Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2)  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  * This software is available to you under a choice of one of two
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * licenses.  You may choose to be licensed under the terms of the GNU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  * General Public License (GPL) Version 2, available from the file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  * COPYING in the main directory of this source tree, or the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  * OpenIB.org BSD license below:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  *     Redistribution and use in source and binary forms, with or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11)  *     without modification, are permitted provided that the following
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12)  *     conditions are met:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14)  *      - Redistributions of source code must retain the above
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15)  *        copyright notice, this list of conditions and the following
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16)  *        disclaimer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18)  *      - Redistributions in binary form must reproduce the above
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19)  *        copyright notice, this list of conditions and the following
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20)  *        disclaimer in the documentation and/or other materials
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21)  *        provided with the distribution.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23)  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24)  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25)  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26)  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27)  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28)  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29)  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30)  * SOFTWARE.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) #include <linux/pci.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) #include <linux/dma-mapping.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) #include <rdma/rdma_cm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) #include "rds_single_path.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) #include "rds.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) #include "ib.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) static struct kmem_cache *rds_ib_incoming_slab;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) static struct kmem_cache *rds_ib_frag_slab;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) 	struct rds_ib_recv_work *recv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) 	u32 i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) 	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) 		struct ib_sge *sge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) 		recv->r_ibinc = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) 		recv->r_frag = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) 		recv->r_wr.next = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) 		recv->r_wr.wr_id = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) 		recv->r_wr.sg_list = recv->r_sge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) 		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) 		sge = &recv->r_sge[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) 		sge->addr = ic->i_recv_hdrs_dma[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) 		sge->length = sizeof(struct rds_header);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) 		sge->lkey = ic->i_pd->local_dma_lkey;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) 		sge = &recv->r_sge[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) 		sge->addr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) 		sge->length = RDS_FRAG_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) 		sge->lkey = ic->i_pd->local_dma_lkey;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76)  * The entire 'from' list, including the from element itself, is put on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77)  * to the tail of the 'to' list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) static void list_splice_entire_tail(struct list_head *from,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) 				    struct list_head *to)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) 	struct list_head *from_last = from->prev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) 	list_splice_tail(from_last, to);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) 	list_add_tail(from_last, to);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) 	struct list_head *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) 	tmp = xchg(&cache->xfer, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) 	if (tmp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) 		if (cache->ready)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) 			list_splice_entire_tail(tmp, cache->ready);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) 			cache->ready = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) 	struct rds_ib_cache_head *head;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) 	cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) 	if (!cache->percpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) 	       return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) 	for_each_possible_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) 		head = per_cpu_ptr(cache->percpu, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) 		head->first = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 		head->count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 	cache->xfer = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) 	cache->ready = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) 	ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 	if (!ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) 		ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 			free_percpu(ic->i_cache_incs.percpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 					  struct list_head *caller_list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) 	struct rds_ib_cache_head *head;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 	for_each_possible_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) 		head = per_cpu_ptr(cache->percpu, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 		if (head->first) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) 			list_splice_entire_tail(head->first, caller_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 			head->first = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 	if (cache->ready) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 		list_splice_entire_tail(cache->ready, caller_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 		cache->ready = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 	struct rds_ib_incoming *inc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 	struct rds_ib_incoming *inc_tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 	struct rds_page_frag *frag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 	struct rds_page_frag *frag_tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 	LIST_HEAD(list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) 	rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 	rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 	free_percpu(ic->i_cache_incs.percpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) 	list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) 		list_del(&inc->ii_cache_entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 		WARN_ON(!list_empty(&inc->ii_frags));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 		kmem_cache_free(rds_ib_incoming_slab, inc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) 		atomic_dec(&rds_ib_allocation);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) 	rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) 	rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 	free_percpu(ic->i_cache_frags.percpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 	list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 		list_del(&frag->f_cache_entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 		WARN_ON(!list_empty(&frag->f_item));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) 		kmem_cache_free(rds_ib_frag_slab, frag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) /* fwd decl */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) static void rds_ib_recv_cache_put(struct list_head *new_item,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 				  struct rds_ib_refill_cache *cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) /* Recycle frag and attached recv buffer f_sg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) static void rds_ib_frag_free(struct rds_ib_connection *ic,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 			     struct rds_page_frag *frag)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 	rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 	rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 	atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 	rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) /* Recycle inc after freeing attached frags */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) void rds_ib_inc_free(struct rds_incoming *inc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 	struct rds_ib_incoming *ibinc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 	struct rds_page_frag *frag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 	struct rds_page_frag *pos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 	struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 	/* Free attached frags */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 		list_del_init(&frag->f_item);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 		rds_ib_frag_free(ic, frag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 	BUG_ON(!list_empty(&ibinc->ii_frags));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) 	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 	rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 				  struct rds_ib_recv_work *recv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 	if (recv->r_ibinc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) 		rds_inc_put(&recv->r_ibinc->ii_inc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 		recv->r_ibinc = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 	if (recv->r_frag) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 		ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 		rds_ib_frag_free(ic, recv->r_frag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) 		recv->r_frag = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 	u32 i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 						     gfp_t slab_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 	struct rds_ib_incoming *ibinc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 	struct list_head *cache_item;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 	int avail_allocs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) 	if (cache_item) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 		ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) 		avail_allocs = atomic_add_unless(&rds_ib_allocation,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) 						 1, rds_ib_sysctl_max_recv_allocation);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 		if (!avail_allocs) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 			rds_ib_stats_inc(s_ib_rx_alloc_limit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 		ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 		if (!ibinc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 			atomic_dec(&rds_ib_allocation);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 		rds_ib_stats_inc(s_ib_rx_total_incs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) 	INIT_LIST_HEAD(&ibinc->ii_frags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 	rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 	return ibinc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 						    gfp_t slab_mask, gfp_t page_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 	struct rds_page_frag *frag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 	struct list_head *cache_item;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 	cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 	if (cache_item) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) 		frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 		atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 		rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 		frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 		if (!frag)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 		sg_init_table(&frag->f_sg, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 		ret = rds_page_remainder_alloc(&frag->f_sg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 					       RDS_FRAG_SIZE, page_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 		if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 			kmem_cache_free(rds_ib_frag_slab, frag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 		rds_ib_stats_inc(s_ib_rx_total_frags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 	INIT_LIST_HEAD(&frag->f_item);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 	return frag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) static int rds_ib_recv_refill_one(struct rds_connection *conn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 				  struct rds_ib_recv_work *recv, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 	struct rds_ib_connection *ic = conn->c_transport_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 	struct ib_sge *sge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 	int ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 	gfp_t slab_mask = gfp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 	gfp_t page_mask = gfp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 	if (gfp & __GFP_DIRECT_RECLAIM) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 		slab_mask = GFP_KERNEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 		page_mask = GFP_HIGHUSER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 	if (!ic->i_cache_incs.ready)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 		rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 	if (!ic->i_cache_frags.ready)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 		rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 	 * ibinc was taken from recv if recv contained the start of a message.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 	 * recvs that were continuations will still have this allocated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 	if (!recv->r_ibinc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 		recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 		if (!recv->r_ibinc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 	WARN_ON(recv->r_frag); /* leak! */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 	recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 	if (!recv->r_frag)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 	ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 			    1, DMA_FROM_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 	WARN_ON(ret != 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 	sge = &recv->r_sge[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 	sge->addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 	sge->length = sizeof(struct rds_header);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 	sge = &recv->r_sge[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 	sge->addr = sg_dma_address(&recv->r_frag->f_sg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 	sge->length = sg_dma_len(&recv->r_frag->f_sg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 	ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) static int acquire_refill(struct rds_connection *conn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 	return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) static void release_refill(struct rds_connection *conn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 	clear_bit(RDS_RECV_REFILL, &conn->c_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 	/* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 	 * hot path and finding waiters is very rare.  We don't want to walk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 	 * the system-wide hashed waitqueue buckets in the fast path only to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 	 * almost never find waiters.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 	if (waitqueue_active(&conn->c_waitq))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 		wake_up_all(&conn->c_waitq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377)  * This tries to allocate and post unused work requests after making sure that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378)  * they have all the allocations they need to queue received fragments into
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379)  * sockets.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 	struct rds_ib_connection *ic = conn->c_transport_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 	struct rds_ib_recv_work *recv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 	unsigned int posted = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 	bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 	bool must_wake = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 	u32 pos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 	/* the goal here is to just make sure that someone, somewhere
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 	 * is posting buffers.  If we can't get the refill lock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 	 * let them do their thing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 	if (!acquire_refill(conn))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 	while ((prefill || rds_conn_up(conn)) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 		if (pos >= ic->i_recv_ring.w_nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) 			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 					pos);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 		recv = &ic->i_recvs[pos];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 		ret = rds_ib_recv_refill_one(conn, recv, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 		if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 			must_wake = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 		rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 			 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 			 (long)sg_dma_address(&recv->r_frag->f_sg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 		/* XXX when can this fail? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 		if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 			rds_ib_conn_error(conn, "recv post on "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 			       "%pI6c returned %d, disconnecting and "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 			       "reconnecting\n", &conn->c_faddr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 			       ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 		posted++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 		if ((posted > 128 && need_resched()) || posted > 8192) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 			must_wake = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 	/* We're doing flow control - update the window. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 	if (ic->i_flowctl && posted)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 		rds_ib_advertise_credits(conn, posted);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 	release_refill(conn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 	/* if we're called from the softirq handler, we'll be GFP_NOWAIT.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 	 * in this case the ring being low is going to lead to more interrupts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 	 * and we can safely let the softirq code take care of it unless the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 	 * ring is completely empty.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 	 * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 	 * we might have raced with the softirq code while we had the refill
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 	 * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 	 * if we should requeue.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 	if (rds_conn_up(conn) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 	    (must_wake ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 	    (can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 	    rds_ib_ring_empty(&ic->i_recv_ring))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 		queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 	if (can_wait)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 		cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465)  * We want to recycle several types of recv allocations, like incs and frags.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466)  * To use this, the *_free() function passes in the ptr to a list_head within
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467)  * the recyclee, as well as the cache to put it on.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469)  * First, we put the memory on a percpu list. When this reaches a certain size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470)  * We move it to an intermediate non-percpu list in a lockless manner, with some
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471)  * xchg/compxchg wizardry.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473)  * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474)  * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475)  * list_empty() will return true with one element is actually present.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) static void rds_ib_recv_cache_put(struct list_head *new_item,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 				 struct rds_ib_refill_cache *cache)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 	struct list_head *old, *chpfirst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 	chpfirst = __this_cpu_read(cache->percpu->first);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 	if (!chpfirst)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 		INIT_LIST_HEAD(new_item);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 	else /* put on front */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 		list_add_tail(new_item, chpfirst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 	__this_cpu_write(cache->percpu->first, new_item);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 	__this_cpu_inc(cache->percpu->count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 	if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 		goto end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 	 * Return our per-cpu first list to the cache's xfer by atomically
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 	 * grabbing the current xfer list, appending it to our per-cpu list,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 	 * and then atomically returning that entire list back to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 	 * cache's xfer list as long as it's still empty.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 		old = xchg(&cache->xfer, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 		if (old)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 			list_splice_entire_tail(old, chpfirst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 		old = cmpxchg(&cache->xfer, NULL, chpfirst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 	} while (old);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 	__this_cpu_write(cache->percpu->first, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 	__this_cpu_write(cache->percpu->count, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) end:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 	struct list_head *head = cache->ready;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 	if (head) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 		if (!list_empty(head)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 			cache->ready = head->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 			list_del_init(head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 		} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 			cache->ready = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 	return head;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 	struct rds_ib_incoming *ibinc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 	struct rds_page_frag *frag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 	unsigned long to_copy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 	unsigned long frag_off = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 	int copied = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 	u32 len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 	len = be32_to_cpu(inc->i_hdr.h_len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 	while (iov_iter_count(to) && copied < len) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 		if (frag_off == RDS_FRAG_SIZE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 			frag = list_entry(frag->f_item.next,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 					  struct rds_page_frag, f_item);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 			frag_off = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 		to_copy = min_t(unsigned long, iov_iter_count(to),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 				RDS_FRAG_SIZE - frag_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 		to_copy = min_t(unsigned long, to_copy, len - copied);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 		/* XXX needs + offset for multiple recvs per page */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 		rds_stats_add(s_copy_to_user, to_copy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 		ret = copy_page_to_iter(sg_page(&frag->f_sg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 					frag->f_sg.offset + frag_off,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 					to_copy,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 					to);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 		if (ret != to_copy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 			return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 		frag_off += to_copy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 		copied += to_copy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 	return copied;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) /* ic starts out kzalloc()ed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 	struct ib_send_wr *wr = &ic->i_ack_wr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 	struct ib_sge *sge = &ic->i_ack_sge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 	sge->addr = ic->i_ack_dma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 	sge->length = sizeof(struct rds_header);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 	sge->lkey = ic->i_pd->local_dma_lkey;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 	wr->sg_list = sge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 	wr->num_sge = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) 	wr->opcode = IB_WR_SEND;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 	wr->wr_id = RDS_IB_ACK_WR_ID;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590)  * You'd think that with reliable IB connections you wouldn't need to ack
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591)  * messages that have been received.  The problem is that IB hardware generates
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592)  * an ack message before it has DMAed the message into memory.  This creates a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593)  * potential message loss if the HCA is disabled for any reason between when it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594)  * sends the ack and before the message is DMAed and processed.  This is only a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595)  * potential issue if another HCA is available for fail-over.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597)  * When the remote host receives our ack they'll free the sent message from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598)  * their send queue.  To decrease the latency of this we always send an ack
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599)  * immediately after we've received messages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601)  * For simplicity, we only have one ack in flight at a time.  This puts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602)  * pressure on senders to have deep enough send queues to absorb the latency of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603)  * a single ack frame being in flight.  This might not be good enough.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605)  * This is implemented by have a long-lived send_wr and sge which point to a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606)  * statically allocated ack frame.  This ack wr does not fall under the ring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607)  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608)  * room for it beyond the ring size.  Send completion notices its special
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609)  * wr_id and avoids working with the ring in that case.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) #ifndef KERNEL_HAS_ATOMIC64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 	spin_lock_irqsave(&ic->i_ack_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 	ic->i_ack_next = seq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 	if (ack_required)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 	u64 seq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 	spin_lock_irqsave(&ic->i_ack_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 	seq = ic->i_ack_next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 	return seq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 	atomic64_set(&ic->i_ack_next, seq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 	if (ack_required) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 		smp_mb__before_atomic();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 	smp_mb__after_atomic();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 	return atomic64_read(&ic->i_ack_next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 	struct rds_header *hdr = ic->i_ack;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 	u64 seq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 	seq = rds_ib_get_ack(ic);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 	ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, ic->i_ack_dma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 				   sizeof(*hdr), DMA_TO_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 	rds_message_populate_header(hdr, 0, 0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 	hdr->h_ack = cpu_to_be64(seq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 	hdr->h_credit = adv_credits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 	rds_message_make_checksum(hdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 	ib_dma_sync_single_for_device(ic->rds_ibdev->dev, ic->i_ack_dma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 				      sizeof(*hdr), DMA_TO_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 	ic->i_ack_queued = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 	if (unlikely(ret)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 		/* Failed to send. Release the WR, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 		 * force another ACK.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 		rds_ib_stats_inc(s_ib_ack_send_failure);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 		rds_ib_conn_error(ic->conn, "sending ack failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 		rds_ib_stats_inc(s_ib_ack_sent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693)  * There are 3 ways of getting acknowledgements to the peer:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694)  *  1.	We call rds_ib_attempt_ack from the recv completion handler
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695)  *	to send an ACK-only frame.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696)  *	However, there can be only one such frame in the send queue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697)  *	at any time, so we may have to postpone it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698)  *  2.	When another (data) packet is transmitted while there's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699)  *	an ACK in the queue, we piggyback the ACK sequence number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700)  *	on the data packet.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701)  *  3.	If the ACK WR is done sending, we get called from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702)  *	send queue completion handler, and check whether there's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703)  *	another ACK pending (postponed because the WR was on the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704)  *	queue). If so, we transmit it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706)  * We maintain 2 variables:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707)  *  -	i_ack_flags, which keeps track of whether the ACK WR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708)  *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709)  *  -	i_ack_next, which is the last sequence number we received
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711)  * Potentially, send queue and receive queue handlers can run concurrently.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712)  * It would be nice to not have to use a spinlock to synchronize things,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713)  * but the one problem that rules this out is that 64bit updates are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714)  * not atomic on all platforms. Things would be a lot simpler if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715)  * we had atomic64 or maybe cmpxchg64 everywhere.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717)  * Reconnecting complicates this picture just slightly. When we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718)  * reconnect, we may be seeing duplicate packets. The peer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719)  * is retransmitting them, because it hasn't seen an ACK for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720)  * them. It is important that we ACK these.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722)  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723)  * this flag set *MUST* be acknowledged immediately.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727)  * When we get here, we're called from the recv queue handler.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728)  * Check whether we ought to transmit an ACK.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) void rds_ib_attempt_ack(struct rds_ib_connection *ic)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 	unsigned int adv_credits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 		rds_ib_stats_inc(s_ib_ack_send_delayed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 	/* Can we get a send credit? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 		rds_ib_stats_inc(s_ib_tx_throttle);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 	rds_ib_send_ack(ic, adv_credits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754)  * We get here from the send completion handler, when the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755)  * adapter tells us the ACK frame was sent.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 	rds_ib_attempt_ack(ic);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764)  * This is called by the regular xmit code when it wants to piggyback
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765)  * an ACK on an outgoing frame.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 	return rds_ib_get_ack(ic);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775)  * It's kind of lame that we're copying from the posted receive pages into
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776)  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777)  * them.  But receiving new congestion bitmaps should be a *rare* event, so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778)  * hopefully we won't need to invest that complexity in making it more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779)  * efficient.  By copying we can share a simpler core with TCP which has to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780)  * copy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) static void rds_ib_cong_recv(struct rds_connection *conn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 			      struct rds_ib_incoming *ibinc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 	struct rds_cong_map *map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 	unsigned int map_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 	unsigned int map_page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 	struct rds_page_frag *frag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 	unsigned long frag_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 	unsigned long to_copy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	unsigned long copied;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 	__le64 uncongested = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 	void *addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 	/* catch completely corrupt packets */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 	map = conn->c_fcong;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 	map_page = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 	map_off = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 	frag_off = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 	copied = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 	while (copied < RDS_CONG_MAP_BYTES) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 		__le64 *src, *dst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 		unsigned int k;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 		addr = kmap_atomic(sg_page(&frag->f_sg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 		src = addr + frag->f_sg.offset + frag_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 		dst = (void *)map->m_page_addrs[map_page] + map_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 		for (k = 0; k < to_copy; k += 8) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 			/* Record ports that became uncongested, ie
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 			 * bits that changed from 0 to 1. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 			uncongested |= ~(*src) & *dst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 			*dst++ = *src++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 		kunmap_atomic(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 		copied += to_copy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 		map_off += to_copy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 		if (map_off == PAGE_SIZE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 			map_off = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 			map_page++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 		frag_off += to_copy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 		if (frag_off == RDS_FRAG_SIZE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 			frag = list_entry(frag->f_item.next,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 					  struct rds_page_frag, f_item);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 			frag_off = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 	/* the congestion map is in little endian order */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 	rds_cong_map_updated(map, le64_to_cpu(uncongested));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) static void rds_ib_process_recv(struct rds_connection *conn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 				struct rds_ib_recv_work *recv, u32 data_len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 				struct rds_ib_ack_state *state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 	struct rds_ib_connection *ic = conn->c_transport_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 	struct rds_ib_incoming *ibinc = ic->i_ibinc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 	struct rds_header *ihdr, *hdr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 	dma_addr_t dma_addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 	/* XXX shut down the connection if port 0,0 are seen? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 		 data_len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 	if (data_len < sizeof(struct rds_header)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 		rds_ib_conn_error(conn, "incoming message "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 		       "from %pI6c didn't include a "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 		       "header, disconnecting and "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 		       "reconnecting\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 		       &conn->c_faddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 	data_len -= sizeof(struct rds_header);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 	ihdr = ic->i_recv_hdrs[recv - ic->i_recvs];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 	ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, dma_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 				   sizeof(*ihdr), DMA_FROM_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 	/* Validate the checksum. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 	if (!rds_message_verify_checksum(ihdr)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 		rds_ib_conn_error(conn, "incoming message "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 		       "from %pI6c has corrupted header - "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 		       "forcing a reconnect\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 		       &conn->c_faddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 		rds_stats_inc(s_recv_drop_bad_checksum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 		goto done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 	/* Process the ACK sequence which comes with every packet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 	state->ack_recv = be64_to_cpu(ihdr->h_ack);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 	state->ack_recv_valid = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 	/* Process the credits update if there was one */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 	if (ihdr->h_credit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 		rds_ib_send_add_credits(conn, ihdr->h_credit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 		/* This is an ACK-only packet. The fact that it gets
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 		 * special treatment here is that historically, ACKs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 		 * were rather special beasts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 		rds_ib_stats_inc(s_ib_ack_received);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 		 * Usually the frags make their way on to incs and are then freed as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 		 * the inc is freed.  We don't go that route, so we have to drop the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 		 * page ref ourselves.  We can't just leave the page on the recv
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 		 * because that confuses the dma mapping of pages and each recv's use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 		 * of a partial page.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 		 * FIXME: Fold this into the code path below.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 		rds_ib_frag_free(ic, recv->r_frag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 		recv->r_frag = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 		goto done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 	 * If we don't already have an inc on the connection then this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 	 * fragment has a header and starts a message.. copy its header
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 	 * into the inc and save the inc so we can hang upcoming fragments
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 	 * off its list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 	if (!ibinc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 		ibinc = recv->r_ibinc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 		recv->r_ibinc = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 		ic->i_ibinc = ibinc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 		hdr = &ibinc->ii_inc.i_hdr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 				local_clock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 		memcpy(hdr, ihdr, sizeof(*hdr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 		ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 				local_clock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 			 ic->i_recv_data_rem, hdr->h_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 		hdr = &ibinc->ii_inc.i_hdr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 		/* We can't just use memcmp here; fragments of a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 		 * single message may carry different ACKs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 		if (hdr->h_sequence != ihdr->h_sequence ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 		    hdr->h_len != ihdr->h_len ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 		    hdr->h_sport != ihdr->h_sport ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 		    hdr->h_dport != ihdr->h_dport) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 			rds_ib_conn_error(conn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 				"fragment header mismatch; forcing reconnect\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 			goto done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 	recv->r_frag = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 	else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 		ic->i_recv_data_rem = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 		ic->i_ibinc = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 			rds_ib_cong_recv(conn, ibinc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 			rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 					  &ibinc->ii_inc, GFP_ATOMIC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 			state->ack_next = be64_to_cpu(hdr->h_sequence);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 			state->ack_next_valid = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 		/* Evaluate the ACK_REQUIRED flag *after* we received
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 		 * the complete frame, and after bumping the next_rx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 		 * sequence. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 			rds_stats_inc(s_recv_ack_required);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 			state->ack_required = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 		rds_inc_put(&ibinc->ii_inc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 	ib_dma_sync_single_for_device(ic->rds_ibdev->dev, dma_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 				      sizeof(*ihdr), DMA_FROM_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 			     struct ib_wc *wc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 			     struct rds_ib_ack_state *state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 	struct rds_connection *conn = ic->conn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 	struct rds_ib_recv_work *recv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 	rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 		 (unsigned long long)wc->wr_id, wc->status,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 		 ib_wc_status_msg(wc->status), wc->byte_len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 		 be32_to_cpu(wc->ex.imm_data));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 	rds_ib_stats_inc(s_ib_rx_cq_event);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 	recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 	ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 			DMA_FROM_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 	/* Also process recvs in connecting state because it is possible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 	 * to get a recv completion _before_ the rdmacm ESTABLISHED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 	 * event is processed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 	if (wc->status == IB_WC_SUCCESS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 		rds_ib_process_recv(conn, recv, wc->byte_len, state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 		/* We expect errors as the qp is drained during shutdown */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 		if (rds_conn_up(conn) || rds_conn_connecting(conn))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 			rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 					  &conn->c_laddr, &conn->c_faddr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 					  conn->c_tos, wc->status,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 					  ib_wc_status_msg(wc->status),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 					  wc->vendor_err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 	/* rds_ib_process_recv() doesn't always consume the frag, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 	 * we might not have called it at all if the wc didn't indicate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 	 * success. We already unmapped the frag's pages, though, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 	 * the following rds_ib_ring_free() call tells the refill path
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 	 * that it will not find an allocated frag here. Make sure we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 	 * keep that promise by freeing a frag that's still on the ring.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 	if (recv->r_frag) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 		rds_ib_frag_free(ic, recv->r_frag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 		recv->r_frag = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 	rds_ib_ring_free(&ic->i_recv_ring, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 	/* If we ever end up with a really empty receive ring, we're
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 	 * in deep trouble, as the sender will definitely see RNR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 	 * timeouts. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 	if (rds_ib_ring_empty(&ic->i_recv_ring))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 		rds_ib_stats_inc(s_ib_rx_ring_empty);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 	if (rds_ib_ring_low(&ic->i_recv_ring)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 		rds_ib_recv_refill(conn, 0, GFP_NOWAIT | __GFP_NOWARN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 		rds_ib_stats_inc(s_ib_rx_refill_from_cq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) int rds_ib_recv_path(struct rds_conn_path *cp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 	struct rds_connection *conn = cp->cp_conn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 	struct rds_ib_connection *ic = conn->c_transport_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 	rdsdebug("conn %p\n", conn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 	if (rds_conn_up(conn)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 		rds_ib_attempt_ack(ic);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 		rds_ib_recv_refill(conn, 0, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 		rds_ib_stats_inc(s_ib_rx_refill_from_thread);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) int rds_ib_recv_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 	struct sysinfo si;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 	int ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 	/* Default to 30% of all available RAM for recv memory */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 	si_meminfo(&si);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 	rds_ib_incoming_slab =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 		kmem_cache_create_usercopy("rds_ib_incoming",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 					   sizeof(struct rds_ib_incoming),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 					   0, SLAB_HWCACHE_ALIGN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 					   offsetof(struct rds_ib_incoming,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 						    ii_inc.i_usercopy),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 					   sizeof(struct rds_inc_usercopy),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 					   NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 	if (!rds_ib_incoming_slab)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 					sizeof(struct rds_page_frag),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 					0, SLAB_HWCACHE_ALIGN, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 	if (!rds_ib_frag_slab) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 		kmem_cache_destroy(rds_ib_incoming_slab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 		rds_ib_incoming_slab = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 		ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) void rds_ib_recv_exit(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 	WARN_ON(atomic_read(&rds_ib_allocation));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 	kmem_cache_destroy(rds_ib_incoming_slab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 	kmem_cache_destroy(rds_ib_frag_slab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) }