Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Workingset detection
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) #include <linux/memcontrol.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/mm_inline.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/writeback.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/shmem_fs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/pagemap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/atomic.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/swap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/dax.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/fs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21)  *		Double CLOCK lists
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23)  * Per node, two clock lists are maintained for file pages: the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)  * inactive and the active list.  Freshly faulted pages start out at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25)  * the head of the inactive list and page reclaim scans pages from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)  * tail.  Pages that are accessed multiple times on the inactive list
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  * are promoted to the active list, to protect them from reclaim,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  * whereas active pages are demoted to the inactive list when the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  * active list grows too big.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  *   fault ------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)  *                                 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)  *              +--------------+   |            +-------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)  *   reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35)  *              +--------------+                +-------------+    |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36)  *                     |                                           |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)  *                     +-------------- promotion ------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)  *		Access frequency and refault distance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)  * A workload is thrashing when its pages are frequently used but they
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43)  * are evicted from the inactive list every time before another access
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44)  * would have promoted them to the active list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46)  * In cases where the average access distance between thrashing pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47)  * is bigger than the size of memory there is nothing that can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48)  * done - the thrashing set could never fit into memory under any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49)  * circumstance.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51)  * However, the average access distance could be bigger than the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52)  * inactive list, yet smaller than the size of memory.  In this case,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53)  * the set could fit into memory if it weren't for the currently
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54)  * active pages - which may be used more, hopefully less frequently:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56)  *      +-memory available to cache-+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57)  *      |                           |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58)  *      +-inactive------+-active----+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59)  *  a b | c d e f g h i | J K L M N |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60)  *      +---------------+-----------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62)  * It is prohibitively expensive to accurately track access frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63)  * of pages.  But a reasonable approximation can be made to measure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64)  * thrashing on the inactive list, after which refaulting pages can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65)  * activated optimistically to compete with the existing active pages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)  * Approximating inactive page access frequency - Observations:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69)  * 1. When a page is accessed for the first time, it is added to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70)  *    head of the inactive list, slides every existing inactive page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71)  *    towards the tail by one slot, and pushes the current tail page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72)  *    out of memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74)  * 2. When a page is accessed for the second time, it is promoted to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75)  *    the active list, shrinking the inactive list by one slot.  This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76)  *    also slides all inactive pages that were faulted into the cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77)  *    more recently than the activated page towards the tail of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78)  *    inactive list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80)  * Thus:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82)  * 1. The sum of evictions and activations between any two points in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83)  *    time indicate the minimum number of inactive pages accessed in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84)  *    between.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86)  * 2. Moving one inactive page N page slots towards the tail of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87)  *    list requires at least N inactive page accesses.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89)  * Combining these:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91)  * 1. When a page is finally evicted from memory, the number of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92)  *    inactive pages accessed while the page was in cache is at least
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93)  *    the number of page slots on the inactive list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95)  * 2. In addition, measuring the sum of evictions and activations (E)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96)  *    at the time of a page's eviction, and comparing it to another
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97)  *    reading (R) at the time the page faults back into memory tells
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98)  *    the minimum number of accesses while the page was not cached.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99)  *    This is called the refault distance.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)  * Because the first access of the page was the fault and the second
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)  * access the refault, we combine the in-cache distance with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)  * out-of-cache distance to get the complete minimum access distance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)  * of this page:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)  *      NR_inactive + (R - E)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)  * And knowing the minimum access distance of a page, we can easily
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)  * tell if the page would be able to stay in cache assuming all page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)  * slots in the cache were available:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)  *   NR_inactive + (R - E) <= NR_inactive + NR_active
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)  * which can be further simplified to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)  *   (R - E) <= NR_active
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118)  * Put into words, the refault distance (out-of-cache) can be seen as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119)  * a deficit in inactive list space (in-cache).  If the inactive list
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)  * had (R - E) more page slots, the page would not have been evicted
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121)  * in between accesses, but activated instead.  And on a full system,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)  * the only thing eating into inactive list space is active pages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125)  *		Refaulting inactive pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127)  * All that is known about the active list is that the pages have been
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128)  * accessed more than once in the past.  This means that at any given
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)  * time there is actually a good chance that pages on the active list
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130)  * are no longer in active use.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)  * So when a refault distance of (R - E) is observed and there are at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133)  * least (R - E) active pages, the refaulting page is activated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)  * optimistically in the hope that (R - E) active pages are actually
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)  * used less frequently than the refaulting page - or even not used at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136)  * all anymore.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138)  * That means if inactive cache is refaulting with a suitable refault
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)  * distance, we assume the cache workingset is transitioning and put
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140)  * pressure on the current active list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)  * If this is wrong and demotion kicks in, the pages which are truly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143)  * used more frequently will be reactivated while the less frequently
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144)  * used once will be evicted from memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)  * But if this is right, the stale pages will be pushed out of memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)  * and the used pages get to stay in cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149)  *		Refaulting active pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)  * If on the other hand the refaulting pages have recently been
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)  * deactivated, it means that the active list is no longer protecting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)  * actively used cache from reclaim. The cache is NOT transitioning to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154)  * a different workingset; the existing workingset is thrashing in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)  * space allocated to the page cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)  *		Implementation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160)  * For each node's LRU lists, a counter for inactive evictions and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161)  * activations is maintained (node->nonresident_age).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)  * On eviction, a snapshot of this counter (along with some bits to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164)  * identify the node) is stored in the now empty page cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165)  * slot of the evicted page.  This is called a shadow entry.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167)  * On cache misses for which there are shadow entries, an eligible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168)  * refault distance will immediately activate the refaulting page.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) #define EVICTION_SHIFT	((BITS_PER_LONG - BITS_PER_XA_VALUE) +	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 			 1 + NODES_SHIFT + MEM_CGROUP_ID_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) #define EVICTION_MASK	(~0UL >> EVICTION_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)  * Eviction timestamps need to be able to cover the full range of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)  * actionable refaults. However, bits are tight in the xarray
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178)  * entry, and after storing the identifier for the lruvec there might
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179)  * not be enough left to represent every single actionable refault. In
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180)  * that case, we have to sacrifice granularity for distance, and group
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181)  * evictions into coarser buckets by shaving off lower timestamp bits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) static unsigned int bucket_order __read_mostly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 			 bool workingset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	eviction >>= bucket_order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	eviction &= EVICTION_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	eviction = (eviction << 1) | workingset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	return xa_mk_value(eviction);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 			  unsigned long *evictionp, bool *workingsetp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	unsigned long entry = xa_to_value(shadow);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	int memcgid, nid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	bool workingset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	workingset = entry & 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	entry >>= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	nid = entry & ((1UL << NODES_SHIFT) - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	entry >>= NODES_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	entry >>= MEM_CGROUP_ID_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	*memcgidp = memcgid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	*pgdat = NODE_DATA(nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	*evictionp = entry << bucket_order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	*workingsetp = workingset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218)  * workingset_age_nonresident - age non-resident entries as LRU ages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219)  * @lruvec: the lruvec that was aged
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220)  * @nr_pages: the number of pages to count
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222)  * As in-memory pages are aged, non-resident pages need to be aged as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223)  * well, in order for the refault distances later on to be comparable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224)  * to the in-memory dimensions. This function allows reclaim and LRU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225)  * operations to drive the non-resident aging along in parallel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	 * Reclaiming a cgroup means reclaiming all its children in a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	 * round-robin fashion. That means that each cgroup has an LRU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	 * order that is composed of the LRU orders of its child
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	 * cgroups; and every page has an LRU position not just in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	 * cgroup that owns it, but in all of that group's ancestors.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	 * So when the physical inactive list of a leaf cgroup ages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	 * the virtual inactive lists of all its parents, including
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	 * the root cgroup's, age as well.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 		atomic_long_add(nr_pages, &lruvec->nonresident_age);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	} while ((lruvec = parent_lruvec(lruvec)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246)  * workingset_eviction - note the eviction of a page from memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247)  * @target_memcg: the cgroup that is causing the reclaim
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248)  * @page: the page being evicted
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)  * Returns a shadow entry to be stored in @page->mapping->i_pages in place
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251)  * of the evicted @page so that a later refault can be detected.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) void *workingset_eviction(struct page *page, struct mem_cgroup *target_memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	struct pglist_data *pgdat = page_pgdat(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	unsigned long eviction;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	struct lruvec *lruvec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	int memcgid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	/* Page is fully exclusive and pins page->mem_cgroup */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	VM_BUG_ON_PAGE(PageLRU(page), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	VM_BUG_ON_PAGE(page_count(page), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	VM_BUG_ON_PAGE(!PageLocked(page), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	workingset_age_nonresident(lruvec, thp_nr_pages(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	/* XXX: target_memcg can be NULL, go through lruvec */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	memcgid = mem_cgroup_id(lruvec_memcg(lruvec));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	eviction = atomic_long_read(&lruvec->nonresident_age);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	return pack_shadow(memcgid, pgdat, eviction, PageWorkingset(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274)  * workingset_refault - evaluate the refault of a previously evicted page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275)  * @page: the freshly allocated replacement page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276)  * @shadow: shadow entry of the evicted page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278)  * Calculates and evaluates the refault distance of the previously
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279)  * evicted page in the context of the node and the memcg whose memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280)  * pressure caused the eviction.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) void workingset_refault(struct page *page, void *shadow)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	bool file = page_is_file_lru(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	struct mem_cgroup *eviction_memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	struct lruvec *eviction_lruvec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	unsigned long refault_distance;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	unsigned long workingset_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	struct pglist_data *pgdat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	unsigned long eviction;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	struct lruvec *lruvec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	unsigned long refault;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	bool workingset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	int memcgid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 	unpack_shadow(shadow, &memcgid, &pgdat, &eviction, &workingset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	 * Look up the memcg associated with the stored ID. It might
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 	 * have been deleted since the page's eviction.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 	 * Note that in rare events the ID could have been recycled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 	 * for a new cgroup that refaults a shared page. This is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	 * impossible to tell from the available data. However, this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	 * should be a rare and limited disturbance, and activations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	 * are always speculative anyway. Ultimately, it's the aging
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	 * algorithm's job to shake out the minimum access frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	 * for the active cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	 * would be better if the root_mem_cgroup existed in all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	 * configurations instead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	eviction_memcg = mem_cgroup_from_id(memcgid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	if (!mem_cgroup_disabled() && !eviction_memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 	refault = atomic_long_read(&eviction_lruvec->nonresident_age);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	 * Calculate the refault distance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	 * The unsigned subtraction here gives an accurate distance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	 * across nonresident_age overflows in most cases. There is a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	 * special case: usually, shadow entries have a short lifetime
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	 * and are either refaulted or reclaimed along with the inode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	 * before they get too old.  But it is not impossible for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	 * nonresident_age to lap a shadow entry in the field, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	 * can then result in a false small refault distance, leading
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	 * to a false activation should this old entry actually
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	 * refault again.  However, earlier kernels used to deactivate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	 * unconditionally with *every* reclaim invocation for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	 * longest time, so the occasional inappropriate activation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	 * leading to pressure on the active list is not a problem.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	refault_distance = (refault - eviction) & EVICTION_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 	 * The activation decision for this page is made at the level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 	 * where the eviction occurred, as that is where the LRU order
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	 * during page reclaim is being determined.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	 * However, the cgroup that will own the page is the one that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	 * is actually experiencing the refault event.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	memcg = page_memcg(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	inc_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	 * Compare the distance to the existing workingset size. We
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	 * don't activate pages that couldn't stay resident even if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	 * all the memory was available to the workingset. Whether
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	 * workingset competition needs to consider anon or not depends
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	 * on having swap.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	if (!file) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 		workingset_size += lruvec_page_state(eviction_lruvec,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 						     NR_INACTIVE_FILE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	if (mem_cgroup_get_nr_swap_pages(memcg) > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 		workingset_size += lruvec_page_state(eviction_lruvec,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 						     NR_ACTIVE_ANON);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 		if (file) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 			workingset_size += lruvec_page_state(eviction_lruvec,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 						     NR_INACTIVE_ANON);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	if (refault_distance > workingset_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 	SetPageActive(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 	workingset_age_nonresident(lruvec, thp_nr_pages(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 	inc_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	/* Page was active prior to eviction */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	if (workingset) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 		SetPageWorkingset(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 		/* XXX: Move to lru_cache_add() when it supports new vs putback */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 		spin_lock_irq(&page_pgdat(page)->lru_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 		lru_note_cost_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 		spin_unlock_irq(&page_pgdat(page)->lru_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 		inc_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394)  * workingset_activation - note a page activation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395)  * @page: page that is being activated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) void workingset_activation(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 	struct lruvec *lruvec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	 * Filter non-memcg pages here, e.g. unmap can call
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	 * mark_page_accessed() on VDSO pages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	 * XXX: See workingset_refault() - this should return
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 	 * root_mem_cgroup even for !CONFIG_MEMCG.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 	memcg = page_memcg_rcu(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 	if (!mem_cgroup_disabled() && !memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 	lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 	workingset_age_nonresident(lruvec, thp_nr_pages(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420)  * Shadow entries reflect the share of the working set that does not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421)  * fit into memory, so their number depends on the access pattern of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422)  * the workload.  In most cases, they will refault or get reclaimed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423)  * along with the inode, but a (malicious) workload that streams
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424)  * through files with a total size several times that of available
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425)  * memory, while preventing the inodes from being reclaimed, can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426)  * create excessive amounts of shadow nodes.  To keep a lid on this,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427)  * track shadow nodes and reclaim them when they grow way past the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428)  * point where they would still be useful.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) static struct list_lru shadow_nodes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) void workingset_update_node(struct xa_node *node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 	 * Track non-empty nodes that contain only shadow entries;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 	 * unlink those that contain pages or are being freed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 	 * Avoid acquiring the list_lru lock when the nodes are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 	 * already where they should be. The list_empty() test is safe
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 	 * as node->private_list is protected by the i_pages lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	VM_WARN_ON_ONCE(!irqs_disabled());  /* For __inc_lruvec_page_state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	if (node->count && node->count == node->nr_values) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 		if (list_empty(&node->private_list)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 			list_lru_add(&shadow_nodes, &node->private_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 			__inc_lruvec_slab_state(node, WORKINGSET_NODES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 		if (!list_empty(&node->private_list)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 			list_lru_del(&shadow_nodes, &node->private_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 			__dec_lruvec_slab_state(node, WORKINGSET_NODES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) static unsigned long count_shadow_nodes(struct shrinker *shrinker,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 					struct shrink_control *sc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 	unsigned long max_nodes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 	unsigned long nodes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 	unsigned long pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 	nodes = list_lru_shrink_count(&shadow_nodes, sc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 	 * Approximate a reasonable limit for the nodes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 	 * containing shadow entries. We don't need to keep more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 	 * shadow entries than possible pages on the active list,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 	 * since refault distances bigger than that are dismissed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 	 * The size of the active list converges toward 100% of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 	 * overall page cache as memory grows, with only a tiny
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 	 * inactive list. Assume the total cache size for that.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 	 * Nodes might be sparsely populated, with only one shadow
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 	 * entry in the extreme case. Obviously, we cannot keep one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	 * node for every eligible shadow entry, so compromise on a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 	 * worst-case density of 1/8th. Below that, not all eligible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 	 * refaults can be detected anymore.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 	 * On 64-bit with 7 xa_nodes per page and 64 slots
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 	 * each, this will reclaim shadow entries when they consume
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 	 * ~1.8% of available memory:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 	 * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) #ifdef CONFIG_MEMCG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 	if (sc->memcg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 		struct lruvec *lruvec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 		int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 		lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 		for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 			pages += lruvec_page_state_local(lruvec,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 							 NR_LRU_BASE + i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 		pages += lruvec_page_state_local(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 			lruvec, NR_SLAB_RECLAIMABLE_B) >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 		pages += lruvec_page_state_local(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 			lruvec, NR_SLAB_UNRECLAIMABLE_B) >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 		pages = node_present_pages(sc->nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 	max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 	if (!nodes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 		return SHRINK_EMPTY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 	if (nodes <= max_nodes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 	return nodes - max_nodes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) static enum lru_status shadow_lru_isolate(struct list_head *item,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 					  struct list_lru_one *lru,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 					  spinlock_t *lru_lock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 					  void *arg) __must_hold(lru_lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 	struct xa_node *node = container_of(item, struct xa_node, private_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 	struct address_space *mapping;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 	 * Page cache insertions and deletions synchronously maintain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 	 * the shadow node LRU under the i_pages lock and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 	 * lru_lock.  Because the page cache tree is emptied before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 	 * the inode can be destroyed, holding the lru_lock pins any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 	 * address_space that has nodes on the LRU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 	 * We can then safely transition to the i_pages lock to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 	 * pin only the address_space of the particular node we want
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 	 * to reclaim, take the node off-LRU, and drop the lru_lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 	mapping = container_of(node->array, struct address_space, i_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 	/* Coming from the list, invert the lock order */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 	if (!xa_trylock(&mapping->i_pages)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 		spin_unlock_irq(lru_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 		ret = LRU_RETRY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 	list_lru_isolate(lru, item);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 	__dec_lruvec_slab_state(node, WORKINGSET_NODES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 	spin_unlock(lru_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 	 * The nodes should only contain one or more shadow entries,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 	 * no pages, so we expect to be able to remove them all and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 	 * delete and free the empty node afterwards.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 	if (WARN_ON_ONCE(!node->nr_values))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 		goto out_invalid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 	if (WARN_ON_ONCE(node->count != node->nr_values))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 		goto out_invalid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 	mapping->nrexceptional -= node->nr_values;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 	xa_delete_node(node, workingset_update_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 	__inc_lruvec_slab_state(node, WORKINGSET_NODERECLAIM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) out_invalid:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 	xa_unlock_irq(&mapping->i_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 	ret = LRU_REMOVED_RETRY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 	cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 	spin_lock_irq(lru_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 				       struct shrink_control *sc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 	/* list_lru lock nests inside the IRQ-safe i_pages lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 	return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 					NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) static struct shrinker workingset_shadow_shrinker = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 	.count_objects = count_shadow_nodes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 	.scan_objects = scan_shadow_nodes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 	.seeks = 0, /* ->count reports only fully expendable nodes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589)  * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590)  * i_pages lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) static struct lock_class_key shadow_nodes_key;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) static int __init workingset_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 	unsigned int timestamp_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 	unsigned int max_order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 	BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 	 * Calculate the eviction bucket size to cover the longest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 	 * actionable refault distance, which is currently half of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 	 * memory (totalram_pages/2). However, memory hotplug may add
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 	 * some more pages at runtime, so keep working with up to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 	 * double the initial memory by using totalram_pages as-is.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 	timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 	max_order = fls_long(totalram_pages() - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 	if (max_order > timestamp_bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 		bucket_order = max_order - timestamp_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) 	pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 	       timestamp_bits, max_order, bucket_order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 	ret = prealloc_shrinker(&workingset_shadow_shrinker);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) 	ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) 			      &workingset_shadow_shrinker);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 		goto err_list_lru;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 	register_shrinker_prepared(&workingset_shadow_shrinker);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) err_list_lru:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 	free_prealloced_shrinker(&workingset_shadow_shrinker);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) module_init(workingset_init);