = len - 1; i >= 0; --i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 		ff->msg_buf[port][i] = cpu_to_le32(buf[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	ff->rx_bytes[port] = len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	return len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) #define FF800_STF		0x0000fc88f000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) #define FF800_RX_PACKET_FORMAT	0x0000fc88f004
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) #define FF800_ALLOC_TX_STREAM	0x0000fc88f008
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) #define FF800_ISOC_COMM_START	0x0000fc88f00c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) #define   FF800_TX_S800_FLAG	0x00000800
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) #define FF800_ISOC_COMM_STOP	0x0000fc88f010
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) #define FF800_TX_PACKET_ISOC_CH	0x0000801c0008
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) static int allocate_tx_resources(struct snd_ff *ff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	__le32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	unsigned int count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	unsigned int tx_isoc_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	reg = cpu_to_le32(ff->tx_stream.data_block_quadlets);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 	err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 				 FF800_ALLOC_TX_STREAM, &reg, sizeof(reg), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	// Wait till the format of tx packet is available.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	while (count++ < 10) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 		u32 data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 		err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 				FF800_TX_PACKET_ISOC_CH, &reg, sizeof(reg), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 		if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 			return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 		data = le32_to_cpu(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 		if (data != 0xffffffff) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 			tx_isoc_channel = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 		msleep(50);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	if (count >= 10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 		return -ETIMEDOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	// NOTE: this is a makeshift to start OHCI 1394 IR context in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	// channel. On the other hand, 'struct fw_iso_resources.allocated' is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	// not true and it's not deallocated at stop.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	ff->tx_resources.channel = tx_isoc_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) static int ff800_allocate_resources(struct snd_ff *ff, unsigned int rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 	u32 data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	__le32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	reg = cpu_to_le32(rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 				 FF800_STF, &reg, sizeof(reg), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	// If starting isochronous communication immediately, change of STF has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 	// no effect. In this case, the communication runs based on former STF.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	// Let's sleep for a bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 	msleep(100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	// Controllers should allocate isochronous resources for rx stream.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	err = fw_iso_resources_allocate(&ff->rx_resources,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 				amdtp_stream_get_max_payload(&ff->rx_stream),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 				fw_parent_device(ff->unit)->max_speed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	// Set isochronous channel and the number of quadlets of rx packets.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	// This should be done before the allocation of tx resources to avoid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	// periodical noise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 	data = ff->rx_stream.data_block_quadlets << 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	data = (data << 8) | ff->rx_resources.channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	reg = cpu_to_le32(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 				 FF800_RX_PACKET_FORMAT, &reg, sizeof(reg), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	return allocate_tx_resources(ff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) static int ff800_begin_session(struct snd_ff *ff, unsigned int rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 	unsigned int generation = ff->rx_resources.generation;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 	__le32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	if (generation != fw_parent_device(ff->unit)->card->generation) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 		int err = fw_iso_resources_update(&ff->rx_resources);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 		if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 			return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	reg = cpu_to_le32(0x80000000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	reg |= cpu_to_le32(ff->tx_stream.data_block_quadlets);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	if (fw_parent_device(ff->unit)->max_speed == SCODE_800)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 		reg |= cpu_to_le32(FF800_TX_S800_FLAG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 	return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 				 FF800_ISOC_COMM_START, &reg, sizeof(reg), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) static void ff800_finish_session(struct snd_ff *ff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	__le32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 	reg = cpu_to_le32(0x80000000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 			   FF800_ISOC_COMM_STOP, &reg, sizeof(reg), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) // Fireface 800 doesn't allow drivers to register lower 4 bytes of destination
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) // address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) // A write transaction to clear registered higher 4 bytes of destination address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) // has an effect to suppress asynchronous transaction from device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) static void ff800_handle_midi_msg(struct snd_ff *ff, unsigned int offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 				  __le32 *buf, size_t length)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 	for (i = 0; i < length / 4; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 		u8 byte = le32_to_cpu(buf[i]) & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 		struct snd_rawmidi_substream *substream;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 		substream = READ_ONCE(ff->tx_midi_substreams[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 		if (substream)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 			snd_rawmidi_receive(substream, &byte, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) const struct snd_ff_protocol snd_ff_protocol_ff800 = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 	.handle_midi_msg	= ff800_handle_midi_msg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 	.fill_midi_msg		= former_fill_midi_msg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 	.get_clock		= former_get_clock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 	.switch_fetching_mode	= former_switch_fetching_mode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 	.allocate_resources	= ff800_allocate_resources,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 	.begin_session		= ff800_begin_session,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 	.finish_session		= ff800_finish_session,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 	.dump_status		= former_dump_status,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) #define FF400_STF		0x000080100500ull
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) #define FF400_RX_PACKET_FORMAT	0x000080100504ull
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) #define FF400_ISOC_COMM_START	0x000080100508ull
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) #define FF400_TX_PACKET_FORMAT	0x00008010050cull
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) #define FF400_ISOC_COMM_STOP	0x000080100510ull
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) // Fireface 400 manages isochronous channel number in 3 bit field. Therefore,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) // we can allocate between 0 and 7 channel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) static int ff400_allocate_resources(struct snd_ff *ff, unsigned int rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	__le32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	enum snd_ff_stream_mode mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 	// Check whether the given value is supported or not.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 	for (i = 0; i < CIP_SFC_COUNT; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 		if (amdtp_rate_table[i] == rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 	if (i >= CIP_SFC_COUNT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 	// Set the number of data blocks transferred in a second.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 	reg = cpu_to_le32(rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 	err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 				 FF400_STF, &reg, sizeof(reg), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 	msleep(100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 	err = snd_ff_stream_get_multiplier_mode(i, &mode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 	// Keep resources for in-stream.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 	ff->tx_resources.channels_mask = 0x00000000000000ffuLL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 	err = fw_iso_resources_allocate(&ff->tx_resources,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 			amdtp_stream_get_max_payload(&ff->tx_stream),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 			fw_parent_device(ff->unit)->max_speed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 	// Keep resources for out-stream.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 	ff->rx_resources.channels_mask = 0x00000000000000ffuLL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	err = fw_iso_resources_allocate(&ff->rx_resources,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 			amdtp_stream_get_max_payload(&ff->rx_stream),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 			fw_parent_device(ff->unit)->max_speed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 		fw_iso_resources_free(&ff->tx_resources);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) static int ff400_begin_session(struct snd_ff *ff, unsigned int rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 	unsigned int generation = ff->rx_resources.generation;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 	__le32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 	if (generation != fw_parent_device(ff->unit)->card->generation) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 		err = fw_iso_resources_update(&ff->tx_resources);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 		if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 			return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 		err = fw_iso_resources_update(&ff->rx_resources);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 		if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 			return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 	// Set isochronous channel and the number of quadlets of received
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 	// packets.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 	reg = cpu_to_le32(((ff->rx_stream.data_block_quadlets << 3) << 8) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 			  ff->rx_resources.channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 	err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 				 FF400_RX_PACKET_FORMAT, &reg, sizeof(reg), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 	// Set isochronous channel and the number of quadlets of transmitted
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 	// packet.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 	// TODO: investigate the purpose of this 0x80.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 	reg = cpu_to_le32((0x80 << 24) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 			  (ff->tx_resources.channel << 5) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 			  (ff->tx_stream.data_block_quadlets));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 	err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 				 FF400_TX_PACKET_FORMAT, &reg, sizeof(reg), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 	// Allow to transmit packets.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 	reg = cpu_to_le32(0x00000001);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 	return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 				 FF400_ISOC_COMM_START, &reg, sizeof(reg), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) static void ff400_finish_session(struct snd_ff *ff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 	__le32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 	reg = cpu_to_le32(0x80000000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 	snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 			   FF400_ISOC_COMM_STOP, &reg, sizeof(reg), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) // For Fireface 400, lower 4 bytes of destination address is configured by bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) // flag in quadlet register (little endian) at 0x'0000'801'0051c. Drivers can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) // select one of 4 options:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) // bit flags: offset of destination address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) //  - 0x04000000: 0x'....'....'0000'0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) //  - 0x08000000: 0x'....'....'0000'0080
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) //  - 0x10000000: 0x'....'....'0000'0100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) //  - 0x20000000: 0x'....'....'0000'0180
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) // Drivers can suppress the device to transfer asynchronous transactions by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) // using below 2 bits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) //  - 0x01000000: suppress transmission
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) //  - 0x02000000: suppress transmission
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) // Actually, the register is write-only and includes the other options such as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) // input attenuation. This driver allocates destination address with '0000'0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) // in its lower offset and expects userspace application to configure the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) // register for it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) static void ff400_handle_midi_msg(struct snd_ff *ff, unsigned int offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 				  __le32 *buf, size_t length)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 	for (i = 0; i < length / 4; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 		u32 quad = le32_to_cpu(buf[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 		u8 byte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 		unsigned int index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 		struct snd_rawmidi_substream *substream;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 		/* Message in first port. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 		 * This value may represent the index of this unit when the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 		 * units are on the same IEEE 1394 bus. This driver doesn't use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 		 * it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 		index = (quad >> 8) & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 		if (index > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 			substream = READ_ONCE(ff->tx_midi_substreams[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 			if (substream != NULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 				byte = quad & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 				snd_rawmidi_receive(substream, &byte, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 		/* Message in second port. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 		index = (quad >> 24) & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 		if (index > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 			substream = READ_ONCE(ff->tx_midi_substreams[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 			if (substream != NULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 				byte = (quad >> 16) & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 				snd_rawmidi_receive(substream, &byte, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) const struct snd_ff_protocol snd_ff_protocol_ff400 = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 	.handle_midi_msg	= ff400_handle_midi_msg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 	.fill_midi_msg		= former_fill_midi_msg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 	.get_clock		= former_get_clock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 	.switch_fetching_mode	= former_switch_fetching_mode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 	.allocate_resources	= ff400_allocate_resources,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 	.begin_session		= ff400_begin_session,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 	.finish_session		= ff400_finish_session,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 	.dump_status		= former_dump_status,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) };