^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) /* COMMON Applications Kept Enhanced (CAKE) discipline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) * The CAKE Principles:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) * (or, how to have your cake and eat it too)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) * This is a combination of several shaping, AQM and FQ techniques into one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) * easy-to-use package:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) * equipment and bloated MACs. This operates in deficit mode (as in sch_fq),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) * eliminating the need for any sort of burst parameter (eg. token bucket
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) * depth). Burst support is limited to that necessary to overcome scheduling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) * latency.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) * - A Diffserv-aware priority queue, giving more priority to certain classes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) * up to a specified fraction of bandwidth. Above that bandwidth threshold,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) * the priority is reduced to avoid starving other tins.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) * - Each priority tin has a separate Flow Queue system, to isolate traffic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) * flows from each other. This prevents a burst on one flow from increasing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) * the delay to another. Flows are distributed to queues using a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) * set-associative hash function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) * - Each queue is actively managed by Cobalt, which is a combination of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) * Codel and Blue AQM algorithms. This serves flows fairly, and signals
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) * congestion early via ECN (if available) and/or packet drops, to keep
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) * latency low. The codel parameters are auto-tuned based on the bandwidth
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) * setting, as is necessary at low bandwidths.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) * The configuration parameters are kept deliberately simple for ease of use.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) * Everything has sane defaults. Complete generality of configuration is *not*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) * a goal.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) * The priority queue operates according to a weighted DRR scheme, combined with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) * a bandwidth tracker which reuses the shaper logic to detect which side of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) * bandwidth sharing threshold the tin is operating. This determines whether a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) * priority-based weight (high) or a bandwidth-based weight (low) is used for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) * that tin in the current pass.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) * granted us permission to leverage.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) #include <linux/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) #include <linux/jiffies.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) #include <linux/string.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) #include <linux/in.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) #include <linux/errno.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) #include <linux/skbuff.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) #include <linux/jhash.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) #include <linux/vmalloc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) #include <linux/reciprocal_div.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) #include <net/netlink.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) #include <linux/if_vlan.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) #include <net/pkt_sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) #include <net/pkt_cls.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) #include <net/tcp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) #include <net/flow_dissector.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) #if IS_ENABLED(CONFIG_NF_CONNTRACK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) #include <net/netfilter/nf_conntrack_core.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) #define CAKE_SET_WAYS (8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) #define CAKE_MAX_TINS (8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) #define CAKE_QUEUES (1024)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) #define CAKE_FLOW_MASK 63
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) #define CAKE_FLOW_NAT_FLAG 64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) /* struct cobalt_params - contains codel and blue parameters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) * @interval: codel initial drop rate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) * @target: maximum persistent sojourn time & blue update rate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) * @mtu_time: serialisation delay of maximum-size packet
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) * @p_inc: increment of blue drop probability (0.32 fxp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) * @p_dec: decrement of blue drop probability (0.32 fxp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) struct cobalt_params {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) u64 interval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) u64 target;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) u64 mtu_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) u32 p_inc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) u32 p_dec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) /* struct cobalt_vars - contains codel and blue variables
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) * @count: codel dropping frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) * @drop_next: time to drop next packet, or when we dropped last
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) * @blue_timer: Blue time to next drop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) * @p_drop: BLUE drop probability (0.32 fxp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) * @dropping: set if in dropping state
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) * @ecn_marked: set if marked
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) struct cobalt_vars {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) u32 count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) u32 rec_inv_sqrt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) ktime_t drop_next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) ktime_t blue_timer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) u32 p_drop;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) bool dropping;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) bool ecn_marked;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) CAKE_SET_NONE = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) CAKE_SET_SPARSE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) CAKE_SET_BULK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) CAKE_SET_DECAYING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) struct cake_flow {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) /* this stuff is all needed per-flow at dequeue time */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) struct sk_buff *head;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) struct sk_buff *tail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) struct list_head flowchain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) s32 deficit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) u32 dropped;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) struct cobalt_vars cvars;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) u16 srchost; /* index into cake_host table */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) u16 dsthost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) u8 set;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) }; /* please try to keep this structure <= 64 bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) struct cake_host {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) u32 srchost_tag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) u32 dsthost_tag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) u16 srchost_bulk_flow_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) u16 dsthost_bulk_flow_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) struct cake_heap_entry {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) u16 t:3, b:10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) struct cake_tin_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) struct cake_flow flows[CAKE_QUEUES];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) u32 backlogs[CAKE_QUEUES];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) u32 tags[CAKE_QUEUES]; /* for set association */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) u16 overflow_idx[CAKE_QUEUES];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) u16 flow_quantum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) struct cobalt_params cparams;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) u32 drop_overlimit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) u16 bulk_flow_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) u16 sparse_flow_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) u16 decaying_flow_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) u16 unresponsive_flow_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) u32 max_skblen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) struct list_head new_flows;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) struct list_head old_flows;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) struct list_head decaying_flows;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) ktime_t time_next_packet;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) u64 tin_rate_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) u64 tin_rate_bps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) u16 tin_rate_shft;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) u16 tin_quantum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) s32 tin_deficit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) u32 tin_backlog;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) u32 tin_dropped;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) u32 tin_ecn_mark;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) u32 packets;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) u64 bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) u32 ack_drops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) /* moving averages */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) u64 avge_delay;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) u64 peak_delay;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) u64 base_delay;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) /* hash function stats */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) u32 way_directs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) u32 way_hits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) u32 way_misses;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) u32 way_collisions;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) }; /* number of tins is small, so size of this struct doesn't matter much */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) struct cake_sched_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) struct tcf_proto __rcu *filter_list; /* optional external classifier */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) struct tcf_block *block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) struct cake_tin_data *tins;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) u16 overflow_timeout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) u16 tin_cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) u8 tin_mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) u8 flow_mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) u8 ack_filter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) u8 atm_mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) u32 fwmark_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) u16 fwmark_shft;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) u16 rate_shft;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) ktime_t time_next_packet;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) ktime_t failsafe_next_packet;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) u64 rate_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) u64 rate_bps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) u16 rate_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) s16 rate_overhead;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) u16 rate_mpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) u64 interval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) u64 target;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) /* resource tracking */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) u32 buffer_used;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) u32 buffer_max_used;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) u32 buffer_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) u32 buffer_config_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) /* indices for dequeue */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) u16 cur_tin;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) u16 cur_flow;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) struct qdisc_watchdog watchdog;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) const u8 *tin_index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) const u8 *tin_order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) /* bandwidth capacity estimate */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) ktime_t last_packet_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) ktime_t avg_window_begin;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) u64 avg_packet_interval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) u64 avg_window_bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) u64 avg_peak_bandwidth;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) ktime_t last_reconfig_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) /* packet length stats */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) u32 avg_netoff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) u16 max_netlen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) u16 max_adjlen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) u16 min_netlen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) u16 min_adjlen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) CAKE_FLAG_OVERHEAD = BIT(0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) CAKE_FLAG_INGRESS = BIT(2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) CAKE_FLAG_WASH = BIT(3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) CAKE_FLAG_SPLIT_GSO = BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) /* COBALT operates the Codel and BLUE algorithms in parallel, in order to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) * obtain the best features of each. Codel is excellent on flows which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) * respond to congestion signals in a TCP-like way. BLUE is more effective on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) * unresponsive flows.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) struct cobalt_skb_cb {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) ktime_t enqueue_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) u32 adjusted_len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) static u64 us_to_ns(u64 us)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) return us * NSEC_PER_USEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) return get_cobalt_cb(skb)->enqueue_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) static void cobalt_set_enqueue_time(struct sk_buff *skb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) ktime_t now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) get_cobalt_cb(skb)->enqueue_time = now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) static u16 quantum_div[CAKE_QUEUES + 1] = {0};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) /* Diffserv lookup tables */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) static const u8 precedence[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 0, 0, 0, 0, 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 1, 1, 1, 1, 1, 1, 1, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 2, 2, 2, 2, 2, 2, 2, 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 3, 3, 3, 3, 3, 3, 3, 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 4, 4, 4, 4, 4, 4, 4, 4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 5, 5, 5, 5, 5, 5, 5, 5,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 6, 6, 6, 6, 6, 6, 6, 6,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 7, 7, 7, 7, 7, 7, 7, 7,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) static const u8 diffserv8[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 2, 0, 1, 2, 4, 2, 2, 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 1, 2, 1, 2, 1, 2, 1, 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 5, 2, 4, 2, 4, 2, 4, 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 3, 2, 3, 2, 3, 2, 3, 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 6, 2, 3, 2, 3, 2, 3, 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 6, 2, 2, 2, 6, 2, 6, 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 7, 2, 2, 2, 2, 2, 2, 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 7, 2, 2, 2, 2, 2, 2, 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) static const u8 diffserv4[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 0, 1, 0, 0, 2, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 1, 0, 0, 0, 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 2, 0, 2, 0, 2, 0, 2, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 2, 0, 2, 0, 2, 0, 2, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 3, 0, 2, 0, 2, 0, 2, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 3, 0, 0, 0, 3, 0, 3, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 3, 0, 0, 0, 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 3, 0, 0, 0, 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) static const u8 diffserv3[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 0, 1, 0, 0, 2, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 1, 0, 0, 0, 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 0, 0, 0, 0, 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 0, 0, 0, 0, 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 0, 0, 0, 0, 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 0, 0, 0, 0, 2, 0, 2, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 2, 0, 0, 0, 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 2, 0, 0, 0, 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) static const u8 besteffort[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 0, 0, 0, 0, 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 0, 0, 0, 0, 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 0, 0, 0, 0, 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 0, 0, 0, 0, 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 0, 0, 0, 0, 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 0, 0, 0, 0, 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 0, 0, 0, 0, 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 0, 0, 0, 0, 0, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) /* tin priority order for stats dumping */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) static const u8 bulk_order[] = {1, 0, 2, 3};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) #define REC_INV_SQRT_CACHE (16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) static void cobalt_newton_step(struct cobalt_vars *vars)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) u32 invsqrt, invsqrt2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) u64 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) invsqrt = vars->rec_inv_sqrt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) val = (3LL << 32) - ((u64)vars->count * invsqrt2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) val >>= 2; /* avoid overflow in following multiply */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) val = (val * invsqrt) >> (32 - 2 + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) vars->rec_inv_sqrt = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) static void cobalt_invsqrt(struct cobalt_vars *vars)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) if (vars->count < REC_INV_SQRT_CACHE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) cobalt_newton_step(vars);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) /* There is a big difference in timing between the accurate values placed in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) * the cache and the approximations given by a single Newton step for small
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) * count values, particularly when stepping from count 1 to 2 or vice versa.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) * Above 16, a single Newton step gives sufficient accuracy in either
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) * direction, given the precision stored.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) * The magnitude of the error when stepping up to count 2 is such as to give
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) * the value that *should* have been produced at count 4.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) static void cobalt_cache_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) struct cobalt_vars v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) memset(&v, 0, sizeof(v));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) v.rec_inv_sqrt = ~0U;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) cobalt_newton_step(&v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) cobalt_newton_step(&v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) cobalt_newton_step(&v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) cobalt_newton_step(&v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) static void cobalt_vars_init(struct cobalt_vars *vars)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) memset(vars, 0, sizeof(*vars));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) if (!cobalt_rec_inv_sqrt_cache[0]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) cobalt_cache_init();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) cobalt_rec_inv_sqrt_cache[0] = ~0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) /* CoDel control_law is t + interval/sqrt(count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) * both sqrt() and divide operation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) static ktime_t cobalt_control(ktime_t t,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) u64 interval,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) u32 rec_inv_sqrt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) return ktime_add_ns(t, reciprocal_scale(interval,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) rec_inv_sqrt));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) /* Call this when a packet had to be dropped due to queue overflow. Returns
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) * true if the BLUE state was quiescent before but active after this call.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) static bool cobalt_queue_full(struct cobalt_vars *vars,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) struct cobalt_params *p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) ktime_t now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) bool up = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) up = !vars->p_drop;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) vars->p_drop += p->p_inc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) if (vars->p_drop < p->p_inc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) vars->p_drop = ~0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) vars->blue_timer = now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) vars->dropping = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) vars->drop_next = now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) if (!vars->count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) vars->count = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) return up;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) /* Call this when the queue was serviced but turned out to be empty. Returns
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) * true if the BLUE state was active before but quiescent after this call.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) static bool cobalt_queue_empty(struct cobalt_vars *vars,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) struct cobalt_params *p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) ktime_t now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) bool down = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) if (vars->p_drop &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) if (vars->p_drop < p->p_dec)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) vars->p_drop = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) vars->p_drop -= p->p_dec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) vars->blue_timer = now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) down = !vars->p_drop;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) vars->dropping = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) vars->count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) cobalt_invsqrt(vars);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) vars->drop_next = cobalt_control(vars->drop_next,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) p->interval,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) vars->rec_inv_sqrt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) return down;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) /* Call this with a freshly dequeued packet for possible congestion marking.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) * Returns true as an instruction to drop the packet, false for delivery.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) static bool cobalt_should_drop(struct cobalt_vars *vars,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) struct cobalt_params *p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) ktime_t now,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) struct sk_buff *skb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) u32 bulk_flows)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) bool next_due, over_target, drop = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) ktime_t schedule;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) u64 sojourn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) /* The 'schedule' variable records, in its sign, whether 'now' is before or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) * after 'drop_next'. This allows 'drop_next' to be updated before the next
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) * scheduling decision is actually branched, without destroying that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) * information. Similarly, the first 'schedule' value calculated is preserved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) * in the boolean 'next_due'.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) * As for 'drop_next', we take advantage of the fact that 'interval' is both
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) * the delay between first exceeding 'target' and the first signalling event,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) * *and* the scaling factor for the signalling frequency. It's therefore very
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) * natural to use a single mechanism for both purposes, and eliminates a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) * significant amount of reference Codel's spaghetti code. To help with this,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) * as possible to 1.0 in fixed-point.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) schedule = ktime_sub(now, vars->drop_next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) over_target = sojourn > p->target &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) sojourn > p->mtu_time * bulk_flows * 2 &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) sojourn > p->mtu_time * 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) next_due = vars->count && ktime_to_ns(schedule) >= 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) vars->ecn_marked = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) if (over_target) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) if (!vars->dropping) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) vars->dropping = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) vars->drop_next = cobalt_control(now,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) p->interval,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) vars->rec_inv_sqrt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) if (!vars->count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) vars->count = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) } else if (vars->dropping) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) vars->dropping = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) if (next_due && vars->dropping) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) /* Use ECN mark if possible, otherwise drop */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) vars->count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) if (!vars->count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) vars->count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) cobalt_invsqrt(vars);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) vars->drop_next = cobalt_control(vars->drop_next,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) p->interval,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) vars->rec_inv_sqrt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) schedule = ktime_sub(now, vars->drop_next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) while (next_due) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) vars->count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) cobalt_invsqrt(vars);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) vars->drop_next = cobalt_control(vars->drop_next,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) p->interval,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) vars->rec_inv_sqrt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) schedule = ktime_sub(now, vars->drop_next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) next_due = vars->count && ktime_to_ns(schedule) >= 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) /* Simple BLUE implementation. Lack of ECN is deliberate. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) if (vars->p_drop)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) drop |= (prandom_u32() < vars->p_drop);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) /* Overload the drop_next field as an activity timeout */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) if (!vars->count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) vars->drop_next = ktime_add_ns(now, p->interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) else if (ktime_to_ns(schedule) > 0 && !drop)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) vars->drop_next = now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) return drop;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) static bool cake_update_flowkeys(struct flow_keys *keys,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) const struct sk_buff *skb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) #if IS_ENABLED(CONFIG_NF_CONNTRACK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) struct nf_conntrack_tuple tuple = {};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) bool rev = !skb->_nfct, upd = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) __be32 ip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) if (skb_protocol(skb, true) != htons(ETH_P_IP))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) if (!nf_ct_get_tuple_skb(&tuple, skb))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) ip = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) if (ip != keys->addrs.v4addrs.src) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) keys->addrs.v4addrs.src = ip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) upd = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) ip = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) if (ip != keys->addrs.v4addrs.dst) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) keys->addrs.v4addrs.dst = ip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) upd = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) if (keys->ports.ports) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) __be16 port;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) port = rev ? tuple.dst.u.all : tuple.src.u.all;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) if (port != keys->ports.src) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) keys->ports.src = port;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) upd = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) port = rev ? tuple.src.u.all : tuple.dst.u.all;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) if (port != keys->ports.dst) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) port = keys->ports.dst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) upd = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) return upd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) /* Cake has several subtle multiple bit settings. In these cases you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) * would be matching triple isolate mode as well.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) static bool cake_dsrc(int flow_mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) static bool cake_ddst(int flow_mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) int flow_mode, u16 flow_override, u16 host_override)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) bool hash_flows = (!flow_override && !!(flow_mode & CAKE_FLOW_FLOWS));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) bool hash_hosts = (!host_override && !!(flow_mode & CAKE_FLOW_HOSTS));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) bool nat_enabled = !!(flow_mode & CAKE_FLOW_NAT_FLAG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) u16 reduced_hash, srchost_idx, dsthost_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) struct flow_keys keys, host_keys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) bool use_skbhash = skb->l4_hash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) if (unlikely(flow_mode == CAKE_FLOW_NONE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) /* If both overrides are set, or we can use the SKB hash and nat mode is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) * disabled, we can skip packet dissection entirely. If nat mode is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) * enabled there's another check below after doing the conntrack lookup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) if ((!hash_flows || (use_skbhash && !nat_enabled)) && !hash_hosts)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) goto skip_hash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) skb_flow_dissect_flow_keys(skb, &keys,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) /* Don't use the SKB hash if we change the lookup keys from conntrack */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) if (nat_enabled && cake_update_flowkeys(&keys, skb))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) use_skbhash = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) /* If we can still use the SKB hash and don't need the host hash, we can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) * skip the rest of the hashing procedure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) if (use_skbhash && !hash_hosts)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) goto skip_hash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) /* flow_hash_from_keys() sorts the addresses by value, so we have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) * to preserve their order in a separate data structure to treat
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) * src and dst host addresses as independently selectable.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) host_keys = keys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) host_keys.ports.ports = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) host_keys.basic.ip_proto = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) host_keys.keyid.keyid = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) host_keys.tags.flow_label = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) switch (host_keys.control.addr_type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) host_keys.addrs.v4addrs.src = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) dsthost_hash = flow_hash_from_keys(&host_keys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) host_keys.addrs.v4addrs.dst = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) srchost_hash = flow_hash_from_keys(&host_keys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) memset(&host_keys.addrs.v6addrs.src, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) sizeof(host_keys.addrs.v6addrs.src));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) dsthost_hash = flow_hash_from_keys(&host_keys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) memset(&host_keys.addrs.v6addrs.dst, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) sizeof(host_keys.addrs.v6addrs.dst));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) srchost_hash = flow_hash_from_keys(&host_keys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) dsthost_hash = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) srchost_hash = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) /* This *must* be after the above switch, since as a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) * side-effect it sorts the src and dst addresses.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) if (hash_flows && !use_skbhash)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) flow_hash = flow_hash_from_keys(&keys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) skip_hash:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) if (flow_override)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) flow_hash = flow_override - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) else if (use_skbhash && (flow_mode & CAKE_FLOW_FLOWS))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) flow_hash = skb->hash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) if (host_override) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) dsthost_hash = host_override - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) srchost_hash = host_override - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) if (!(flow_mode & CAKE_FLOW_FLOWS)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) if (flow_mode & CAKE_FLOW_SRC_IP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) flow_hash ^= srchost_hash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) if (flow_mode & CAKE_FLOW_DST_IP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) flow_hash ^= dsthost_hash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) reduced_hash = flow_hash % CAKE_QUEUES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) /* set-associative hashing */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) /* fast path if no hash collision (direct lookup succeeds) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) if (likely(q->tags[reduced_hash] == flow_hash &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) q->flows[reduced_hash].set)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) q->way_directs++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) u32 outer_hash = reduced_hash - inner_hash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) bool allocate_src = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) bool allocate_dst = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) u32 i, k;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) /* check if any active queue in the set is reserved for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) * this flow.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) i++, k = (k + 1) % CAKE_SET_WAYS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) if (q->tags[outer_hash + k] == flow_hash) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) if (i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) q->way_hits++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) if (!q->flows[outer_hash + k].set) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) /* need to increment host refcnts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) allocate_src = cake_dsrc(flow_mode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) allocate_dst = cake_ddst(flow_mode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) goto found;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) /* no queue is reserved for this flow, look for an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) * empty one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) for (i = 0; i < CAKE_SET_WAYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) i++, k = (k + 1) % CAKE_SET_WAYS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) if (!q->flows[outer_hash + k].set) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) q->way_misses++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) allocate_src = cake_dsrc(flow_mode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) allocate_dst = cake_ddst(flow_mode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) goto found;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) /* With no empty queues, default to the original
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) * queue, accept the collision, update the host tags.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) q->way_collisions++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) if (q->flows[outer_hash + k].set == CAKE_SET_BULK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) q->hosts[q->flows[reduced_hash].srchost].srchost_bulk_flow_count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) q->hosts[q->flows[reduced_hash].dsthost].dsthost_bulk_flow_count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) allocate_src = cake_dsrc(flow_mode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) allocate_dst = cake_ddst(flow_mode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) found:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) /* reserve queue for future packets in same flow */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) reduced_hash = outer_hash + k;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) q->tags[reduced_hash] = flow_hash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) if (allocate_src) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) srchost_idx = srchost_hash % CAKE_QUEUES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) inner_hash = srchost_idx % CAKE_SET_WAYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) outer_hash = srchost_idx - inner_hash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) i++, k = (k + 1) % CAKE_SET_WAYS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) if (q->hosts[outer_hash + k].srchost_tag ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) srchost_hash)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) goto found_src;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) for (i = 0; i < CAKE_SET_WAYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) i++, k = (k + 1) % CAKE_SET_WAYS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) if (!q->hosts[outer_hash + k].srchost_bulk_flow_count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) q->hosts[outer_hash + k].srchost_tag = srchost_hash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) found_src:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) srchost_idx = outer_hash + k;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) if (q->flows[reduced_hash].set == CAKE_SET_BULK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) q->hosts[srchost_idx].srchost_bulk_flow_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) q->flows[reduced_hash].srchost = srchost_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) if (allocate_dst) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) dsthost_idx = dsthost_hash % CAKE_QUEUES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) inner_hash = dsthost_idx % CAKE_SET_WAYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) outer_hash = dsthost_idx - inner_hash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) i++, k = (k + 1) % CAKE_SET_WAYS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) if (q->hosts[outer_hash + k].dsthost_tag ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) dsthost_hash)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) goto found_dst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) for (i = 0; i < CAKE_SET_WAYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) i++, k = (k + 1) % CAKE_SET_WAYS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) found_dst:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) dsthost_idx = outer_hash + k;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) if (q->flows[reduced_hash].set == CAKE_SET_BULK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) q->hosts[dsthost_idx].dsthost_bulk_flow_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) q->flows[reduced_hash].dsthost = dsthost_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) return reduced_hash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) /* helper functions : might be changed when/if skb use a standard list_head */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) /* remove one skb from head of slot queue */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) static struct sk_buff *dequeue_head(struct cake_flow *flow)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) struct sk_buff *skb = flow->head;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) if (skb) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) flow->head = skb->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) skb_mark_not_on_list(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) return skb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) /* add skb to flow queue (tail add) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) if (!flow->head)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) flow->head = skb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) flow->tail->next = skb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) flow->tail = skb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) skb->next = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) struct ipv6hdr *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) unsigned int offset = skb_network_offset(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) struct iphdr *iph;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) if (!iph)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) return skb_header_pointer(skb, offset + iph->ihl * 4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) sizeof(struct ipv6hdr), buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) else if (iph->version == 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) return iph;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) else if (iph->version == 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896) buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902) void *buf, unsigned int bufsize)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) unsigned int offset = skb_network_offset(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) const struct ipv6hdr *ipv6h;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) const struct tcphdr *tcph;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907) const struct iphdr *iph;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) struct ipv6hdr _ipv6h;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) struct tcphdr _tcph;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) if (!ipv6h)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916) if (ipv6h->version == 4) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) iph = (struct iphdr *)ipv6h;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) offset += iph->ihl * 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) /* special-case 6in4 tunnelling, as that is a common way to get
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921) * v6 connectivity in the home
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) if (iph->protocol == IPPROTO_IPV6) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) ipv6h = skb_header_pointer(skb, offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925) sizeof(_ipv6h), &_ipv6h);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930) offset += sizeof(struct ipv6hdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) } else if (iph->protocol != IPPROTO_TCP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) } else if (ipv6h->version == 6) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) if (ipv6h->nexthdr != IPPROTO_TCP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) offset += sizeof(struct ipv6hdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) if (!tcph || tcph->doff < 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949) return skb_header_pointer(skb, offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950) min(__tcp_hdrlen(tcph), bufsize), buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953) static const void *cake_get_tcpopt(const struct tcphdr *tcph,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954) int code, int *oplen)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 956) /* inspired by tcp_parse_options in tcp_input.c */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 957) int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 958) const u8 *ptr = (const u8 *)(tcph + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 959)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 960) while (length > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 961) int opcode = *ptr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 962) int opsize;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 963)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 964) if (opcode == TCPOPT_EOL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 965) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 966) if (opcode == TCPOPT_NOP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 967) length--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 968) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 969) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 970) if (length < 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 971) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 972) opsize = *ptr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 973) if (opsize < 2 || opsize > length)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 974) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 975)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 976) if (opcode == code) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 977) *oplen = opsize;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 978) return ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 979) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 980)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 981) ptr += opsize - 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 982) length -= opsize;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 983) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 984)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 985) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 986) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 987)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 988) /* Compare two SACK sequences. A sequence is considered greater if it SACKs more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 989) * bytes than the other. In the case where both sequences ACKs bytes that the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 990) * other doesn't, A is considered greater. DSACKs in A also makes A be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 991) * considered greater.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 992) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 993) * @return -1, 0 or 1 as normal compare functions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 994) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 995) static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 996) const struct tcphdr *tcph_b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 997) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 998) const struct tcp_sack_block_wire *sack_a, *sack_b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 999) u32 ack_seq_a = ntohl(tcph_a->ack_seq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) u32 bytes_a = 0, bytes_b = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) int oplen_a, oplen_b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) bool first = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) /* pointers point to option contents */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) oplen_a -= TCPOLEN_SACK_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) oplen_b -= TCPOLEN_SACK_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) if (sack_a && oplen_a >= sizeof(*sack_a) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) (!sack_b || oplen_b < sizeof(*sack_b)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) else if (sack_b && oplen_b >= sizeof(*sack_b) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) (!sack_a || oplen_a < sizeof(*sack_a)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) (!sack_b || oplen_b < sizeof(*sack_b)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) while (oplen_a >= sizeof(*sack_a)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) const struct tcp_sack_block_wire *sack_tmp = sack_b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) u32 start_a = get_unaligned_be32(&sack_a->start_seq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) u32 end_a = get_unaligned_be32(&sack_a->end_seq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) int oplen_tmp = oplen_b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) bool found = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) /* DSACK; always considered greater to prevent dropping */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) if (before(start_a, ack_seq_a))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) bytes_a += end_a - start_a;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) while (oplen_tmp >= sizeof(*sack_tmp)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) /* first time through we count the total size */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) if (first)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) bytes_b += end_b - start_b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) if (!after(start_b, start_a) && !before(end_b, end_a)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) found = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) if (!first)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) oplen_tmp -= sizeof(*sack_tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) sack_tmp++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) if (!found)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) oplen_a -= sizeof(*sack_a);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) sack_a++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) first = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) /* If we made it this far, all ranges SACKed by A are covered by B, so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) * either the SACKs are equal, or B SACKs more bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) return bytes_b > bytes_a ? 1 : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) u32 *tsval, u32 *tsecr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) const u8 *ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) int opsize;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) if (ptr && opsize == TCPOLEN_TIMESTAMP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) *tsval = get_unaligned_be32(ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) *tsecr = get_unaligned_be32(ptr + 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) static bool cake_tcph_may_drop(const struct tcphdr *tcph,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) u32 tstamp_new, u32 tsecr_new)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) /* inspired by tcp_parse_options in tcp_input.c */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) const u8 *ptr = (const u8 *)(tcph + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) u32 tstamp, tsecr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) /* 3 reserved flags must be unset to avoid future breakage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) * ACK must be set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) * ECE/CWR are handled separately
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) * All other flags URG/PSH/RST/SYN/FIN must be unset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) * 0x00C00000 = CWR/ECE (handled separately)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) if (((tcp_flag_word(tcph) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) while (length > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) int opcode = *ptr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) int opsize;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) if (opcode == TCPOPT_EOL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) if (opcode == TCPOPT_NOP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) length--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) if (length < 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) opsize = *ptr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) if (opsize < 2 || opsize > length)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) switch (opcode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) case TCPOPT_MD5SIG: /* doesn't influence state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) case TCPOPT_SACK: /* stricter checking performed later */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) if (opsize % 8 != 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) case TCPOPT_TIMESTAMP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) /* only drop timestamps lower than new */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) if (opsize != TCPOLEN_TIMESTAMP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) tstamp = get_unaligned_be32(ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) tsecr = get_unaligned_be32(ptr + 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) if (after(tstamp, tstamp_new) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) after(tsecr, tsecr_new))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) case TCPOPT_MSS: /* these should only be set on SYN */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) case TCPOPT_WINDOW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) case TCPOPT_SACK_PERM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) case TCPOPT_FASTOPEN:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) case TCPOPT_EXP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) default: /* don't drop if any unknown options are present */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) ptr += opsize - 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) length -= opsize;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) struct cake_flow *flow)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) struct sk_buff *skb_check, *skb_prev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) const struct ipv6hdr *ipv6h, *ipv6h_check;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) unsigned char _tcph[64], _tcph_check[64];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) const struct tcphdr *tcph, *tcph_check;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) const struct iphdr *iph, *iph_check;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) struct ipv6hdr _iph, _iph_check;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) const struct sk_buff *skb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) int seglen, num_found = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) u32 tstamp = 0, tsecr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) __be32 elig_flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) int sack_comp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) /* no other possible ACKs to filter */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) if (flow->head == flow->tail)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) skb = flow->tail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) iph = cake_get_iphdr(skb, &_iph);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) if (!tcph)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) /* the 'triggering' packet need only have the ACK flag set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) * also check that SYN is not set, as there won't be any previous ACKs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) if ((tcp_flag_word(tcph) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) /* the 'triggering' ACK is at the tail of the queue, we have already
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) * returned if it is the only packet in the flow. loop through the rest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) * of the queue looking for pure ACKs with the same 5-tuple as the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) * triggering one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) for (skb_check = flow->head;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) skb_check && skb_check != skb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) skb_prev = skb_check, skb_check = skb_check->next) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) iph_check = cake_get_iphdr(skb_check, &_iph_check);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) sizeof(_tcph_check));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) /* only TCP packets with matching 5-tuple are eligible, and only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) * drop safe headers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) if (!tcph_check || iph->version != iph_check->version ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) tcph_check->source != tcph->source ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) tcph_check->dest != tcph->dest)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) if (iph_check->version == 4) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) if (iph_check->saddr != iph->saddr ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) iph_check->daddr != iph->daddr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) seglen = ntohs(iph_check->tot_len) -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) (4 * iph_check->ihl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) } else if (iph_check->version == 6) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) ipv6h = (struct ipv6hdr *)iph;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) ipv6h_check = (struct ipv6hdr *)iph_check;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) seglen = ntohs(ipv6h_check->payload_len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) WARN_ON(1); /* shouldn't happen */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) /* If the ECE/CWR flags changed from the previous eligible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) * packet in the same flow, we should no longer be dropping that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) * previous packet as this would lose information.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) if (elig_ack && (tcp_flag_word(tcph_check) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) elig_ack = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) elig_ack_prev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) num_found--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) /* Check TCP options and flags, don't drop ACKs with segment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) * data, and don't drop ACKs with a higher cumulative ACK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) * counter than the triggering packet. Check ACK seqno here to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) * avoid parsing SACK options of packets we are going to exclude
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) * anyway.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) /* Check SACK options. The triggering packet must SACK more data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) * than the ACK under consideration, or SACK the same range but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) * have a larger cumulative ACK counter. The latter is a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) * pathological case, but is contained in the following check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) * anyway, just to be safe.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) if (sack_comp < 0 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) sack_comp == 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) /* At this point we have found an eligible pure ACK to drop; if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) * we are in aggressive mode, we are done. Otherwise, keep
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) * searching unless this is the second eligible ACK we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) * found.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) * Since we want to drop ACK closest to the head of the queue,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) * save the first eligible ACK we find, even if we need to loop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) * again.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) if (!elig_ack) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) elig_ack = skb_check;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) elig_ack_prev = skb_prev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) elig_flags = (tcp_flag_word(tcph_check)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) & (TCP_FLAG_ECE | TCP_FLAG_CWR));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) if (num_found++ > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) goto found;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) /* We made it through the queue without finding two eligible ACKs . If
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) * we found a single eligible ACK we can drop it in aggressive mode if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) * we can guarantee that this does not interfere with ECN flag
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) * information. We ensure this by dropping it only if the enqueued
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) * packet is consecutive with the eligible ACK, and their flags match.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) if (elig_ack && aggressive && elig_ack->next == skb &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) (elig_flags == (tcp_flag_word(tcph) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) (TCP_FLAG_ECE | TCP_FLAG_CWR))))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) goto found;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) found:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) if (elig_ack_prev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) elig_ack_prev->next = elig_ack->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) flow->head = elig_ack->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) skb_mark_not_on_list(elig_ack);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) return elig_ack;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) avg -= avg >> shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) avg += sample >> shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) return avg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) if (q->rate_flags & CAKE_FLAG_OVERHEAD)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) len -= off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) if (q->max_netlen < len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) q->max_netlen = len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) if (q->min_netlen > len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) q->min_netlen = len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) len += q->rate_overhead;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) if (len < q->rate_mpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) len = q->rate_mpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) if (q->atm_mode == CAKE_ATM_ATM) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) len += 47;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) len /= 48;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) len *= 53;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) } else if (q->atm_mode == CAKE_ATM_PTM) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) /* Add one byte per 64 bytes or part thereof.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) * This is conservative and easier to calculate than the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) * precise value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) len += (len + 63) / 64;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) if (q->max_adjlen < len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) q->max_adjlen = len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) if (q->min_adjlen > len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) q->min_adjlen = len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) return len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) const struct skb_shared_info *shinfo = skb_shinfo(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) unsigned int hdr_len, last_len = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) u32 off = skb_network_offset(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) u32 len = qdisc_pkt_len(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) u16 segs = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) if (!shinfo->gso_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) return cake_calc_overhead(q, len, off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) /* borrowed from qdisc_pkt_len_init() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) /* + transport layer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) SKB_GSO_TCPV6))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) const struct tcphdr *th;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) struct tcphdr _tcphdr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) th = skb_header_pointer(skb, skb_transport_offset(skb),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) sizeof(_tcphdr), &_tcphdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) if (likely(th))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) hdr_len += __tcp_hdrlen(th);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) struct udphdr _udphdr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) if (skb_header_pointer(skb, skb_transport_offset(skb),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) sizeof(_udphdr), &_udphdr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) hdr_len += sizeof(struct udphdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) segs = DIV_ROUND_UP(skb->len - hdr_len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) shinfo->gso_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) segs = shinfo->gso_segs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) len = shinfo->gso_size + hdr_len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) last_len = skb->len - shinfo->gso_size * (segs - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) return (cake_calc_overhead(q, len, off) * (segs - 1) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) cake_calc_overhead(q, last_len, off));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) struct cake_heap_entry ii = q->overflow_heap[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) struct cake_heap_entry jj = q->overflow_heap[j];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) q->overflow_heap[i] = jj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) q->overflow_heap[j] = ii;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) q->tins[ii.t].overflow_idx[ii.b] = j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) q->tins[jj.t].overflow_idx[jj.b] = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) struct cake_heap_entry ii = q->overflow_heap[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) return q->tins[ii.t].backlogs[ii.b];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) static void cake_heapify(struct cake_sched_data *q, u16 i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) u32 mb = cake_heap_get_backlog(q, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) u32 m = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) while (m < a) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) u32 l = m + m + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) u32 r = l + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) if (l < a) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) u32 lb = cake_heap_get_backlog(q, l);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) if (lb > mb) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) m = l;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) mb = lb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) if (r < a) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) u32 rb = cake_heap_get_backlog(q, r);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) if (rb > mb) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) m = r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) mb = rb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) if (m != i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) cake_heap_swap(q, i, m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) i = m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) static void cake_heapify_up(struct cake_sched_data *q, u16 i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) u16 p = (i - 1) >> 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) u32 ib = cake_heap_get_backlog(q, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) u32 pb = cake_heap_get_backlog(q, p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) if (ib > pb) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) cake_heap_swap(q, i, p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) i = p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) static int cake_advance_shaper(struct cake_sched_data *q,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) struct cake_tin_data *b,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) struct sk_buff *skb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) ktime_t now, bool drop)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) u32 len = get_cobalt_cb(skb)->adjusted_len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) /* charge packet bandwidth to this tin
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) * and to the global shaper.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) if (q->rate_ns) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) u64 failsafe_dur = global_dur + (global_dur >> 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) if (ktime_before(b->time_next_packet, now))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) b->time_next_packet = ktime_add_ns(b->time_next_packet,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) tin_dur);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) else if (ktime_before(b->time_next_packet,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) ktime_add_ns(now, tin_dur)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) b->time_next_packet = ktime_add_ns(now, tin_dur);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) q->time_next_packet = ktime_add_ns(q->time_next_packet,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) global_dur);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) if (!drop)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) q->failsafe_next_packet = \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) ktime_add_ns(q->failsafe_next_packet,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) failsafe_dur);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) return len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) ktime_t now = ktime_get();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) u32 idx = 0, tin = 0, len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) struct cake_heap_entry qq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) struct cake_tin_data *b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) struct cake_flow *flow;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) struct sk_buff *skb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) if (!q->overflow_timeout) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) /* Build fresh max-heap */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) cake_heapify(q, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) q->overflow_timeout = 65535;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) /* select longest queue for pruning */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) qq = q->overflow_heap[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) tin = qq.t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) idx = qq.b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) b = &q->tins[tin];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) flow = &b->flows[idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) skb = dequeue_head(flow);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) if (unlikely(!skb)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) /* heap has gone wrong, rebuild it next time */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) q->overflow_timeout = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) return idx + (tin << 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) b->unresponsive_flow_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) len = qdisc_pkt_len(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) q->buffer_used -= skb->truesize;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) b->backlogs[idx] -= len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) b->tin_backlog -= len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) sch->qstats.backlog -= len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) qdisc_tree_reduce_backlog(sch, 1, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) flow->dropped++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) b->tin_dropped++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) sch->qstats.drops++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) if (q->rate_flags & CAKE_FLAG_INGRESS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) cake_advance_shaper(q, b, skb, now, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) __qdisc_drop(skb, to_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) sch->q.qlen--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) cake_heapify(q, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) return idx + (tin << 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) static u8 cake_handle_diffserv(struct sk_buff *skb, bool wash)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) const int offset = skb_network_offset(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) u16 *buf, buf_;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) u8 dscp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) switch (skb_protocol(skb, true)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) case htons(ETH_P_IP):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) if (unlikely(!buf))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) /* ToS is in the second byte of iphdr */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) dscp = ipv4_get_dsfield((struct iphdr *)buf) >> 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) if (wash && dscp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) const int wlen = offset + sizeof(struct iphdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) if (!pskb_may_pull(skb, wlen) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) skb_try_make_writable(skb, wlen))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) return dscp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) case htons(ETH_P_IPV6):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) if (unlikely(!buf))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) /* Traffic class is in the first and second bytes of ipv6hdr */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) dscp = ipv6_get_dsfield((struct ipv6hdr *)buf) >> 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) if (wash && dscp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) const int wlen = offset + sizeof(struct ipv6hdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) if (!pskb_may_pull(skb, wlen) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) skb_try_make_writable(skb, wlen))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) return dscp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) case htons(ETH_P_ARP):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) return 0x38; /* CS7 - Net Control */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) /* If there is no Diffserv field, treat as best-effort */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) struct sk_buff *skb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) u32 tin, mark;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) bool wash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) u8 dscp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) /* Tin selection: Default to diffserv-based selection, allow overriding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) * using firewall marks or skb->priority. Call DSCP parsing early if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) * wash is enabled, otherwise defer to below to skip unneeded parsing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) wash = !!(q->rate_flags & CAKE_FLAG_WASH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) if (wash)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) dscp = cake_handle_diffserv(skb, wash);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) tin = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) else if (mark && mark <= q->tin_cnt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) tin = q->tin_order[mark - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) else if (TC_H_MAJ(skb->priority) == sch->handle &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) TC_H_MIN(skb->priority) > 0 &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) TC_H_MIN(skb->priority) <= q->tin_cnt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) if (!wash)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) dscp = cake_handle_diffserv(skb, wash);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) tin = q->tin_index[dscp];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) if (unlikely(tin >= q->tin_cnt))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) tin = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) return &q->tins[tin];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) struct sk_buff *skb, int flow_mode, int *qerr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) struct tcf_proto *filter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) struct tcf_result res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) u16 flow = 0, host = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) int result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) filter = rcu_dereference_bh(q->filter_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) if (!filter)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) goto hash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) result = tcf_classify(skb, filter, &res, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) if (result >= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671) #ifdef CONFIG_NET_CLS_ACT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) switch (result) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) case TC_ACT_STOLEN:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) case TC_ACT_QUEUED:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) case TC_ACT_TRAP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) case TC_ACT_SHOT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) flow = TC_H_MIN(res.classid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) host = TC_H_MAJ(res.classid) >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) hash:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) *t = cake_select_tin(sch, skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) return cake_hash(*t, skb, flow_mode, flow, host) + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) static void cake_reconfigure(struct Qdisc *sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) struct sk_buff **to_free)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) int len = qdisc_pkt_len(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) struct sk_buff *ack = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) ktime_t now = ktime_get();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) struct cake_tin_data *b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) struct cake_flow *flow;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) u32 idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) /* choose flow to insert into */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) if (idx == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) if (ret & __NET_XMIT_BYPASS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) qdisc_qstats_drop(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) __qdisc_drop(skb, to_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) idx--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) flow = &b->flows[idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) /* ensure shaper state isn't stale */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) if (!b->tin_backlog) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719) if (ktime_before(b->time_next_packet, now))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720) b->time_next_packet = now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722) if (!sch->q.qlen) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) if (ktime_before(q->time_next_packet, now)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) q->failsafe_next_packet = now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) q->time_next_packet = now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) } else if (ktime_after(q->time_next_packet, now) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) ktime_after(q->failsafe_next_packet, now)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) u64 next = \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) min(ktime_to_ns(q->time_next_packet),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) ktime_to_ns(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) q->failsafe_next_packet));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) sch->qstats.overlimits++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) qdisc_watchdog_schedule_ns(&q->watchdog, next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) if (unlikely(len > b->max_skblen))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) b->max_skblen = len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) struct sk_buff *segs, *nskb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) netdev_features_t features = netif_skb_features(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) unsigned int slen = 0, numsegs = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) if (IS_ERR_OR_NULL(segs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) return qdisc_drop(skb, sch, to_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) skb_list_walk_safe(segs, segs, nskb) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751) skb_mark_not_on_list(segs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) qdisc_skb_cb(segs)->pkt_len = segs->len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) cobalt_set_enqueue_time(segs, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) segs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) flow_queue_add(flow, segs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) sch->q.qlen++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) numsegs++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) slen += segs->len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) q->buffer_used += segs->truesize;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) b->packets++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) /* stats */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) b->bytes += slen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) b->backlogs[idx] += slen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) b->tin_backlog += slen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) sch->qstats.backlog += slen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) q->avg_window_bytes += slen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) consume_skb(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) /* not splitting */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) cobalt_set_enqueue_time(skb, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) flow_queue_add(flow, skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780) if (q->ack_filter)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) ack = cake_ack_filter(q, flow);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) if (ack) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784) b->ack_drops++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) sch->qstats.drops++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) b->bytes += qdisc_pkt_len(ack);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) len -= qdisc_pkt_len(ack);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) q->buffer_used += skb->truesize - ack->truesize;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) if (q->rate_flags & CAKE_FLAG_INGRESS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790) cake_advance_shaper(q, b, ack, now, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) consume_skb(ack);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) sch->q.qlen++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) q->buffer_used += skb->truesize;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799) /* stats */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800) b->packets++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801) b->bytes += len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802) b->backlogs[idx] += len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) b->tin_backlog += len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) sch->qstats.backlog += len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805) q->avg_window_bytes += len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) if (q->overflow_timeout)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809) cake_heapify_up(q, b->overflow_idx[idx]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) /* incoming bandwidth capacity estimate */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) u64 packet_interval = \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) ktime_to_ns(ktime_sub(now, q->last_packet_time));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816) if (packet_interval > NSEC_PER_SEC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817) packet_interval = NSEC_PER_SEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819) /* filter out short-term bursts, eg. wifi aggregation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) q->avg_packet_interval = \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) cake_ewma(q->avg_packet_interval,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) packet_interval,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) (packet_interval > q->avg_packet_interval ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) 2 : 8));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) q->last_packet_time = now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) if (packet_interval > q->avg_packet_interval) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) u64 window_interval = \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) ktime_to_ns(ktime_sub(now,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) q->avg_window_begin));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832) u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834) b = div64_u64(b, window_interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) q->avg_peak_bandwidth =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836) cake_ewma(q->avg_peak_bandwidth, b,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837) b > q->avg_peak_bandwidth ? 2 : 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838) q->avg_window_bytes = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839) q->avg_window_begin = now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841) if (ktime_after(now,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842) ktime_add_ms(q->last_reconfig_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) 250))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844) q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) cake_reconfigure(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849) q->avg_window_bytes = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) q->last_packet_time = now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853) /* flowchain */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) if (!flow->set || flow->set == CAKE_SET_DECAYING) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) struct cake_host *srchost = &b->hosts[flow->srchost];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) struct cake_host *dsthost = &b->hosts[flow->dsthost];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857) u16 host_load = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) if (!flow->set) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) list_add_tail(&flow->flowchain, &b->new_flows);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862) b->decaying_flow_count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) list_move_tail(&flow->flowchain, &b->new_flows);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) flow->set = CAKE_SET_SPARSE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) b->sparse_flow_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) if (cake_dsrc(q->flow_mode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) host_load = max(host_load, srchost->srchost_bulk_flow_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871) if (cake_ddst(q->flow_mode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872) host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) flow->deficit = (b->flow_quantum *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875) quantum_div[host_load]) >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) } else if (flow->set == CAKE_SET_SPARSE_WAIT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877) struct cake_host *srchost = &b->hosts[flow->srchost];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) struct cake_host *dsthost = &b->hosts[flow->dsthost];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880) /* this flow was empty, accounted as a sparse flow, but actually
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881) * in the bulk rotation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883) flow->set = CAKE_SET_BULK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884) b->sparse_flow_count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885) b->bulk_flow_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887) if (cake_dsrc(q->flow_mode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888) srchost->srchost_bulk_flow_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890) if (cake_ddst(q->flow_mode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) dsthost->dsthost_bulk_flow_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) if (q->buffer_used > q->buffer_max_used)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896) q->buffer_max_used = q->buffer_used;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898) if (q->buffer_used > q->buffer_limit) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899) u32 dropped = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901) while (q->buffer_used > q->buffer_limit) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902) dropped++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903) cake_drop(sch, to_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905) b->drop_overlimit += dropped;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907) return NET_XMIT_SUCCESS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910) static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913) struct cake_tin_data *b = &q->tins[q->cur_tin];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914) struct cake_flow *flow = &b->flows[q->cur_flow];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915) struct sk_buff *skb = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916) u32 len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918) if (flow->head) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919) skb = dequeue_head(flow);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920) len = qdisc_pkt_len(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921) b->backlogs[q->cur_flow] -= len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) b->tin_backlog -= len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923) sch->qstats.backlog -= len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) q->buffer_used -= skb->truesize;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925) sch->q.qlen--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) if (q->overflow_timeout)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928) cake_heapify(q, b->overflow_idx[q->cur_flow]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) return skb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) /* Discard leftover packets from a tin no longer in use. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934) static void cake_clear_tin(struct Qdisc *sch, u16 tin)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) struct sk_buff *skb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939) q->cur_tin = tin;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940) for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) while (!!(skb = cake_dequeue_one(sch)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942) kfree_skb(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945) static struct sk_buff *cake_dequeue(struct Qdisc *sch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948) struct cake_tin_data *b = &q->tins[q->cur_tin];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) struct cake_host *srchost, *dsthost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) ktime_t now = ktime_get();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951) struct cake_flow *flow;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) struct list_head *head;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) bool first_flow = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954) struct sk_buff *skb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) u16 host_load;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956) u64 delay;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) u32 len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959) begin:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960) if (!sch->q.qlen)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) /* global hard shaper */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964) if (ktime_after(q->time_next_packet, now) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) ktime_after(q->failsafe_next_packet, now)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) u64 next = min(ktime_to_ns(q->time_next_packet),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) ktime_to_ns(q->failsafe_next_packet));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969) sch->qstats.overlimits++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970) qdisc_watchdog_schedule_ns(&q->watchdog, next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974) /* Choose a class to work on. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) if (!q->rate_ns) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) /* In unlimited mode, can't rely on shaper timings, just balance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977) * with DRR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979) bool wrapped = false, empty = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) while (b->tin_deficit < 0 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982) !(b->sparse_flow_count + b->bulk_flow_count)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) if (b->tin_deficit <= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984) b->tin_deficit += b->tin_quantum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985) if (b->sparse_flow_count + b->bulk_flow_count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986) empty = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988) q->cur_tin++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) b++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) if (q->cur_tin >= q->tin_cnt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) q->cur_tin = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992) b = q->tins;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) if (wrapped) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) /* It's possible for q->qlen to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) * nonzero when we actually have no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) * packets anywhere.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) if (empty)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) wrapped = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007) /* In shaped mode, choose:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) * - Highest-priority tin with queue and meeting schedule, or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009) * - The earliest-scheduled tin with queue.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011) ktime_t best_time = KTIME_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012) int tin, best_tin = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014) for (tin = 0; tin < q->tin_cnt; tin++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015) b = q->tins + tin;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016) if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017) ktime_t time_to_pkt = \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018) ktime_sub(b->time_next_packet, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020) if (ktime_to_ns(time_to_pkt) <= 0 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) ktime_compare(time_to_pkt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) best_time) <= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023) best_time = time_to_pkt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) best_tin = tin;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) q->cur_tin = best_tin;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) b = q->tins + best_tin;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) /* No point in going further if no packets to deliver. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033) if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) /* service this class */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) head = &b->decaying_flows;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040) if (!first_flow || list_empty(head)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) head = &b->new_flows;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042) if (list_empty(head)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) head = &b->old_flows;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) if (unlikely(list_empty(head))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045) head = &b->decaying_flows;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) if (unlikely(list_empty(head)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) goto begin;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051) flow = list_first_entry(head, struct cake_flow, flowchain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052) q->cur_flow = flow - b->flows;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) first_flow = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055) /* triple isolation (modified DRR++) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) srchost = &b->hosts[flow->srchost];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057) dsthost = &b->hosts[flow->dsthost];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058) host_load = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060) /* flow isolation (DRR++) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061) if (flow->deficit <= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062) /* Keep all flows with deficits out of the sparse and decaying
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) * rotations. No non-empty flow can go into the decaying
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064) * rotation, so they can't get deficits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066) if (flow->set == CAKE_SET_SPARSE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067) if (flow->head) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068) b->sparse_flow_count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069) b->bulk_flow_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071) if (cake_dsrc(q->flow_mode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) srchost->srchost_bulk_flow_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074) if (cake_ddst(q->flow_mode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) dsthost->dsthost_bulk_flow_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077) flow->set = CAKE_SET_BULK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079) /* we've moved it to the bulk rotation for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080) * correct deficit accounting but we still want
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) * to count it as a sparse flow, not a bulk one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083) flow->set = CAKE_SET_SPARSE_WAIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087) if (cake_dsrc(q->flow_mode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088) host_load = max(host_load, srchost->srchost_bulk_flow_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090) if (cake_ddst(q->flow_mode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091) host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) WARN_ON(host_load > CAKE_QUEUES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) /* The shifted prandom_u32() is a way to apply dithering to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096) * avoid accumulating roundoff errors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098) flow->deficit += (b->flow_quantum * quantum_div[host_load] +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) (prandom_u32() >> 16)) >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100) list_move_tail(&flow->flowchain, &b->old_flows);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) /* Retrieve a packet via the AQM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106) while (1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107) skb = cake_dequeue_one(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108) if (!skb) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109) /* this queue was actually empty */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110) if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111) b->unresponsive_flow_count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113) if (flow->cvars.p_drop || flow->cvars.count ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114) ktime_before(now, flow->cvars.drop_next)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115) /* keep in the flowchain until the state has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116) * decayed to rest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118) list_move_tail(&flow->flowchain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119) &b->decaying_flows);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120) if (flow->set == CAKE_SET_BULK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121) b->bulk_flow_count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123) if (cake_dsrc(q->flow_mode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124) srchost->srchost_bulk_flow_count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126) if (cake_ddst(q->flow_mode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127) dsthost->dsthost_bulk_flow_count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129) b->decaying_flow_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130) } else if (flow->set == CAKE_SET_SPARSE ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) flow->set == CAKE_SET_SPARSE_WAIT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132) b->sparse_flow_count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133) b->decaying_flow_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135) flow->set = CAKE_SET_DECAYING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137) /* remove empty queue from the flowchain */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138) list_del_init(&flow->flowchain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139) if (flow->set == CAKE_SET_SPARSE ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140) flow->set == CAKE_SET_SPARSE_WAIT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141) b->sparse_flow_count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142) else if (flow->set == CAKE_SET_BULK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143) b->bulk_flow_count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2144)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2145) if (cake_dsrc(q->flow_mode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2146) srchost->srchost_bulk_flow_count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2147)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2148) if (cake_ddst(q->flow_mode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2149) dsthost->dsthost_bulk_flow_count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2150)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2151) } else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2152) b->decaying_flow_count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2153)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2154) flow->set = CAKE_SET_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2155) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2156) goto begin;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2157) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2158)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2159) /* Last packet in queue may be marked, shouldn't be dropped */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2160) if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2161) (b->bulk_flow_count *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2162) !!(q->rate_flags &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2163) CAKE_FLAG_INGRESS))) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2164) !flow->head)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2165) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2166)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2167) /* drop this packet, get another one */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2168) if (q->rate_flags & CAKE_FLAG_INGRESS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2169) len = cake_advance_shaper(q, b, skb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2170) now, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2171) flow->deficit -= len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2172) b->tin_deficit -= len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2173) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2174) flow->dropped++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2175) b->tin_dropped++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2176) qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2177) qdisc_qstats_drop(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2178) kfree_skb(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2179) if (q->rate_flags & CAKE_FLAG_INGRESS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2180) goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2181) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2182)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2183) b->tin_ecn_mark += !!flow->cvars.ecn_marked;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2184) qdisc_bstats_update(sch, skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2186) /* collect delay stats */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2187) delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2188) b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2189) b->peak_delay = cake_ewma(b->peak_delay, delay,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2190) delay > b->peak_delay ? 2 : 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2191) b->base_delay = cake_ewma(b->base_delay, delay,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2192) delay < b->base_delay ? 2 : 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2193)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2194) len = cake_advance_shaper(q, b, skb, now, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2195) flow->deficit -= len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2196) b->tin_deficit -= len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2197)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2198) if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2199) u64 next = min(ktime_to_ns(q->time_next_packet),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2200) ktime_to_ns(q->failsafe_next_packet));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2201)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2202) qdisc_watchdog_schedule_ns(&q->watchdog, next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2203) } else if (!sch->q.qlen) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2204) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2205)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2206) for (i = 0; i < q->tin_cnt; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2207) if (q->tins[i].decaying_flow_count) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2208) ktime_t next = \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2209) ktime_add_ns(now,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2210) q->tins[i].cparams.target);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2211)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2212) qdisc_watchdog_schedule_ns(&q->watchdog,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2213) ktime_to_ns(next));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2214) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2215) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2216) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2217) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2218)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2219) if (q->overflow_timeout)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2220) q->overflow_timeout--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2221)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2222) return skb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2223) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2224)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2225) static void cake_reset(struct Qdisc *sch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2226) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2227) u32 c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2228)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2229) for (c = 0; c < CAKE_MAX_TINS; c++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2230) cake_clear_tin(sch, c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2231) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2232)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2233) static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2234) [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2235) [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2236) [TCA_CAKE_ATM] = { .type = NLA_U32 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2237) [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2238) [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2239) [TCA_CAKE_RTT] = { .type = NLA_U32 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2240) [TCA_CAKE_TARGET] = { .type = NLA_U32 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2241) [TCA_CAKE_AUTORATE] = { .type = NLA_U32 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2242) [TCA_CAKE_MEMORY] = { .type = NLA_U32 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2243) [TCA_CAKE_NAT] = { .type = NLA_U32 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2244) [TCA_CAKE_RAW] = { .type = NLA_U32 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2245) [TCA_CAKE_WASH] = { .type = NLA_U32 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2246) [TCA_CAKE_MPU] = { .type = NLA_U32 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2247) [TCA_CAKE_INGRESS] = { .type = NLA_U32 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2248) [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2249) [TCA_CAKE_SPLIT_GSO] = { .type = NLA_U32 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2250) [TCA_CAKE_FWMARK] = { .type = NLA_U32 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2251) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2253) static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2254) u64 target_ns, u64 rtt_est_ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2255) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2256) /* convert byte-rate into time-per-byte
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2257) * so it will always unwedge in reasonable time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2258) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2259) static const u64 MIN_RATE = 64;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2260) u32 byte_target = mtu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2261) u64 byte_target_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2262) u8 rate_shft = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2263) u64 rate_ns = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2264)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2265) b->flow_quantum = 1514;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2266) if (rate) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2267) b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2268) rate_shft = 34;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2269) rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2270) rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2271) while (!!(rate_ns >> 34)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2272) rate_ns >>= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2273) rate_shft--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2274) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2275) } /* else unlimited, ie. zero delay */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2276)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2277) b->tin_rate_bps = rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2278) b->tin_rate_ns = rate_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2279) b->tin_rate_shft = rate_shft;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2280)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2281) byte_target_ns = (byte_target * rate_ns) >> rate_shft;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2282)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2283) b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2284) b->cparams.interval = max(rtt_est_ns +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2285) b->cparams.target - target_ns,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2286) b->cparams.target * 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2287) b->cparams.mtu_time = byte_target_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2288) b->cparams.p_inc = 1 << 24; /* 1/256 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2289) b->cparams.p_dec = 1 << 20; /* 1/4096 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2290) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2291)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2292) static int cake_config_besteffort(struct Qdisc *sch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2293) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2294) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2295) struct cake_tin_data *b = &q->tins[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2296) u32 mtu = psched_mtu(qdisc_dev(sch));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2297) u64 rate = q->rate_bps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2298)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2299) q->tin_cnt = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2301) q->tin_index = besteffort;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2302) q->tin_order = normal_order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2303)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2304) cake_set_rate(b, rate, mtu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2305) us_to_ns(q->target), us_to_ns(q->interval));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2306) b->tin_quantum = 65535;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2307)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2308) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2309) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2310)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2311) static int cake_config_precedence(struct Qdisc *sch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2312) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2313) /* convert high-level (user visible) parameters into internal format */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2314) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2315) u32 mtu = psched_mtu(qdisc_dev(sch));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2316) u64 rate = q->rate_bps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2317) u32 quantum = 256;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2318) u32 i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2319)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2320) q->tin_cnt = 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2321) q->tin_index = precedence;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2322) q->tin_order = normal_order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2323)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2324) for (i = 0; i < q->tin_cnt; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2325) struct cake_tin_data *b = &q->tins[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2326)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2327) cake_set_rate(b, rate, mtu, us_to_ns(q->target),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2328) us_to_ns(q->interval));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2329)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2330) b->tin_quantum = max_t(u16, 1U, quantum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2331)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2332) /* calculate next class's parameters */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2333) rate *= 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2334) rate >>= 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2335)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2336) quantum *= 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2337) quantum >>= 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2338) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2339)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2340) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2341) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2342)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2343) /* List of known Diffserv codepoints:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2344) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2345) * Least Effort (CS1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2346) * Best Effort (CS0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2347) * Max Reliability & LLT "Lo" (TOS1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2348) * Max Throughput (TOS2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2349) * Min Delay (TOS4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2350) * LLT "La" (TOS5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2351) * Assured Forwarding 1 (AF1x) - x3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2352) * Assured Forwarding 2 (AF2x) - x3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2353) * Assured Forwarding 3 (AF3x) - x3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2354) * Assured Forwarding 4 (AF4x) - x3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2355) * Precedence Class 2 (CS2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2356) * Precedence Class 3 (CS3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2357) * Precedence Class 4 (CS4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2358) * Precedence Class 5 (CS5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2359) * Precedence Class 6 (CS6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2360) * Precedence Class 7 (CS7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2361) * Voice Admit (VA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2362) * Expedited Forwarding (EF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2363)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2364) * Total 25 codepoints.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2365) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2366)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2367) /* List of traffic classes in RFC 4594:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2368) * (roughly descending order of contended priority)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2369) * (roughly ascending order of uncontended throughput)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2370) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2371) * Network Control (CS6,CS7) - routing traffic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2372) * Telephony (EF,VA) - aka. VoIP streams
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2373) * Signalling (CS5) - VoIP setup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2374) * Multimedia Conferencing (AF4x) - aka. video calls
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2375) * Realtime Interactive (CS4) - eg. games
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2376) * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2377) * Broadcast Video (CS3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2378) * Low Latency Data (AF2x,TOS4) - eg. database
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2379) * Ops, Admin, Management (CS2,TOS1) - eg. ssh
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2380) * Standard Service (CS0 & unrecognised codepoints)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2381) * High Throughput Data (AF1x,TOS2) - eg. web traffic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2382) * Low Priority Data (CS1) - eg. BitTorrent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2383)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2384) * Total 12 traffic classes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2385) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2386)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2387) static int cake_config_diffserv8(struct Qdisc *sch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2388) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2389) /* Pruned list of traffic classes for typical applications:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2390) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2391) * Network Control (CS6, CS7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2392) * Minimum Latency (EF, VA, CS5, CS4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2393) * Interactive Shell (CS2, TOS1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2394) * Low Latency Transactions (AF2x, TOS4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2395) * Video Streaming (AF4x, AF3x, CS3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2396) * Bog Standard (CS0 etc.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2397) * High Throughput (AF1x, TOS2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2398) * Background Traffic (CS1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2399) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2400) * Total 8 traffic classes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2401) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2402)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2403) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2404) u32 mtu = psched_mtu(qdisc_dev(sch));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2405) u64 rate = q->rate_bps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2406) u32 quantum = 256;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2407) u32 i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2408)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2409) q->tin_cnt = 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2410)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2411) /* codepoint to class mapping */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2412) q->tin_index = diffserv8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2413) q->tin_order = normal_order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2414)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2415) /* class characteristics */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2416) for (i = 0; i < q->tin_cnt; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2417) struct cake_tin_data *b = &q->tins[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2418)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2419) cake_set_rate(b, rate, mtu, us_to_ns(q->target),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2420) us_to_ns(q->interval));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2421)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2422) b->tin_quantum = max_t(u16, 1U, quantum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2423)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2424) /* calculate next class's parameters */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2425) rate *= 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2426) rate >>= 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2427)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2428) quantum *= 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2429) quantum >>= 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2430) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2431)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2432) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2433) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2434)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2435) static int cake_config_diffserv4(struct Qdisc *sch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2436) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2437) /* Further pruned list of traffic classes for four-class system:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2438) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2439) * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2440) * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2, TOS1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2441) * Best Effort (CS0, AF1x, TOS2, and those not specified)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2442) * Background Traffic (CS1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2443) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2444) * Total 4 traffic classes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2445) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2446)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2447) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2448) u32 mtu = psched_mtu(qdisc_dev(sch));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2449) u64 rate = q->rate_bps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2450) u32 quantum = 1024;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2451)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2452) q->tin_cnt = 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2453)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2454) /* codepoint to class mapping */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2455) q->tin_index = diffserv4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2456) q->tin_order = bulk_order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2457)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2458) /* class characteristics */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2459) cake_set_rate(&q->tins[0], rate, mtu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2460) us_to_ns(q->target), us_to_ns(q->interval));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2461) cake_set_rate(&q->tins[1], rate >> 4, mtu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2462) us_to_ns(q->target), us_to_ns(q->interval));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2463) cake_set_rate(&q->tins[2], rate >> 1, mtu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2464) us_to_ns(q->target), us_to_ns(q->interval));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2465) cake_set_rate(&q->tins[3], rate >> 2, mtu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2466) us_to_ns(q->target), us_to_ns(q->interval));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2467)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2468) /* bandwidth-sharing weights */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2469) q->tins[0].tin_quantum = quantum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2470) q->tins[1].tin_quantum = quantum >> 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2471) q->tins[2].tin_quantum = quantum >> 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2472) q->tins[3].tin_quantum = quantum >> 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2473)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2474) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2475) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2476)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2477) static int cake_config_diffserv3(struct Qdisc *sch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2478) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2479) /* Simplified Diffserv structure with 3 tins.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2480) * Low Priority (CS1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2481) * Best Effort
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2482) * Latency Sensitive (TOS4, VA, EF, CS6, CS7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2483) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2484) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2485) u32 mtu = psched_mtu(qdisc_dev(sch));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2486) u64 rate = q->rate_bps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2487) u32 quantum = 1024;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2488)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2489) q->tin_cnt = 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2490)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2491) /* codepoint to class mapping */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2492) q->tin_index = diffserv3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2493) q->tin_order = bulk_order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2494)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2495) /* class characteristics */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2496) cake_set_rate(&q->tins[0], rate, mtu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2497) us_to_ns(q->target), us_to_ns(q->interval));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2498) cake_set_rate(&q->tins[1], rate >> 4, mtu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2499) us_to_ns(q->target), us_to_ns(q->interval));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2500) cake_set_rate(&q->tins[2], rate >> 2, mtu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2501) us_to_ns(q->target), us_to_ns(q->interval));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2502)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2503) /* bandwidth-sharing weights */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2504) q->tins[0].tin_quantum = quantum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2505) q->tins[1].tin_quantum = quantum >> 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2506) q->tins[2].tin_quantum = quantum >> 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2507)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2508) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2509) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2510)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2511) static void cake_reconfigure(struct Qdisc *sch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2512) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2513) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2514) int c, ft;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2515)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2516) switch (q->tin_mode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2517) case CAKE_DIFFSERV_BESTEFFORT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2518) ft = cake_config_besteffort(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2519) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2520)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2521) case CAKE_DIFFSERV_PRECEDENCE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2522) ft = cake_config_precedence(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2523) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2524)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2525) case CAKE_DIFFSERV_DIFFSERV8:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2526) ft = cake_config_diffserv8(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2527) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2528)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2529) case CAKE_DIFFSERV_DIFFSERV4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2530) ft = cake_config_diffserv4(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2531) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2532)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2533) case CAKE_DIFFSERV_DIFFSERV3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2534) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2535) ft = cake_config_diffserv3(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2536) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2537) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2538)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2539) for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2540) cake_clear_tin(sch, c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2541) q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2542) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2543)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2544) q->rate_ns = q->tins[ft].tin_rate_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2545) q->rate_shft = q->tins[ft].tin_rate_shft;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2546)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2547) if (q->buffer_config_limit) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2548) q->buffer_limit = q->buffer_config_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2549) } else if (q->rate_bps) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2550) u64 t = q->rate_bps * q->interval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2551)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2552) do_div(t, USEC_PER_SEC / 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2553) q->buffer_limit = max_t(u32, t, 4U << 20);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2554) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2555) q->buffer_limit = ~0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2556) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2557)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2558) sch->flags &= ~TCQ_F_CAN_BYPASS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2559)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2560) q->buffer_limit = min(q->buffer_limit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2561) max(sch->limit * psched_mtu(qdisc_dev(sch)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2562) q->buffer_config_limit));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2563) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2564)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2565) static int cake_change(struct Qdisc *sch, struct nlattr *opt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2566) struct netlink_ext_ack *extack)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2567) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2568) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2569) struct nlattr *tb[TCA_CAKE_MAX + 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2570) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2571)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2572) if (!opt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2573) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2574)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2575) err = nla_parse_nested_deprecated(tb, TCA_CAKE_MAX, opt, cake_policy,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2576) extack);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2577) if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2578) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2579)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2580) if (tb[TCA_CAKE_NAT]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2581) #if IS_ENABLED(CONFIG_NF_CONNTRACK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2582) q->flow_mode &= ~CAKE_FLOW_NAT_FLAG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2583) q->flow_mode |= CAKE_FLOW_NAT_FLAG *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2584) !!nla_get_u32(tb[TCA_CAKE_NAT]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2585) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2586) NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2587) "No conntrack support in kernel");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2588) return -EOPNOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2589) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2590) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2591)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2592) if (tb[TCA_CAKE_BASE_RATE64])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2593) q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2594)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2595) if (tb[TCA_CAKE_DIFFSERV_MODE])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2596) q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2597)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2598) if (tb[TCA_CAKE_WASH]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2599) if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2600) q->rate_flags |= CAKE_FLAG_WASH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2601) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2602) q->rate_flags &= ~CAKE_FLAG_WASH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2603) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2604)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2605) if (tb[TCA_CAKE_FLOW_MODE])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2606) q->flow_mode = ((q->flow_mode & CAKE_FLOW_NAT_FLAG) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2607) (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2608) CAKE_FLOW_MASK));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2609)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2610) if (tb[TCA_CAKE_ATM])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2611) q->atm_mode = nla_get_u32(tb[TCA_CAKE_ATM]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2612)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2613) if (tb[TCA_CAKE_OVERHEAD]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2614) q->rate_overhead = nla_get_s32(tb[TCA_CAKE_OVERHEAD]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2615) q->rate_flags |= CAKE_FLAG_OVERHEAD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2616)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2617) q->max_netlen = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2618) q->max_adjlen = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2619) q->min_netlen = ~0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2620) q->min_adjlen = ~0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2621) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2622)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2623) if (tb[TCA_CAKE_RAW]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2624) q->rate_flags &= ~CAKE_FLAG_OVERHEAD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2625)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2626) q->max_netlen = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2627) q->max_adjlen = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2628) q->min_netlen = ~0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2629) q->min_adjlen = ~0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2630) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2631)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2632) if (tb[TCA_CAKE_MPU])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2633) q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2634)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2635) if (tb[TCA_CAKE_RTT]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2636) q->interval = nla_get_u32(tb[TCA_CAKE_RTT]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2637)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2638) if (!q->interval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2639) q->interval = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2640) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2641)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2642) if (tb[TCA_CAKE_TARGET]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2643) q->target = nla_get_u32(tb[TCA_CAKE_TARGET]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2644)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2645) if (!q->target)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2646) q->target = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2647) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2648)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2649) if (tb[TCA_CAKE_AUTORATE]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2650) if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2651) q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2652) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2653) q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2654) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2655)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2656) if (tb[TCA_CAKE_INGRESS]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2657) if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2658) q->rate_flags |= CAKE_FLAG_INGRESS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2659) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2660) q->rate_flags &= ~CAKE_FLAG_INGRESS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2661) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2662)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2663) if (tb[TCA_CAKE_ACK_FILTER])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2664) q->ack_filter = nla_get_u32(tb[TCA_CAKE_ACK_FILTER]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2665)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2666) if (tb[TCA_CAKE_MEMORY])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2667) q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2668)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2669) if (tb[TCA_CAKE_SPLIT_GSO]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2670) if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2671) q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2672) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2673) q->rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2674) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2675)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2676) if (tb[TCA_CAKE_FWMARK]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2677) q->fwmark_mask = nla_get_u32(tb[TCA_CAKE_FWMARK]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2678) q->fwmark_shft = q->fwmark_mask ? __ffs(q->fwmark_mask) : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2679) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2680)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2681) if (q->tins) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2682) sch_tree_lock(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2683) cake_reconfigure(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2684) sch_tree_unlock(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2685) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2686)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2687) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2688) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2689)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2690) static void cake_destroy(struct Qdisc *sch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2691) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2692) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2693)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2694) qdisc_watchdog_cancel(&q->watchdog);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2695) tcf_block_put(q->block);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2696) kvfree(q->tins);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2697) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2698)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2699) static int cake_init(struct Qdisc *sch, struct nlattr *opt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2700) struct netlink_ext_ack *extack)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2701) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2702) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2703) int i, j, err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2704)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2705) sch->limit = 10240;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2706) q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2707) q->flow_mode = CAKE_FLOW_TRIPLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2708)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2709) q->rate_bps = 0; /* unlimited by default */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2710)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2711) q->interval = 100000; /* 100ms default */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2712) q->target = 5000; /* 5ms: codel RFC argues
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2713) * for 5 to 10% of interval
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2714) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2715) q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2716) q->cur_tin = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2717) q->cur_flow = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2718)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2719) qdisc_watchdog_init(&q->watchdog, sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2720)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2721) if (opt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2722) err = cake_change(sch, opt, extack);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2723)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2724) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2725) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2726) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2727)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2728) err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2729) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2730) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2731)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2732) quantum_div[0] = ~0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2733) for (i = 1; i <= CAKE_QUEUES; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2734) quantum_div[i] = 65535 / i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2735)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2736) q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2737) GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2738) if (!q->tins)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2739) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2740)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2741) for (i = 0; i < CAKE_MAX_TINS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2742) struct cake_tin_data *b = q->tins + i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2743)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2744) INIT_LIST_HEAD(&b->new_flows);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2745) INIT_LIST_HEAD(&b->old_flows);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2746) INIT_LIST_HEAD(&b->decaying_flows);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2747) b->sparse_flow_count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2748) b->bulk_flow_count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2749) b->decaying_flow_count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2750)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2751) for (j = 0; j < CAKE_QUEUES; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2752) struct cake_flow *flow = b->flows + j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2753) u32 k = j * CAKE_MAX_TINS + i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2754)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2755) INIT_LIST_HEAD(&flow->flowchain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2756) cobalt_vars_init(&flow->cvars);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2757)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2758) q->overflow_heap[k].t = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2759) q->overflow_heap[k].b = j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2760) b->overflow_idx[j] = k;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2761) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2762) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2763)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2764) cake_reconfigure(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2765) q->avg_peak_bandwidth = q->rate_bps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2766) q->min_netlen = ~0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2767) q->min_adjlen = ~0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2768) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2769) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2770)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2771) static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2772) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2773) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2774) struct nlattr *opts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2775)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2776) opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2777) if (!opts)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2778) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2779)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2780) if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2781) TCA_CAKE_PAD))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2782) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2783)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2784) if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2785) q->flow_mode & CAKE_FLOW_MASK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2786) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2787)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2788) if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2789) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2790)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2791) if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2792) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2793)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2794) if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2795) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2796)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2797) if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2798) !!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2799) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2800)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2801) if (nla_put_u32(skb, TCA_CAKE_INGRESS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2802) !!(q->rate_flags & CAKE_FLAG_INGRESS)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2803) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2804)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2805) if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, q->ack_filter))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2806) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2807)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2808) if (nla_put_u32(skb, TCA_CAKE_NAT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2809) !!(q->flow_mode & CAKE_FLOW_NAT_FLAG)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2810) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2811)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2812) if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2813) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2814)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2815) if (nla_put_u32(skb, TCA_CAKE_WASH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2816) !!(q->rate_flags & CAKE_FLAG_WASH)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2817) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2818)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2819) if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2820) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2821)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2822) if (!(q->rate_flags & CAKE_FLAG_OVERHEAD))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2823) if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2824) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2825)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2826) if (nla_put_u32(skb, TCA_CAKE_ATM, q->atm_mode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2827) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2828)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2829) if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2830) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2831)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2832) if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2833) !!(q->rate_flags & CAKE_FLAG_SPLIT_GSO)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2834) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2835)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2836) if (nla_put_u32(skb, TCA_CAKE_FWMARK, q->fwmark_mask))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2837) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2838)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2839) return nla_nest_end(skb, opts);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2840)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2841) nla_put_failure:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2842) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2843) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2844)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2845) static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2846) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2847) struct nlattr *stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2848) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2849) struct nlattr *tstats, *ts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2850) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2851)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2852) if (!stats)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2853) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2854)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2855) #define PUT_STAT_U32(attr, data) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2856) if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2857) goto nla_put_failure; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2858) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2859) #define PUT_STAT_U64(attr, data) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2860) if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2861) data, TCA_CAKE_STATS_PAD)) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2862) goto nla_put_failure; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2863) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2864)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2865) PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2866) PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2867) PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2868) PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2869) PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2870) PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2871) PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2872) PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2873)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2874) #undef PUT_STAT_U32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2875) #undef PUT_STAT_U64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2876)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2877) tstats = nla_nest_start_noflag(d->skb, TCA_CAKE_STATS_TIN_STATS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2878) if (!tstats)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2879) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2880)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2881) #define PUT_TSTAT_U32(attr, data) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2882) if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2883) goto nla_put_failure; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2884) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2885) #define PUT_TSTAT_U64(attr, data) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2886) if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2887) data, TCA_CAKE_TIN_STATS_PAD)) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2888) goto nla_put_failure; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2889) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2890)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2891) for (i = 0; i < q->tin_cnt; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2892) struct cake_tin_data *b = &q->tins[q->tin_order[i]];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2893)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2894) ts = nla_nest_start_noflag(d->skb, i + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2895) if (!ts)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2896) goto nla_put_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2897)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2898) PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2899) PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2900) PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2901)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2902) PUT_TSTAT_U32(TARGET_US,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2903) ktime_to_us(ns_to_ktime(b->cparams.target)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2904) PUT_TSTAT_U32(INTERVAL_US,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2905) ktime_to_us(ns_to_ktime(b->cparams.interval)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2906)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2907) PUT_TSTAT_U32(SENT_PACKETS, b->packets);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2908) PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2909) PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2910) PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2911)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2912) PUT_TSTAT_U32(PEAK_DELAY_US,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2913) ktime_to_us(ns_to_ktime(b->peak_delay)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2914) PUT_TSTAT_U32(AVG_DELAY_US,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2915) ktime_to_us(ns_to_ktime(b->avge_delay)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2916) PUT_TSTAT_U32(BASE_DELAY_US,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2917) ktime_to_us(ns_to_ktime(b->base_delay)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2918)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2919) PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2920) PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2921) PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2922)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2923) PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2924) b->decaying_flow_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2925) PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2926) PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2927) PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2928)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2929) PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2930) nla_nest_end(d->skb, ts);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2931) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2932)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2933) #undef PUT_TSTAT_U32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2934) #undef PUT_TSTAT_U64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2935)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2936) nla_nest_end(d->skb, tstats);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2937) return nla_nest_end(d->skb, stats);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2938)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2939) nla_put_failure:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2940) nla_nest_cancel(d->skb, stats);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2941) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2942) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2943)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2944) static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2945) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2946) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2947) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2948)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2949) static unsigned long cake_find(struct Qdisc *sch, u32 classid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2950) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2951) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2952) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2953)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2954) static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2955) u32 classid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2956) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2957) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2958) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2959)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2960) static void cake_unbind(struct Qdisc *q, unsigned long cl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2961) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2962) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2963)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2964) static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2965) struct netlink_ext_ack *extack)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2966) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2967) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2968)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2969) if (cl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2970) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2971) return q->block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2972) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2973)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2974) static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2975) struct sk_buff *skb, struct tcmsg *tcm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2976) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2977) tcm->tcm_handle |= TC_H_MIN(cl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2978) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2979) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2980)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2981) static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2982) struct gnet_dump *d)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2983) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2984) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2985) const struct cake_flow *flow = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2986) struct gnet_stats_queue qs = { 0 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2987) struct nlattr *stats;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2988) u32 idx = cl - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2989)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2990) if (idx < CAKE_QUEUES * q->tin_cnt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2991) const struct cake_tin_data *b = \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2992) &q->tins[q->tin_order[idx / CAKE_QUEUES]];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2993) const struct sk_buff *skb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2994)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2995) flow = &b->flows[idx % CAKE_QUEUES];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2996)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2997) if (flow->head) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2998) sch_tree_lock(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2999) skb = flow->head;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3000) while (skb) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3001) qs.qlen++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3002) skb = skb->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3003) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3004) sch_tree_unlock(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3005) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3006) qs.backlog = b->backlogs[idx % CAKE_QUEUES];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3007) qs.drops = flow->dropped;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3008) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3009) if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3010) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3011) if (flow) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3012) ktime_t now = ktime_get();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3013)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3014) stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3015) if (!stats)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3016) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3017)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3018) #define PUT_STAT_U32(attr, data) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3019) if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3020) goto nla_put_failure; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3021) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3022) #define PUT_STAT_S32(attr, data) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3023) if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3024) goto nla_put_failure; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3025) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3026)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3027) PUT_STAT_S32(DEFICIT, flow->deficit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3028) PUT_STAT_U32(DROPPING, flow->cvars.dropping);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3029) PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3030) PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3031) if (flow->cvars.p_drop) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3032) PUT_STAT_S32(BLUE_TIMER_US,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3033) ktime_to_us(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3034) ktime_sub(now,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3035) flow->cvars.blue_timer)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3036) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3037) if (flow->cvars.dropping) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3038) PUT_STAT_S32(DROP_NEXT_US,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3039) ktime_to_us(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3040) ktime_sub(now,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3041) flow->cvars.drop_next)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3042) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3043)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3044) if (nla_nest_end(d->skb, stats) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3045) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3046) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3047)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3048) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3049)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3050) nla_put_failure:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3051) nla_nest_cancel(d->skb, stats);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3052) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3053) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3054)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3055) static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3056) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3057) struct cake_sched_data *q = qdisc_priv(sch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3058) unsigned int i, j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3059)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3060) if (arg->stop)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3061) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3062)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3063) for (i = 0; i < q->tin_cnt; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3064) struct cake_tin_data *b = &q->tins[q->tin_order[i]];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3065)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3066) for (j = 0; j < CAKE_QUEUES; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3067) if (list_empty(&b->flows[j].flowchain) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3068) arg->count < arg->skip) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3069) arg->count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3070) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3071) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3072) if (arg->fn(sch, i * CAKE_QUEUES + j + 1, arg) < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3073) arg->stop = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3074) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3075) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3076) arg->count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3077) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3078) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3079) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3080)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3081) static const struct Qdisc_class_ops cake_class_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3082) .leaf = cake_leaf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3083) .find = cake_find,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3084) .tcf_block = cake_tcf_block,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3085) .bind_tcf = cake_bind,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3086) .unbind_tcf = cake_unbind,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3087) .dump = cake_dump_class,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3088) .dump_stats = cake_dump_class_stats,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3089) .walk = cake_walk,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3090) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3091)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3092) static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3093) .cl_ops = &cake_class_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3094) .id = "cake",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3095) .priv_size = sizeof(struct cake_sched_data),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3096) .enqueue = cake_enqueue,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3097) .dequeue = cake_dequeue,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3098) .peek = qdisc_peek_dequeued,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3099) .init = cake_init,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3100) .reset = cake_reset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3101) .destroy = cake_destroy,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3102) .change = cake_change,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3103) .dump = cake_dump,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3104) .dump_stats = cake_dump_stats,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3105) .owner = THIS_MODULE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3106) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3107)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3108) static int __init cake_module_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3109) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3110) return register_qdisc(&cake_qdisc_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3111) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3112)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3113) static void __exit cake_module_exit(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3114) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3115) unregister_qdisc(&cake_qdisc_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3116) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3117)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3118) module_init(cake_module_init)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3119) module_exit(cake_module_exit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3120) MODULE_AUTHOR("Jonathan Morton");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3121) MODULE_LICENSE("Dual BSD/GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3122) MODULE_DESCRIPTION("The CAKE shaper.");