Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) #include <linux/version.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) #include <linux/ptrace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) #include <uapi/linux/bpf.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) #include <bpf/bpf_helpers.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  * The CPU number, cstate number and pstate number are based
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * on 96boards Hikey with octa CA53 CPUs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  * Every CPU have three idle states for cstate:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  *   WFI, CPU_OFF, CLUSTER_OFF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  * Every CPU have 5 operating points:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  *   208MHz, 432MHz, 729MHz, 960MHz, 1200MHz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  * This code is based on these assumption and other platforms
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19)  * need to adjust these definitions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #define MAX_CPU			8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #define MAX_PSTATE_ENTRIES	5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #define MAX_CSTATE_ENTRIES	3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) static int cpu_opps[] = { 208000, 432000, 729000, 960000, 1200000 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  * my_map structure is used to record cstate and pstate index and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  * timestamp (Idx, Ts), when new event incoming we need to update
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  * combination for new state index and timestamp (Idx`, Ts`).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)  * Based on (Idx, Ts) and (Idx`, Ts`) we can calculate the time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)  * interval for the previous state: Duration(Idx) = Ts` - Ts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35)  * Every CPU has one below array for recording state index and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36)  * timestamp, and record for cstate and pstate saperately:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)  * +--------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39)  * | cstate timestamp         |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)  * +--------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)  * | cstate index             |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)  * +--------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43)  * | pstate timestamp         |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44)  * +--------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45)  * | pstate index             |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46)  * +--------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #define MAP_OFF_CSTATE_TIME	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) #define MAP_OFF_CSTATE_IDX	1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) #define MAP_OFF_PSTATE_TIME	2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) #define MAP_OFF_PSTATE_IDX	3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #define MAP_OFF_NUM		4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 	__uint(type, BPF_MAP_TYPE_ARRAY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 	__type(key, u32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	__type(value, u64);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	__uint(max_entries, MAX_CPU * MAP_OFF_NUM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) } my_map SEC(".maps");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) /* cstate_duration records duration time for every idle state per CPU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	__uint(type, BPF_MAP_TYPE_ARRAY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	__type(key, u32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 	__type(value, u64);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	__uint(max_entries, MAX_CPU * MAX_CSTATE_ENTRIES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) } cstate_duration SEC(".maps");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) /* pstate_duration records duration time for every operating point per CPU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	__uint(type, BPF_MAP_TYPE_ARRAY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	__type(key, u32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 	__type(value, u64);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	__uint(max_entries, MAX_CPU * MAX_PSTATE_ENTRIES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) } pstate_duration SEC(".maps");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78)  * The trace events for cpu_idle and cpu_frequency are taken from:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79)  * /sys/kernel/debug/tracing/events/power/cpu_idle/format
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80)  * /sys/kernel/debug/tracing/events/power/cpu_frequency/format
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82)  * These two events have same format, so define one common structure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) struct cpu_args {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	u64 pad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	u32 state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	u32 cpu_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) /* calculate pstate index, returns MAX_PSTATE_ENTRIES for failure */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) static u32 find_cpu_pstate_idx(u32 frequency)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	u32 i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	for (i = 0; i < sizeof(cpu_opps) / sizeof(u32); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 		if (frequency == cpu_opps[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 			return i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	return i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) SEC("tracepoint/power/cpu_idle")
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) int bpf_prog1(struct cpu_args *ctx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	u64 *cts, *pts, *cstate, *pstate, prev_state, cur_ts, delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	u32 key, cpu, pstate_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	u64 *val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	if (ctx->cpu_id > MAX_CPU)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	cpu = ctx->cpu_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	key = cpu * MAP_OFF_NUM + MAP_OFF_CSTATE_TIME;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	cts = bpf_map_lookup_elem(&my_map, &key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	if (!cts)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	key = cpu * MAP_OFF_NUM + MAP_OFF_CSTATE_IDX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	cstate = bpf_map_lookup_elem(&my_map, &key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	if (!cstate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	key = cpu * MAP_OFF_NUM + MAP_OFF_PSTATE_TIME;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	pts = bpf_map_lookup_elem(&my_map, &key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	if (!pts)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	key = cpu * MAP_OFF_NUM + MAP_OFF_PSTATE_IDX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	pstate = bpf_map_lookup_elem(&my_map, &key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	if (!pstate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	prev_state = *cstate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	*cstate = ctx->state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	if (!*cts) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 		*cts = bpf_ktime_get_ns();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	cur_ts = bpf_ktime_get_ns();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	delta = cur_ts - *cts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	*cts = cur_ts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	 * When state doesn't equal to (u32)-1, the cpu will enter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	 * one idle state; for this case we need to record interval
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	 * for the pstate.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	 *                 OPP2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	 *            +---------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	 *     OPP1   |                     |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	 *   ---------+                     |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	 *                                  |  Idle state
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	 *                                  +---------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	 *            |<- pstate duration ->|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	 *            ^                     ^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	 *           pts                  cur_ts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	if (ctx->state != (u32)-1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 		/* record pstate after have first cpu_frequency event */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 		if (!*pts)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 		delta = cur_ts - *pts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 		pstate_idx = find_cpu_pstate_idx(*pstate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 		if (pstate_idx >= MAX_PSTATE_ENTRIES)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 		key = cpu * MAX_PSTATE_ENTRIES + pstate_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 		val = bpf_map_lookup_elem(&pstate_duration, &key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 		if (val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 			__sync_fetch_and_add((long *)val, delta);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	 * When state equal to (u32)-1, the cpu just exits from one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	 * specific idle state; for this case we need to record
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	 * interval for the pstate.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	 *       OPP2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	 *   -----------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	 *              |                          OPP1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	 *              |                     +-----------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	 *              |     Idle state      |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	 *              +---------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	 *              |<- cstate duration ->|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	 *              ^                     ^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	 *             cts                  cur_ts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 		key = cpu * MAX_CSTATE_ENTRIES + prev_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 		val = bpf_map_lookup_elem(&cstate_duration, &key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 		if (val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 			__sync_fetch_and_add((long *)val, delta);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	/* Update timestamp for pstate as new start time */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	if (*pts)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 		*pts = cur_ts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) SEC("tracepoint/power/cpu_frequency")
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) int bpf_prog2(struct cpu_args *ctx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	u64 *pts, *cstate, *pstate, prev_state, cur_ts, delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	u32 key, cpu, pstate_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	u64 *val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	cpu = ctx->cpu_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	key = cpu * MAP_OFF_NUM + MAP_OFF_PSTATE_TIME;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	pts = bpf_map_lookup_elem(&my_map, &key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	if (!pts)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	key = cpu * MAP_OFF_NUM + MAP_OFF_PSTATE_IDX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	pstate = bpf_map_lookup_elem(&my_map, &key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	if (!pstate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	key = cpu * MAP_OFF_NUM + MAP_OFF_CSTATE_IDX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	cstate = bpf_map_lookup_elem(&my_map, &key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	if (!cstate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	prev_state = *pstate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	*pstate = ctx->state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	if (!*pts) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 		*pts = bpf_ktime_get_ns();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	cur_ts = bpf_ktime_get_ns();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	delta = cur_ts - *pts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	*pts = cur_ts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	/* When CPU is in idle, bail out to skip pstate statistics */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 	if (*cstate != (u32)(-1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	 * The cpu changes to another different OPP (in below diagram
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	 * change frequency from OPP3 to OPP1), need recording interval
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	 * for previous frequency OPP3 and update timestamp as start
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	 * time for new frequency OPP1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	 *                 OPP3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	 *            +---------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	 *     OPP2   |                     |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	 *   ---------+                     |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	 *                                  |    OPP1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	 *                                  +---------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	 *            |<- pstate duration ->|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	 *            ^                     ^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	 *           pts                  cur_ts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	pstate_idx = find_cpu_pstate_idx(*pstate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	if (pstate_idx >= MAX_PSTATE_ENTRIES)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	key = cpu * MAX_PSTATE_ENTRIES + pstate_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	val = bpf_map_lookup_elem(&pstate_duration, &key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	if (val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 		__sync_fetch_and_add((long *)val, delta);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) char _license[] SEC("license") = "GPL";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) u32 _version SEC("version") = LINUX_VERSION_CODE;