Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  *  Copyright (C) 1993  Linus Torvalds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  *  Numa awareness, Christoph Lameter, SGI, June 2005
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11) #include <linux/vmalloc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12) #include <linux/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) #include <linux/highmem.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) #include <linux/sched/signal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) #include <linux/spinlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) #include <linux/proc_fs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) #include <linux/seq_file.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) #include <linux/set_memory.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #include <linux/debugobjects.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #include <linux/kallsyms.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) #include <linux/list.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #include <linux/notifier.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) #include <linux/rbtree.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) #include <linux/xarray.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) #include <linux/rcupdate.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) #include <linux/pfn.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) #include <linux/kmemleak.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) #include <linux/atomic.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) #include <linux/compiler.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) #include <linux/llist.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) #include <linux/bitops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) #include <linux/rbtree_augmented.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) #include <linux/overflow.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) #include <trace/hooks/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) #include <linux/uaccess.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) #include <asm/tlbflush.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) #include <asm/shmparam.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) #include "internal.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) #include "pgalloc-track.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) bool is_vmalloc_addr(const void *x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) 	unsigned long addr = (unsigned long)x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) 	return addr >= VMALLOC_START && addr < VMALLOC_END;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) EXPORT_SYMBOL(is_vmalloc_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) struct vfree_deferred {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) 	struct llist_head list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) 	struct work_struct wq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) static void __vunmap(const void *, int);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) static void free_work(struct work_struct *w)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) 	struct llist_node *t, *llnode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) 		__vunmap((void *)llnode, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) /*** Page table manipulation functions ***/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) 			     pgtbl_mod_mask *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) 	pte_t *pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) 	pte = pte_offset_kernel(pmd, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) 	} while (pte++, addr += PAGE_SIZE, addr != end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) 	*mask |= PGTBL_PTE_MODIFIED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) 			     pgtbl_mod_mask *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) 	pmd_t *pmd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) 	unsigned long next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) 	int cleared;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) 	pmd = pmd_offset(pud, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) 		next = pmd_addr_end(addr, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) 		cleared = pmd_clear_huge(pmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) 		if (cleared || pmd_bad(*pmd))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) 			*mask |= PGTBL_PMD_MODIFIED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) 		if (cleared)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) 		if (pmd_none_or_clear_bad(pmd))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) 		vunmap_pte_range(pmd, addr, next, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) 		cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) 	} while (pmd++, addr = next, addr != end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) 			     pgtbl_mod_mask *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) 	pud_t *pud;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 	unsigned long next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) 	int cleared;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) 	pud = pud_offset(p4d, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 		next = pud_addr_end(addr, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) 		cleared = pud_clear_huge(pud);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 		if (cleared || pud_bad(*pud))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) 			*mask |= PGTBL_PUD_MODIFIED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 		if (cleared)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 		if (pud_none_or_clear_bad(pud))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) 		vunmap_pmd_range(pud, addr, next, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 	} while (pud++, addr = next, addr != end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) 			     pgtbl_mod_mask *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 	p4d_t *p4d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) 	unsigned long next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 	int cleared;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 	p4d = p4d_offset(pgd, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 		next = p4d_addr_end(addr, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 		cleared = p4d_clear_huge(p4d);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) 		if (cleared || p4d_bad(*p4d))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) 			*mask |= PGTBL_P4D_MODIFIED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 		if (cleared)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 		if (p4d_none_or_clear_bad(p4d))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) 		vunmap_pud_range(p4d, addr, next, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) 	} while (p4d++, addr = next, addr != end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158)  * unmap_kernel_range_noflush - unmap kernel VM area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159)  * @start: start of the VM area to unmap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160)  * @size: size of the VM area to unmap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162)  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163)  * should have been allocated using get_vm_area() and its friends.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165)  * NOTE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166)  * This function does NOT do any cache flushing.  The caller is responsible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167)  * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168)  * function and flush_tlb_kernel_range() after.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 	unsigned long end = start + size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 	unsigned long next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) 	pgd_t *pgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) 	unsigned long addr = start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 	pgtbl_mod_mask mask = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 	BUG_ON(addr >= end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 	pgd = pgd_offset_k(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) 		next = pgd_addr_end(addr, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 		if (pgd_bad(*pgd))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) 			mask |= PGTBL_PGD_MODIFIED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 		if (pgd_none_or_clear_bad(pgd))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 		vunmap_p4d_range(pgd, addr, next, &mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 	} while (pgd++, addr = next, addr != end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 		arch_sync_kernel_mappings(start, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 		pgtbl_mod_mask *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 	pte_t *pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) 	 * nr is a running index into the array which helps higher level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 	 * callers keep track of where we're up to.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 	pte = pte_alloc_kernel_track(pmd, addr, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 	if (!pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 		struct page *page = pages[*nr];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 		if (WARN_ON(!pte_none(*pte)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 			return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 		if (WARN_ON(!page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 		(*nr)++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 	} while (pte++, addr += PAGE_SIZE, addr != end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 	*mask |= PGTBL_PTE_MODIFIED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) static int vmap_pmd_range(pud_t *pud, unsigned long addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 		pgtbl_mod_mask *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) 	pmd_t *pmd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 	unsigned long next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 	if (!pmd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 		next = pmd_addr_end(addr, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 	} while (pmd++, addr = next, addr != end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 		pgtbl_mod_mask *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 	pud_t *pud;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 	unsigned long next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 	if (!pud)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 		next = pud_addr_end(addr, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) 	} while (pud++, addr = next, addr != end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 		pgtbl_mod_mask *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 	p4d_t *p4d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 	unsigned long next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 	if (!p4d)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 		next = p4d_addr_end(addr, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 	} while (p4d++, addr = next, addr != end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276)  * map_kernel_range_noflush - map kernel VM area with the specified pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277)  * @addr: start of the VM area to map
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278)  * @size: size of the VM area to map
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279)  * @prot: page protection flags to use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280)  * @pages: pages to map
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282)  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283)  * have been allocated using get_vm_area() and its friends.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285)  * NOTE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286)  * This function does NOT do any cache flushing.  The caller is responsible for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287)  * calling flush_cache_vmap() on to-be-mapped areas before calling this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288)  * function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291)  * 0 on success, -errno on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) int map_kernel_range_noflush(unsigned long addr, unsigned long size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 			     pgprot_t prot, struct page **pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 	unsigned long start = addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 	unsigned long end = addr + size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 	unsigned long next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 	pgd_t *pgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 	int err = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 	int nr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 	pgtbl_mod_mask mask = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 	BUG_ON(addr >= end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 	pgd = pgd_offset_k(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 		next = pgd_addr_end(addr, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 		if (pgd_bad(*pgd))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 			mask |= PGTBL_PGD_MODIFIED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 		if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 			return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 	} while (pgd++, addr = next, addr != end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 		arch_sync_kernel_mappings(start, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 		struct page **pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 	ret = map_kernel_range_noflush(start, size, prot, pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 	flush_cache_vmap(start, start + size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) EXPORT_SYMBOL_GPL(map_kernel_range);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) int is_vmalloc_or_module_addr(const void *x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 	 * ARM, x86-64 and sparc64 put modules in a special place,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 	 * and fall back on vmalloc() if that fails. Others
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 	 * just put it in the vmalloc space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) 	unsigned long addr = (unsigned long)x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 	if (addr >= MODULES_VADDR && addr < MODULES_END)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 	return is_vmalloc_addr(x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348)  * Walk a vmap address to the struct page it maps.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) struct page *vmalloc_to_page(const void *vmalloc_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 	unsigned long addr = (unsigned long) vmalloc_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 	struct page *page = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 	pgd_t *pgd = pgd_offset_k(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 	p4d_t *p4d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 	pud_t *pud;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 	pmd_t *pmd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 	pte_t *ptep, pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 	 * architectures that do not vmalloc module space
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 	if (pgd_none(*pgd))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 	p4d = p4d_offset(pgd, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 	if (p4d_none(*p4d))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 	pud = pud_offset(p4d, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 	 * Don't dereference bad PUD or PMD (below) entries. This will also
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 	 * identify huge mappings, which we may encounter on architectures
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 	 * not [unambiguously] associated with a struct page, so there is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 	 * no correct value to return for them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 	WARN_ON_ONCE(pud_bad(*pud));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 	if (pud_none(*pud) || pud_bad(*pud))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 	pmd = pmd_offset(pud, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 	WARN_ON_ONCE(pmd_bad(*pmd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 	if (pmd_none(*pmd) || pmd_bad(*pmd))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 	ptep = pte_offset_map(pmd, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 	pte = *ptep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 	if (pte_present(pte))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 		page = pte_page(pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 	pte_unmap(ptep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 	return page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) EXPORT_SYMBOL(vmalloc_to_page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399)  * Map a vmalloc()-space virtual address to the physical page frame number.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) EXPORT_SYMBOL(vmalloc_to_pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) /*** Global kva allocator ***/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) static DEFINE_SPINLOCK(vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) static DEFINE_SPINLOCK(free_vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) /* Export for kexec only */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) LIST_HEAD(vmap_area_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) static LLIST_HEAD(vmap_purge_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) static struct rb_root vmap_area_root = RB_ROOT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) static bool vmap_initialized __read_mostly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423)  * This kmem_cache is used for vmap_area objects. Instead of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424)  * allocating from slab we reuse an object from this cache to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425)  * make things faster. Especially in "no edge" splitting of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426)  * free block.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) static struct kmem_cache *vmap_area_cachep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431)  * This linked list is used in pair with free_vmap_area_root.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432)  * It gives O(1) access to prev/next to perform fast coalescing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) static LIST_HEAD(free_vmap_area_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437)  * This augment red-black tree represents the free vmap space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438)  * All vmap_area objects in this tree are sorted by va->va_start
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439)  * address. It is used for allocation and merging when a vmap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440)  * object is released.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442)  * Each vmap_area node contains a maximum available free block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443)  * of its sub-tree, right or left. Therefore it is possible to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444)  * find a lowest match of free area.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) static struct rb_root free_vmap_area_root = RB_ROOT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449)  * Preload a CPU with one object for "no edge" split case. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450)  * aim is to get rid of allocations from the atomic context, thus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451)  * to use more permissive allocation masks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) static __always_inline unsigned long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) va_size(struct vmap_area *va)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 	return (va->va_end - va->va_start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) static __always_inline unsigned long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) get_subtree_max_size(struct rb_node *node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 	struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 	va = rb_entry_safe(node, struct vmap_area, rb_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 	return va ? va->subtree_max_size : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471)  * Gets called when remove the node and rotate.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) static __always_inline unsigned long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) compute_subtree_max_size(struct vmap_area *va)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 	return max3(va_size(va),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 		get_subtree_max_size(va->rb_node.rb_left),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 		get_subtree_max_size(va->rb_node.rb_right));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) static void purge_vmap_area_lazy(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) static unsigned long lazy_max_pages(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) static atomic_long_t nr_vmalloc_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) unsigned long vmalloc_nr_pages(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 	return atomic_long_read(&nr_vmalloc_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) EXPORT_SYMBOL_GPL(vmalloc_nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) static struct vmap_area *__find_vmap_area(unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 	struct rb_node *n = vmap_area_root.rb_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 	while (n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 		struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 		va = rb_entry(n, struct vmap_area, rb_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 		if (addr < va->va_start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 			n = n->rb_left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 		else if (addr >= va->va_end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 			n = n->rb_right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 			return va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516)  * This function returns back addresses of parent node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517)  * and its left or right link for further processing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519)  * Otherwise NULL is returned. In that case all further
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520)  * steps regarding inserting of conflicting overlap range
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521)  * have to be declined and actually considered as a bug.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) static __always_inline struct rb_node **
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) find_va_links(struct vmap_area *va,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 	struct rb_root *root, struct rb_node *from,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 	struct rb_node **parent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 	struct vmap_area *tmp_va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 	struct rb_node **link;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 	if (root) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 		link = &root->rb_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 		if (unlikely(!*link)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 			*parent = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 			return link;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 		link = &from;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 	 * Go to the bottom of the tree. When we hit the last point
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 	 * we end up with parent rb_node and correct direction, i name
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 	 * it link, where the new va->rb_node will be attached to.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 		 * During the traversal we also do some sanity check.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 		 * Trigger the BUG() if there are sides(left/right)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 		 * or full overlaps.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 		if (va->va_start < tmp_va->va_end &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 				va->va_end <= tmp_va->va_start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 			link = &(*link)->rb_left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 		else if (va->va_end > tmp_va->va_start &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 				va->va_start >= tmp_va->va_end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 			link = &(*link)->rb_right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 		else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 	} while (*link);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 	*parent = &tmp_va->rb_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 	return link;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) static __always_inline struct list_head *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 	struct list_head *list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 	if (unlikely(!parent))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 		 * The red-black tree where we try to find VA neighbors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 		 * before merging or inserting is empty, i.e. it means
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 		 * there is no free vmap space. Normally it does not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 		 * happen but we handle this case anyway.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 	return (&parent->rb_right == link ? list->next : list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) static __always_inline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) link_va(struct vmap_area *va, struct rb_root *root,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 	 * VA is still not in the list, but we can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 	 * identify its future previous list_head node.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 	if (likely(parent)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 		if (&parent->rb_right != link)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 			head = head->prev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 	/* Insert to the rb-tree */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 	rb_link_node(&va->rb_node, parent, link);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 	if (root == &free_vmap_area_root) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 		 * Some explanation here. Just perform simple insertion
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 		 * to the tree. We do not set va->subtree_max_size to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 		 * its current size before calling rb_insert_augmented().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 		 * It is because of we populate the tree from the bottom
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) 		 * to parent levels when the node _is_ in the tree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 		 * Therefore we set subtree_max_size to zero after insertion,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 		 * to let __augment_tree_propagate_from() puts everything to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 		 * the correct order later on.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 		rb_insert_augmented(&va->rb_node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 			root, &free_vmap_area_rb_augment_cb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 		va->subtree_max_size = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 		rb_insert_color(&va->rb_node, root);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 	/* Address-sort this list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 	list_add(&va->list, head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) static __always_inline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) unlink_va(struct vmap_area *va, struct rb_root *root)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 	if (root == &free_vmap_area_root)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 		rb_erase_augmented(&va->rb_node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 			root, &free_vmap_area_rb_augment_cb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 		rb_erase(&va->rb_node, root);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 	list_del(&va->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 	RB_CLEAR_NODE(&va->rb_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) #if DEBUG_AUGMENT_PROPAGATE_CHECK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) augment_tree_propagate_check(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 	struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 	unsigned long computed_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 	list_for_each_entry(va, &free_vmap_area_list, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 		computed_size = compute_subtree_max_size(va);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 		if (computed_size != va->subtree_max_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) 			pr_emerg("tree is corrupted: %lu, %lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 				va_size(va), va->subtree_max_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662)  * This function populates subtree_max_size from bottom to upper
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663)  * levels starting from VA point. The propagation must be done
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664)  * when VA size is modified by changing its va_start/va_end. Or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665)  * in case of newly inserting of VA to the tree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667)  * It means that __augment_tree_propagate_from() must be called:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668)  * - After VA has been inserted to the tree(free path);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669)  * - After VA has been shrunk(allocation path);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670)  * - After VA has been increased(merging path).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672)  * Please note that, it does not mean that upper parent nodes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673)  * and their subtree_max_size are recalculated all the time up
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674)  * to the root node.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676)  *       4--8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677)  *        /\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678)  *       /  \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679)  *      /    \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680)  *    2--2  8--8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682)  * For example if we modify the node 4, shrinking it to 2, then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683)  * no any modification is required. If we shrink the node 2 to 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684)  * its subtree_max_size is updated only, and set to 1. If we shrink
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685)  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686)  * node becomes 4--6.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) static __always_inline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) augment_tree_propagate_from(struct vmap_area *va)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 	 * Populate the tree from bottom towards the root until
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 	 * the calculated maximum available size of checked node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 	 * is equal to its current one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) #if DEBUG_AUGMENT_PROPAGATE_CHECK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 	augment_tree_propagate_check();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) insert_vmap_area(struct vmap_area *va,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 	struct rb_root *root, struct list_head *head)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 	struct rb_node **link;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 	struct rb_node *parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 	link = find_va_links(va, root, NULL, &parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 	if (link)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 		link_va(va, root, parent, link, head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) insert_vmap_area_augment(struct vmap_area *va,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 	struct rb_node *from, struct rb_root *root,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 	struct list_head *head)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 	struct rb_node **link;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 	struct rb_node *parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 	if (from)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 		link = find_va_links(va, NULL, from, &parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 		link = find_va_links(va, root, NULL, &parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 	if (link) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 		link_va(va, root, parent, link, head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 		augment_tree_propagate_from(va);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735)  * Merge de-allocated chunk of VA memory with previous
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736)  * and next free blocks. If coalesce is not done a new
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737)  * free area is inserted. If VA has been merged, it is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738)  * freed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740)  * Please note, it can return NULL in case of overlap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741)  * ranges, followed by WARN() report. Despite it is a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742)  * buggy behaviour, a system can be alive and keep
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743)  * ongoing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) static __always_inline struct vmap_area *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) merge_or_add_vmap_area(struct vmap_area *va,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 	struct rb_root *root, struct list_head *head)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 	struct vmap_area *sibling;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 	struct list_head *next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 	struct rb_node **link;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 	struct rb_node *parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 	bool merged = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 	 * Find a place in the tree where VA potentially will be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 	 * inserted, unless it is merged with its sibling/siblings.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 	link = find_va_links(va, root, NULL, &parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 	if (!link)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 	 * Get next node of VA to check if merging can be done.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 	next = get_va_next_sibling(parent, link);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 	if (unlikely(next == NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 		goto insert;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 	 * start            end
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 	 * |                |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 	 * |<------VA------>|<-----Next----->|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 	 *                  |                |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 	 *                  start            end
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 	if (next != head) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 		sibling = list_entry(next, struct vmap_area, list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 		if (sibling->va_start == va->va_end) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 			sibling->va_start = va->va_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 			/* Free vmap_area object. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 			kmem_cache_free(vmap_area_cachep, va);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 			/* Point to the new merged area. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 			va = sibling;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 			merged = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 	 * start            end
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 	 * |                |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 	 * |<-----Prev----->|<------VA------>|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 	 *                  |                |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 	 *                  start            end
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 	if (next->prev != head) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 		sibling = list_entry(next->prev, struct vmap_area, list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 		if (sibling->va_end == va->va_start) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 			 * If both neighbors are coalesced, it is important
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 			 * to unlink the "next" node first, followed by merging
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 			 * with "previous" one. Otherwise the tree might not be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 			 * fully populated if a sibling's augmented value is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 			 * "normalized" because of rotation operations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 			if (merged)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 				unlink_va(va, root);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 			sibling->va_end = va->va_end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 			/* Free vmap_area object. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 			kmem_cache_free(vmap_area_cachep, va);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 			/* Point to the new merged area. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 			va = sibling;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 			merged = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) insert:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 	if (!merged)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 		link_va(va, root, parent, link, head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 	 * Last step is to check and update the tree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 	augment_tree_propagate_from(va);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 	return va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) static __always_inline bool
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) is_within_this_va(struct vmap_area *va, unsigned long size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 	unsigned long align, unsigned long vstart)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 	unsigned long nva_start_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 	if (va->va_start > vstart)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 		nva_start_addr = ALIGN(va->va_start, align);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 		nva_start_addr = ALIGN(vstart, align);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 	/* Can be overflowed due to big size or alignment. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 	if (nva_start_addr + size < nva_start_addr ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 			nva_start_addr < vstart)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 	return (nva_start_addr + size <= va->va_end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853)  * Find the first free block(lowest start address) in the tree,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854)  * that will accomplish the request corresponding to passing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855)  * parameters.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) static __always_inline struct vmap_area *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) find_vmap_lowest_match(unsigned long size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 	unsigned long align, unsigned long vstart)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 	struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 	struct rb_node *node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 	unsigned long length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 	/* Start from the root. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 	node = free_vmap_area_root.rb_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 	/* Adjust the search size for alignment overhead. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 	length = size + align - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 	while (node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 		va = rb_entry(node, struct vmap_area, rb_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 		if (get_subtree_max_size(node->rb_left) >= length &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 				vstart < va->va_start) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 			node = node->rb_left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 			if (is_within_this_va(va, size, align, vstart))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 				return va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 			 * Does not make sense to go deeper towards the right
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 			 * sub-tree if it does not have a free block that is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 			 * equal or bigger to the requested search length.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 			if (get_subtree_max_size(node->rb_right) >= length) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 				node = node->rb_right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 			 * OK. We roll back and find the first right sub-tree,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 			 * that will satisfy the search criteria. It can happen
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 			 * only once due to "vstart" restriction.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 			while ((node = rb_parent(node))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 				va = rb_entry(node, struct vmap_area, rb_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 				if (is_within_this_va(va, size, align, vstart))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 					return va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 				if (get_subtree_max_size(node->rb_right) >= length &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 						vstart <= va->va_start) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 					node = node->rb_right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 					break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) #include <linux/random.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) static struct vmap_area *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) find_vmap_lowest_linear_match(unsigned long size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 	unsigned long align, unsigned long vstart)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 	struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 	list_for_each_entry(va, &free_vmap_area_list, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 		if (!is_within_this_va(va, size, align, vstart))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 		return va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) find_vmap_lowest_match_check(unsigned long size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 	struct vmap_area *va_1, *va_2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 	unsigned long vstart;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 	unsigned int rnd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 	get_random_bytes(&rnd, sizeof(rnd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 	vstart = VMALLOC_START + rnd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 	va_1 = find_vmap_lowest_match(size, 1, vstart);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 	if (va_1 != va_2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 			va_1, va_2, vstart);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) enum fit_type {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 	NOTHING_FIT = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 	FL_FIT_TYPE = 1,	/* full fit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 	LE_FIT_TYPE = 2,	/* left edge fit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 	RE_FIT_TYPE = 3,	/* right edge fit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 	NE_FIT_TYPE = 4		/* no edge fit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) static __always_inline enum fit_type
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) classify_va_fit_type(struct vmap_area *va,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 	unsigned long nva_start_addr, unsigned long size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 	enum fit_type type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 	/* Check if it is within VA. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 	if (nva_start_addr < va->va_start ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 			nva_start_addr + size > va->va_end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 		return NOTHING_FIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 	/* Now classify. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 	if (va->va_start == nva_start_addr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 		if (va->va_end == nva_start_addr + size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 			type = FL_FIT_TYPE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 			type = LE_FIT_TYPE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 	} else if (va->va_end == nva_start_addr + size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 		type = RE_FIT_TYPE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 		type = NE_FIT_TYPE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 	return type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) static __always_inline int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) adjust_va_to_fit_type(struct vmap_area *va,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 	unsigned long nva_start_addr, unsigned long size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 	enum fit_type type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 	struct vmap_area *lva = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 	if (type == FL_FIT_TYPE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 		 * No need to split VA, it fully fits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 		 * |               |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 		 * V      NVA      V
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 		 * |---------------|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 		unlink_va(va, &free_vmap_area_root);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 		kmem_cache_free(vmap_area_cachep, va);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 	} else if (type == LE_FIT_TYPE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 		 * Split left edge of fit VA.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 		 * |       |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 		 * V  NVA  V   R
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 		 * |-------|-------|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 		va->va_start += size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 	} else if (type == RE_FIT_TYPE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 		 * Split right edge of fit VA.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 		 *         |       |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 		 *     L   V  NVA  V
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 		 * |-------|-------|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 		va->va_end = nva_start_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 	} else if (type == NE_FIT_TYPE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 		 * Split no edge of fit VA.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 		 *     |       |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 		 *   L V  NVA  V R
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 		 * |---|-------|---|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 		if (unlikely(!lva)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 			 * For percpu allocator we do not do any pre-allocation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 			 * and leave it as it is. The reason is it most likely
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 			 * never ends up with NE_FIT_TYPE splitting. In case of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 			 * percpu allocations offsets and sizes are aligned to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 			 * are its main fitting cases.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 			 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 			 * There are a few exceptions though, as an example it is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 			 * a first allocation (early boot up) when we have "one"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 			 * big free space that has to be split.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 			 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 			 * Also we can hit this path in case of regular "vmap"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 			 * allocations, if "this" current CPU was not preloaded.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 			 * See the comment in alloc_vmap_area() why. If so, then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 			 * GFP_NOWAIT is used instead to get an extra object for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 			 * split purpose. That is rare and most time does not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 			 * occur.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 			 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 			 * What happens if an allocation gets failed. Basically,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 			 * an "overflow" path is triggered to purge lazily freed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 			 * areas to free some memory, then, the "retry" path is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 			 * triggered to repeat one more time. See more details
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 			 * in alloc_vmap_area() function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 			if (!lva)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 				return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 		 * Build the remainder.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 		lva->va_start = va->va_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 		lva->va_end = nva_start_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 		 * Shrink this VA to remaining size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 		va->va_start = nva_start_addr + size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 	if (type != FL_FIT_TYPE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 		augment_tree_propagate_from(va);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 		if (lva)	/* type == NE_FIT_TYPE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 			insert_vmap_area_augment(lva, &va->rb_node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 				&free_vmap_area_root, &free_vmap_area_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086)  * Returns a start address of the newly allocated area, if success.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087)  * Otherwise a vend is returned that indicates failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) static __always_inline unsigned long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) __alloc_vmap_area(unsigned long size, unsigned long align,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 	unsigned long vstart, unsigned long vend)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 	unsigned long nva_start_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 	struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 	enum fit_type type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 	va = find_vmap_lowest_match(size, align, vstart);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 	if (unlikely(!va))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 		return vend;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 	if (va->va_start > vstart)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 		nva_start_addr = ALIGN(va->va_start, align);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 		nva_start_addr = ALIGN(vstart, align);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 	/* Check the "vend" restriction. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 	if (nva_start_addr + size > vend)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 		return vend;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 	/* Classify what we have found. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 	type = classify_va_fit_type(va, nva_start_addr, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 	if (WARN_ON_ONCE(type == NOTHING_FIT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 		return vend;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 	/* Update the free vmap_area. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 		return vend;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 	find_vmap_lowest_match_check(size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 	return nva_start_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129)  * Free a region of KVA allocated by alloc_vmap_area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) static void free_vmap_area(struct vmap_area *va)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 	 * Remove from the busy tree/list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 	spin_lock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 	unlink_va(va, &vmap_area_root);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 	spin_unlock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 	 * Insert/Merge it back to the free tree/list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 	spin_lock(&free_vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 	spin_unlock(&free_vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149)  * Allocate a region of KVA of the specified size and alignment, within the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150)  * vstart and vend.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) static struct vmap_area *alloc_vmap_area(unsigned long size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 				unsigned long align,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 				unsigned long vstart, unsigned long vend,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 				int node, gfp_t gfp_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 	struct vmap_area *va, *pva;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 	unsigned long addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 	int purged = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 	BUG_ON(!size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 	BUG_ON(offset_in_page(size));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 	BUG_ON(!is_power_of_2(align));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 	if (unlikely(!vmap_initialized))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 		return ERR_PTR(-EBUSY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 	might_sleep();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 	if (unlikely(!va))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 		return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 	 * Only scan the relevant parts containing pointers to other objects
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 	 * to avoid false negatives.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 	 * Preload this CPU with one extra vmap_area object. It is used
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 	 * when fit type of free area is NE_FIT_TYPE. Please note, it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 	 * does not guarantee that an allocation occurs on a CPU that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 	 * is preloaded, instead we minimize the case when it is not.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 	 * It can happen because of cpu migration, because there is a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 	 * race until the below spinlock is taken.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 	 * The preload is done in non-atomic context, thus it allows us
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 	 * to use more permissive allocation masks to be more stable under
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 	 * low memory condition and high memory pressure. In rare case,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 	 * if not preloaded, GFP_NOWAIT is used.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 	 * Set "pva" to NULL here, because of "retry" path.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 	pva = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 	if (!this_cpu_read(ne_fit_preload_node))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 		 * Even if it fails we do not really care about that.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 		 * Just proceed as it is. If needed "overflow" path
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 		 * will refill the cache we allocate from.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 	spin_lock(&free_vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 		kmem_cache_free(vmap_area_cachep, pva);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 	 * If an allocation fails, the "vend" address is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 	 * returned. Therefore trigger the overflow path.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 	addr = __alloc_vmap_area(size, align, vstart, vend);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 	spin_unlock(&free_vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 	if (unlikely(addr == vend))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 		goto overflow;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 	va->va_start = addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 	va->va_end = addr + size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 	va->vm = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 	spin_lock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 	spin_unlock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 	BUG_ON(!IS_ALIGNED(va->va_start, align));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 	BUG_ON(va->va_start < vstart);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 	BUG_ON(va->va_end > vend);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 	ret = kasan_populate_vmalloc(addr, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 		free_vmap_area(va);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) 		return ERR_PTR(ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) 	return va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) overflow:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 	if (!purged) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) 		purge_vmap_area_lazy();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) 		purged = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) 		goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) 	if (gfpflags_allow_blocking(gfp_mask)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) 		unsigned long freed = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 		if (freed > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) 			purged = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 			goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 			size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 	kmem_cache_free(vmap_area_cachep, va);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 	return ERR_PTR(-EBUSY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) int register_vmap_purge_notifier(struct notifier_block *nb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) int unregister_vmap_purge_notifier(struct notifier_block *nb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281)  * lazy_max_pages is the maximum amount of virtual address space we gather up
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282)  * before attempting to purge with a TLB flush.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284)  * There is a tradeoff here: a larger number will cover more kernel page tables
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285)  * and take slightly longer to purge, but it will linearly reduce the number of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286)  * global TLB flushes that must be performed. It would seem natural to scale
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287)  * this number up linearly with the number of CPUs (because vmapping activity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288)  * could also scale linearly with the number of CPUs), however it is likely
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289)  * that in practice, workloads might be constrained in other ways that mean
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290)  * vmap activity will not scale linearly with CPUs. Also, I want to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291)  * conservative and not introduce a big latency on huge systems, so go with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292)  * a less aggressive log scale. It will still be an improvement over the old
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293)  * code, and it will be simple to change the scale factor if we find that it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294)  * becomes a problem on bigger systems.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) static unsigned long lazy_max_pages(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) 	unsigned int log;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) 	log = fls(num_online_cpus());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308)  * Serialize vmap purging.  There is no actual criticial section protected
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309)  * by this look, but we want to avoid concurrent calls for performance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310)  * reasons and to make the pcpu_get_vm_areas more deterministic.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) static DEFINE_MUTEX(vmap_purge_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) /* for per-CPU blocks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) static void purge_fragmented_blocks_allcpus(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318)  * called before a call to iounmap() if the caller wants vm_area_struct's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319)  * immediately freed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) void set_iounmap_nonlazy(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327)  * Purges all lazily-freed vmap areas.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 	unsigned long resched_threshold;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 	struct llist_node *valist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 	struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 	struct vmap_area *n_va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 	lockdep_assert_held(&vmap_purge_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 	valist = llist_del_all(&vmap_purge_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 	if (unlikely(valist == NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 	 * TODO: to calculate a flush range without looping.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 	 * The list can be up to lazy_max_pages() elements.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 	llist_for_each_entry(va, valist, purge_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 		if (va->va_start < start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 			start = va->va_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 		if (va->va_end > end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 			end = va->va_end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 	flush_tlb_kernel_range(start, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 	resched_threshold = lazy_max_pages() << 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 	spin_lock(&free_vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 		unsigned long orig_start = va->va_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 		unsigned long orig_end = va->va_end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 		 * Finally insert or merge lazily-freed area. It is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 		 * detached and there is no need to "unlink" it from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 		 * anything.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) 		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 					    &free_vmap_area_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 		if (!va)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 		if (is_vmalloc_or_module_addr((void *)orig_start))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 			kasan_release_vmalloc(orig_start, orig_end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 					      va->va_start, va->va_end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 		atomic_long_sub(nr, &vmap_lazy_nr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 			cond_resched_lock(&free_vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 	spin_unlock(&free_vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 	return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387)  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388)  * is already purging.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) static void try_purge_vmap_area_lazy(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 	if (mutex_trylock(&vmap_purge_lock)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 		__purge_vmap_area_lazy(ULONG_MAX, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 		mutex_unlock(&vmap_purge_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399)  * Kick off a purge of the outstanding lazy areas.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) static void purge_vmap_area_lazy(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 	mutex_lock(&vmap_purge_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 	purge_fragmented_blocks_allcpus();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 	__purge_vmap_area_lazy(ULONG_MAX, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 	mutex_unlock(&vmap_purge_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410)  * Free a vmap area, caller ensuring that the area has been unmapped
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411)  * and flush_cache_vunmap had been called for the correct range
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412)  * previously.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) static void free_vmap_area_noflush(struct vmap_area *va)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) 	unsigned long nr_lazy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) 	spin_lock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) 	unlink_va(va, &vmap_area_root);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) 	spin_unlock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) 				PAGE_SHIFT, &vmap_lazy_nr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) 	/* After this point, we may free va at any time */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 	llist_add(&va->purge_list, &vmap_purge_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 	if (unlikely(nr_lazy > lazy_max_pages()))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 		try_purge_vmap_area_lazy();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433)  * Free and unmap a vmap area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) static void free_unmap_vmap_area(struct vmap_area *va)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 	flush_cache_vunmap(va->va_start, va->va_end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) 	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) 	if (debug_pagealloc_enabled_static())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) 		flush_tlb_kernel_range(va->va_start, va->va_end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) 	free_vmap_area_noflush(va);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) static struct vmap_area *find_vmap_area(unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) 	struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) 	spin_lock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) 	va = __find_vmap_area(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) 	spin_unlock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) 	return va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) /*** Per cpu kva allocator ***/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459)  * vmap space is limited especially on 32 bit architectures. Ensure there is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460)  * room for at least 16 percpu vmap blocks per CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463)  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464)  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465)  * instead (we just need a rough idea)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) #if BITS_PER_LONG == 32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) #define VMALLOC_SPACE		(128UL*1024*1024)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) #define VMALLOC_SPACE		(128UL*1024*1024*1024)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) #define VMAP_BBMAP_BITS		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) struct vmap_block_queue {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) 	spinlock_t lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) 	struct list_head free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) struct vmap_block {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) 	spinlock_t lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) 	struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) 	unsigned long free, dirty;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) 	unsigned long dirty_min, dirty_max; /*< dirty range */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) 	struct list_head free_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) 	struct rcu_head rcu_head;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) 	struct list_head purge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505)  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506)  * in the free path. Could get rid of this if we change the API to return a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507)  * "cookie" from alloc, to be passed to free. But no big deal yet.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) static DEFINE_XARRAY(vmap_blocks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512)  * We should probably have a fallback mechanism to allocate virtual memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513)  * out of partially filled vmap blocks. However vmap block sizing should be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514)  * fairly reasonable according to the vmalloc size, so it shouldn't be a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515)  * big problem.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) static unsigned long addr_to_vb_idx(unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) 	addr /= VMAP_BLOCK_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) 	return addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) 	unsigned long addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) 	addr = va_start + (pages_off << PAGE_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) 	return (void *)addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535)  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536)  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537)  * @order:    how many 2^order pages should be occupied in newly allocated block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538)  * @gfp_mask: flags for the page level allocator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540)  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) 	struct vmap_block_queue *vbq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) 	struct vmap_block *vb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) 	struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) 	unsigned long vb_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) 	int node, err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) 	void *vaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) 	node = numa_node_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) 	vb = kmalloc_node(sizeof(struct vmap_block),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) 			gfp_mask & GFP_RECLAIM_MASK, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 	if (unlikely(!vb))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) 		return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) 					VMALLOC_START, VMALLOC_END,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) 					node, gfp_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) 	if (IS_ERR(va)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 		kfree(vb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) 		return ERR_CAST(va);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) 	vaddr = vmap_block_vaddr(va->va_start, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) 	spin_lock_init(&vb->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) 	vb->va = va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) 	/* At least something should be left free */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) 	vb->dirty = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) 	vb->dirty_min = VMAP_BBMAP_BITS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) 	vb->dirty_max = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) 	INIT_LIST_HEAD(&vb->free_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) 	vb_idx = addr_to_vb_idx(va->va_start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) 	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) 		kfree(vb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) 		free_vmap_area(va);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) 		return ERR_PTR(err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) 	vbq = &get_cpu_var(vmap_block_queue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) 	spin_lock(&vbq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) 	list_add_tail_rcu(&vb->free_list, &vbq->free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) 	spin_unlock(&vbq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) 	put_cpu_var(vmap_block_queue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) 	return vaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) static void free_vmap_block(struct vmap_block *vb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) 	struct vmap_block *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) 	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) 	BUG_ON(tmp != vb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) 	free_vmap_area_noflush(vb->va);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) 	kfree_rcu(vb, rcu_head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) static void purge_fragmented_blocks(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) 	LIST_HEAD(purge);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) 	struct vmap_block *vb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) 	struct vmap_block *n_vb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) 		spin_lock(&vb->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) 			vb->free = 0; /* prevent further allocs after releasing lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) 			vb->dirty_min = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) 			vb->dirty_max = VMAP_BBMAP_BITS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) 			spin_lock(&vbq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) 			list_del_rcu(&vb->free_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) 			spin_unlock(&vbq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) 			spin_unlock(&vb->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) 			list_add_tail(&vb->purge, &purge);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) 		} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) 			spin_unlock(&vb->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) 		list_del(&vb->purge);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) 		free_vmap_block(vb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) static void purge_fragmented_blocks_allcpus(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) 	for_each_possible_cpu(cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) 		purge_fragmented_blocks(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) 	struct vmap_block_queue *vbq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) 	struct vmap_block *vb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) 	void *vaddr = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) 	unsigned int order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) 	BUG_ON(offset_in_page(size));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) 	if (WARN_ON(size == 0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) 		 * Allocating 0 bytes isn't what caller wants since
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) 		 * get_order(0) returns funny result. Just warn and terminate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) 		 * early.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) 	order = get_order(size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) 	vbq = &get_cpu_var(vmap_block_queue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) 		unsigned long pages_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) 		spin_lock(&vb->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) 		if (vb->free < (1UL << order)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) 			spin_unlock(&vb->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) 		pages_off = VMAP_BBMAP_BITS - vb->free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) 		vb->free -= 1UL << order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) 		if (vb->free == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) 			spin_lock(&vbq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) 			list_del_rcu(&vb->free_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) 			spin_unlock(&vbq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) 		spin_unlock(&vb->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) 	put_cpu_var(vmap_block_queue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) 	/* Allocate new block if nothing was found */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) 	if (!vaddr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) 		vaddr = new_vmap_block(order, gfp_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) 	return vaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) static void vb_free(unsigned long addr, unsigned long size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) 	unsigned long offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) 	unsigned int order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) 	struct vmap_block *vb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) 	BUG_ON(offset_in_page(size));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) 	flush_cache_vunmap(addr, addr + size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) 	order = get_order(size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) 	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716) 	unmap_kernel_range_noflush(addr, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) 	if (debug_pagealloc_enabled_static())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719) 		flush_tlb_kernel_range(addr, addr + size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) 	spin_lock(&vb->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) 	/* Expand dirty range */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) 	vb->dirty_min = min(vb->dirty_min, offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) 	vb->dirty += 1UL << order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) 	if (vb->dirty == VMAP_BBMAP_BITS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) 		BUG_ON(vb->free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) 		spin_unlock(&vb->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) 		free_vmap_block(vb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) 		spin_unlock(&vb->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) 	if (unlikely(!vmap_initialized))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) 	might_sleep();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) 	for_each_possible_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) 		struct vmap_block *vb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) 		rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751) 			spin_lock(&vb->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) 			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) 				unsigned long va_start = vb->va->va_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) 				unsigned long s, e;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) 				start = min(s, start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) 				end   = max(e, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) 				flush = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) 			spin_unlock(&vb->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) 		rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) 	mutex_lock(&vmap_purge_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) 	purge_fragmented_blocks_allcpus();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) 	if (!__purge_vmap_area_lazy(start, end) && flush)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) 		flush_tlb_kernel_range(start, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) 	mutex_unlock(&vmap_purge_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777)  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779)  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780)  * to amortize TLB flushing overheads. What this means is that any page you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781)  * have now, may, in a former life, have been mapped into kernel virtual
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782)  * address by the vmap layer and so there might be some CPUs with TLB entries
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783)  * still referencing that page (additional to the regular 1:1 kernel mapping).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785)  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786)  * be sure that none of the pages we have control over will have any aliases
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787)  * from the vmap layer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) void vm_unmap_aliases(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791) 	unsigned long start = ULONG_MAX, end = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) 	int flush = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) 	_vm_unmap_aliases(start, end, flush);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) EXPORT_SYMBOL_GPL(vm_unmap_aliases);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799)  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800)  * @mem: the pointer returned by vm_map_ram
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801)  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) void vm_unmap_ram(const void *mem, unsigned int count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805) 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) 	unsigned long addr = (unsigned long)mem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) 	struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809) 	might_sleep();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810) 	BUG_ON(!addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) 	BUG_ON(addr < VMALLOC_START);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) 	BUG_ON(addr > VMALLOC_END);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) 	BUG_ON(!PAGE_ALIGNED(addr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815) 	kasan_poison_vmalloc(mem, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817) 	if (likely(count <= VMAP_MAX_ALLOC)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818) 		debug_check_no_locks_freed(mem, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819) 		vb_free(addr, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) 	va = find_vmap_area(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) 	BUG_ON(!va);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825) 	debug_check_no_locks_freed((void *)va->va_start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) 				    (va->va_end - va->va_start));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827) 	free_unmap_vmap_area(va);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) EXPORT_SYMBOL(vm_unmap_ram);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832)  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833)  * @pages: an array of pointers to the pages to be mapped
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834)  * @count: number of pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835)  * @node: prefer to allocate data structures on this node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837)  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838)  * faster than vmap so it's good.  But if you mix long-life and short-life
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839)  * objects with vm_map_ram(), it could consume lots of address space through
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840)  * fragmentation (especially on a 32bit machine).  You could see failures in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841)  * the end.  Please use this function for short-lived objects.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843)  * Returns: a pointer to the address that has been mapped, or %NULL on failure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) void *vm_map_ram(struct page **pages, unsigned int count, int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) 	unsigned long addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849) 	void *mem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851) 	if (likely(count <= VMAP_MAX_ALLOC)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) 		mem = vb_alloc(size, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853) 		if (IS_ERR(mem))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) 		addr = (unsigned long)mem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857) 		struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) 		va = alloc_vmap_area(size, PAGE_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) 		if (IS_ERR(va))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) 		addr = va->va_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) 		mem = (void *)addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867) 	kasan_unpoison_vmalloc(mem, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) 	if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870) 		vm_unmap_ram(mem, count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873) 	return mem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875) EXPORT_SYMBOL(vm_map_ram);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877) static struct vm_struct *vmlist __initdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880)  * vm_area_add_early - add vmap area early during boot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881)  * @vm: vm_struct to add
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883)  * This function is used to add fixed kernel vm area to vmlist before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884)  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885)  * should contain proper values and the other fields should be zero.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887)  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889) void __init vm_area_add_early(struct vm_struct *vm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) 	struct vm_struct *tmp, **p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893) 	BUG_ON(vmap_initialized);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894) 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) 		if (tmp->addr >= vm->addr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896) 			BUG_ON(tmp->addr < vm->addr + vm->size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898) 		} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899) 			BUG_ON(tmp->addr + tmp->size > vm->addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901) 	vm->next = *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902) 	*p = vm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906)  * vm_area_register_early - register vmap area early during boot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907)  * @vm: vm_struct to register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908)  * @align: requested alignment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910)  * This function is used to register kernel vm area before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911)  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912)  * proper values on entry and other fields should be zero.  On return,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913)  * vm->addr contains the allocated address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915)  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917) void __init vm_area_register_early(struct vm_struct *vm, size_t align)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919) 	static size_t vm_init_off __initdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920) 	unsigned long addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923) 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925) 	vm->addr = (void *)addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) 	vm_area_add_early(vm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) static void vmap_init_free_space(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932) 	unsigned long vmap_start = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) 	const unsigned long vmap_end = ULONG_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934) 	struct vmap_area *busy, *free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) 	 *     B     F     B     B     B     F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938) 	 * -|-----|.....|-----|-----|-----|.....|-
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939) 	 *  |           The KVA space           |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940) 	 *  |<--------------------------------->|
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942) 	list_for_each_entry(busy, &vmap_area_list, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) 		if (busy->va_start - vmap_start > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945) 			if (!WARN_ON_ONCE(!free)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) 				free->va_start = vmap_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) 				free->va_end = busy->va_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) 				insert_vmap_area_augment(free, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) 					&free_vmap_area_root,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951) 						&free_vmap_area_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) 		vmap_start = busy->va_end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958) 	if (vmap_end - vmap_start > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959) 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960) 		if (!WARN_ON_ONCE(!free)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) 			free->va_start = vmap_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962) 			free->va_end = vmap_end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964) 			insert_vmap_area_augment(free, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) 				&free_vmap_area_root,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) 					&free_vmap_area_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) void __init vmalloc_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) 	struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974) 	struct vm_struct *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) 	 * Create the cache for vmap_area objects.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980) 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982) 	for_each_possible_cpu(i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) 		struct vmap_block_queue *vbq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984) 		struct vfree_deferred *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986) 		vbq = &per_cpu(vmap_block_queue, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987) 		spin_lock_init(&vbq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988) 		INIT_LIST_HEAD(&vbq->free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) 		p = &per_cpu(vfree_deferred, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) 		init_llist_head(&p->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) 		INIT_WORK(&p->wq, free_work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) 	/* Import existing vmlist entries. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) 	for (tmp = vmlist; tmp; tmp = tmp->next) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) 		if (WARN_ON_ONCE(!va))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) 		va->va_start = (unsigned long)tmp->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001) 		va->va_end = va->va_start + tmp->size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) 		va->vm = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003) 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007) 	 * Now we can initialize a free vmap space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009) 	vmap_init_free_space();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) 	vmap_initialized = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014)  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015)  * @addr: start of the VM area to unmap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016)  * @size: size of the VM area to unmap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018)  * Similar to unmap_kernel_range_noflush() but flushes vcache before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019)  * the unmapping and tlb after.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) void unmap_kernel_range(unsigned long addr, unsigned long size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023) 	unsigned long end = addr + size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) 	flush_cache_vunmap(addr, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026) 	unmap_kernel_range_noflush(addr, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) 	flush_tlb_kernel_range(addr, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031) 	struct vmap_area *va, unsigned long flags, const void *caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033) 	vm->flags = flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) 	vm->addr = (void *)va->va_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) 	vm->size = va->va_end - va->va_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036) 	vm->caller = caller;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) 	va->vm = vm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) 	trace_android_vh_save_vmalloc_stack(flags, vm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042) 			      unsigned long flags, const void *caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) 	spin_lock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045) 	setup_vmalloc_vm_locked(vm, va, flags, caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) 	spin_unlock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049) static void clear_vm_uninitialized_flag(struct vm_struct *vm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052) 	 * Before removing VM_UNINITIALIZED,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) 	 * we should make sure that vm has proper values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054) 	 * Pair with smp_rmb() in show_numa_info().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) 	smp_wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057) 	vm->flags &= ~VM_UNINITIALIZED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060) static struct vm_struct *__get_vm_area_node(unsigned long size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061) 		unsigned long align, unsigned long flags, unsigned long start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062) 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064) 	struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065) 	struct vm_struct *area;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066) 	unsigned long requested_size = size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068) 	BUG_ON(in_interrupt());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069) 	size = PAGE_ALIGN(size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) 	if (unlikely(!size))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073) 	if (flags & VM_IOREMAP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074) 		align = 1ul << clamp_t(int, get_count_order_long(size),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077) 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078) 	if (unlikely(!area))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) 	if (!(flags & VM_NO_GUARD))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082) 		size += PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084) 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085) 	if (IS_ERR(va)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086) 		kfree(area);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090) 	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092) 	setup_vmalloc_vm(area, va, flags, caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094) 	return area;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098) 				       unsigned long start, unsigned long end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) 				       const void *caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101) 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) 				  GFP_KERNEL, caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104) EXPORT_SYMBOL_GPL(__get_vm_area_caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107)  * get_vm_area - reserve a contiguous kernel virtual area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108)  * @size:	 size of the area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109)  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111)  * Search an area of @size in the kernel virtual mapping area,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112)  * and reserved it for out purposes.  Returns the area descriptor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113)  * on success or %NULL on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115)  * Return: the area descriptor on success or %NULL on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117) struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119) 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120) 				  NUMA_NO_NODE, GFP_KERNEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121) 				  __builtin_return_address(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124) struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125) 				const void *caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127) 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128) 				  NUMA_NO_NODE, GFP_KERNEL, caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132)  * find_vm_area - find a continuous kernel virtual area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133)  * @addr:	  base address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135)  * Search for the kernel VM area starting at @addr, and return it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136)  * It is up to the caller to do all required locking to keep the returned
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137)  * pointer valid.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139)  * Return: the area descriptor on success or %NULL on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141) struct vm_struct *find_vm_area(const void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143) 	struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2145) 	va = find_vmap_area((unsigned long)addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2146) 	if (!va)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2147) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2149) 	return va->vm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2150) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2152) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2153)  * remove_vm_area - find and remove a continuous kernel virtual area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2154)  * @addr:	    base address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2155)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2156)  * Search for the kernel VM area starting at @addr, and remove it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2157)  * This function returns the found VM area, but using it is NOT safe
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2158)  * on SMP machines, except for its size or flags.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2159)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2160)  * Return: the area descriptor on success or %NULL on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2161)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2162) struct vm_struct *remove_vm_area(const void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2163) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2164) 	struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2166) 	might_sleep();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2168) 	spin_lock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2169) 	va = __find_vmap_area((unsigned long)addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2170) 	if (va && va->vm) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2171) 		struct vm_struct *vm = va->vm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2173) 		va->vm = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2174) 		spin_unlock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2176) 		kasan_free_shadow(vm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2177) 		free_unmap_vmap_area(va);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2179) 		return vm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2180) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2182) 	spin_unlock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2183) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2184) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2185) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2186) static inline void set_area_direct_map(const struct vm_struct *area,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2187) 				       int (*set_direct_map)(struct page *page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2188) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2189) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2191) 	for (i = 0; i < area->nr_pages; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2192) 		if (page_address(area->pages[i]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2193) 			set_direct_map(area->pages[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2194) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2196) /* Handle removing and resetting vm mappings related to the vm_struct. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2197) static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2198) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2199) 	unsigned long start = ULONG_MAX, end = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2200) 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2201) 	int flush_dmap = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2202) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2204) 	remove_vm_area(area->addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2206) 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2207) 	if (!flush_reset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2208) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2210) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2211) 	 * If not deallocating pages, just do the flush of the VM area and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2212) 	 * return.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2213) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2214) 	if (!deallocate_pages) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2215) 		vm_unmap_aliases();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2216) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2217) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2219) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2220) 	 * If execution gets here, flush the vm mapping and reset the direct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2221) 	 * map. Find the start and end range of the direct mappings to make sure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2222) 	 * the vm_unmap_aliases() flush includes the direct map.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2223) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2224) 	for (i = 0; i < area->nr_pages; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2225) 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2226) 		if (addr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2227) 			start = min(addr, start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2228) 			end = max(addr + PAGE_SIZE, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2229) 			flush_dmap = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2230) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2231) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2233) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2234) 	 * Set direct map to something invalid so that it won't be cached if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2235) 	 * there are any accesses after the TLB flush, then flush the TLB and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2236) 	 * reset the direct map permissions to the default.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2237) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2238) 	set_area_direct_map(area, set_direct_map_invalid_noflush);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2239) 	_vm_unmap_aliases(start, end, flush_dmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2240) 	set_area_direct_map(area, set_direct_map_default_noflush);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2241) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2243) static void __vunmap(const void *addr, int deallocate_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2244) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2245) 	struct vm_struct *area;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2247) 	if (!addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2248) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2250) 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2251) 			addr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2252) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2254) 	area = find_vm_area(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2255) 	if (unlikely(!area)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2256) 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2257) 				addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2258) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2259) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2260) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2261) 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2262) 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2264) 	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2266) 	vm_remove_mappings(area, deallocate_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2268) 	if (deallocate_pages) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2269) 		int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2271) 		for (i = 0; i < area->nr_pages; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2272) 			struct page *page = area->pages[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2273) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2274) 			BUG_ON(!page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2275) 			__free_pages(page, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2276) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2277) 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2278) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2279) 		kvfree(area->pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2280) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2282) 	kfree(area);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2283) 	return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2284) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2286) static inline void __vfree_deferred(const void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2287) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2288) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2289) 	 * Use raw_cpu_ptr() because this can be called from preemptible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2290) 	 * context. Preemption is absolutely fine here, because the llist_add()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2291) 	 * implementation is lockless, so it works even if we are adding to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2292) 	 * another cpu's list. schedule_work() should be fine with this too.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2293) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2294) 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2295) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2296) 	if (llist_add((struct llist_node *)addr, &p->list))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2297) 		schedule_work(&p->wq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2298) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2300) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2301)  * vfree_atomic - release memory allocated by vmalloc()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2302)  * @addr:	  memory base address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2303)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2304)  * This one is just like vfree() but can be called in any atomic context
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2305)  * except NMIs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2306)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2307) void vfree_atomic(const void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2308) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2309) 	BUG_ON(in_nmi());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2311) 	kmemleak_free(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2313) 	if (!addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2314) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2315) 	__vfree_deferred(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2316) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2318) static void __vfree(const void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2319) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2320) 	if (unlikely(in_interrupt()))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2321) 		__vfree_deferred(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2322) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2323) 		__vunmap(addr, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2324) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2326) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2327)  * vfree - Release memory allocated by vmalloc()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2328)  * @addr:  Memory base address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2329)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2330)  * Free the virtually continuous memory area starting at @addr, as obtained
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2331)  * from one of the vmalloc() family of APIs.  This will usually also free the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2332)  * physical memory underlying the virtual allocation, but that memory is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2333)  * reference counted, so it will not be freed until the last user goes away.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2334)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2335)  * If @addr is NULL, no operation is performed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2336)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2337)  * Context:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2338)  * May sleep if called *not* from interrupt context.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2339)  * Must not be called in NMI context (strictly speaking, it could be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2340)  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2341)  * conventions for vfree() arch-depenedent would be a really bad idea).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2342)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2343) void vfree(const void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2344) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2345) 	BUG_ON(in_nmi());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2347) 	kmemleak_free(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2349) 	might_sleep_if(!in_interrupt());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2351) 	if (!addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2352) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2353) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2354) 	__vfree(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2355) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2356) EXPORT_SYMBOL(vfree);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2358) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2359)  * vunmap - release virtual mapping obtained by vmap()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2360)  * @addr:   memory base address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2361)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2362)  * Free the virtually contiguous memory area starting at @addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2363)  * which was created from the page array passed to vmap().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2364)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2365)  * Must not be called in interrupt context.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2366)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2367) void vunmap(const void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2368) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2369) 	BUG_ON(in_interrupt());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2370) 	might_sleep();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2371) 	if (addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2372) 		__vunmap(addr, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2373) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2374) EXPORT_SYMBOL(vunmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2376) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2377)  * vmap - map an array of pages into virtually contiguous space
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2378)  * @pages: array of page pointers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2379)  * @count: number of pages to map
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2380)  * @flags: vm_area->flags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2381)  * @prot: page protection for the mapping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2382)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2383)  * Maps @count pages from @pages into contiguous kernel virtual space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2384)  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2385)  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2386)  * are transferred from the caller to vmap(), and will be freed / dropped when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2387)  * vfree() is called on the return value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2388)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2389)  * Return: the address of the area or %NULL on failure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2390)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2391) void *vmap(struct page **pages, unsigned int count,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2392) 	   unsigned long flags, pgprot_t prot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2393) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2394) 	struct vm_struct *area;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2395) 	unsigned long size;		/* In bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2397) 	might_sleep();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2399) 	if (count > totalram_pages())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2400) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2402) 	size = (unsigned long)count << PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2403) 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2404) 	if (!area)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2405) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2407) 	if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2408) 			pages) < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2409) 		vunmap(area->addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2410) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2411) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2413) 	if (flags & VM_MAP_PUT_PAGES) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2414) 		area->pages = pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2415) 		area->nr_pages = count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2416) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2417) 	return area->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2418) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2419) EXPORT_SYMBOL(vmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2420) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2421) #ifdef CONFIG_VMAP_PFN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2422) struct vmap_pfn_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2423) 	unsigned long	*pfns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2424) 	pgprot_t	prot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2425) 	unsigned int	idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2426) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2427) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2428) static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2429) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2430) 	struct vmap_pfn_data *data = private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2431) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2432) 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2433) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2434) 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2435) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2436) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2438) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2439)  * vmap_pfn - map an array of PFNs into virtually contiguous space
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2440)  * @pfns: array of PFNs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2441)  * @count: number of pages to map
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2442)  * @prot: page protection for the mapping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2443)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2444)  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2445)  * the start address of the mapping.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2446)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2447) void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2448) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2449) 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2450) 	struct vm_struct *area;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2452) 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2453) 			__builtin_return_address(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2454) 	if (!area)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2455) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2456) 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2457) 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2458) 		free_vm_area(area);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2459) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2460) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2461) 	return area->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2462) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2463) EXPORT_SYMBOL_GPL(vmap_pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2464) #endif /* CONFIG_VMAP_PFN */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2466) static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2467) 				 pgprot_t prot, int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2468) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2469) 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2470) 	unsigned int nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2471) 	unsigned int array_size = nr_pages * sizeof(struct page *), i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2472) 	struct page **pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2474) 	gfp_mask |= __GFP_NOWARN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2475) 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2476) 		gfp_mask |= __GFP_HIGHMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2478) 	/* Please note that the recursion is strictly bounded. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2479) 	if (array_size > PAGE_SIZE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2480) 		pages = __vmalloc_node(array_size, 1, nested_gfp, node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2481) 					area->caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2482) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2483) 		pages = kmalloc_node(array_size, nested_gfp, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2484) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2485) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2486) 	if (!pages) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2487) 		remove_vm_area(area->addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2488) 		kfree(area);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2489) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2490) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2492) 	area->pages = pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2493) 	area->nr_pages = nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2494) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2495) 	for (i = 0; i < area->nr_pages; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2496) 		struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2497) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2498) 		if (node == NUMA_NO_NODE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2499) 			page = alloc_page(gfp_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2500) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2501) 			page = alloc_pages_node(node, gfp_mask, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2502) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2503) 		if (unlikely(!page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2504) 			/* Successfully allocated i pages, free them in __vfree() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2505) 			area->nr_pages = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2506) 			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2507) 			goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2508) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2509) 		area->pages[i] = page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2510) 		if (gfpflags_allow_blocking(gfp_mask))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2511) 			cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2512) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2513) 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2515) 	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2516) 			prot, pages) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2517) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2519) 	return area->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2520) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2521) fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2522) 	warn_alloc(gfp_mask, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2523) 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2524) 			  (area->nr_pages*PAGE_SIZE), area->size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2525) 	__vfree(area->addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2526) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2527) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2529) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2530)  * __vmalloc_node_range - allocate virtually contiguous memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2531)  * @size:		  allocation size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2532)  * @align:		  desired alignment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2533)  * @start:		  vm area range start
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2534)  * @end:		  vm area range end
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2535)  * @gfp_mask:		  flags for the page level allocator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2536)  * @prot:		  protection mask for the allocated pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2537)  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2538)  * @node:		  node to use for allocation or NUMA_NO_NODE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2539)  * @caller:		  caller's return address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2540)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2541)  * Allocate enough pages to cover @size from the page level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2542)  * allocator with @gfp_mask flags.  Map them into contiguous
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2543)  * kernel virtual space, using a pagetable protection of @prot.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2544)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2545)  * Return: the address of the area or %NULL on failure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2546)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2547) void *__vmalloc_node_range(unsigned long size, unsigned long align,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2548) 			unsigned long start, unsigned long end, gfp_t gfp_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2549) 			pgprot_t prot, unsigned long vm_flags, int node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2550) 			const void *caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2551) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2552) 	struct vm_struct *area;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2553) 	void *addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2554) 	unsigned long real_size = size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2556) 	size = PAGE_ALIGN(size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2557) 	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2558) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2559) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2560) 	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2561) 				vm_flags, start, end, node, gfp_mask, caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2562) 	if (!area)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2563) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2564) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2565) 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2566) 	if (!addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2567) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2568) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2569) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2570) 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2571) 	 * flag. It means that vm_struct is not fully initialized.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2572) 	 * Now, it is fully initialized, so remove this flag here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2573) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2574) 	clear_vm_uninitialized_flag(area);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2575) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2576) 	kmemleak_vmalloc(area, size, gfp_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2578) 	return addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2579) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2580) fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2581) 	warn_alloc(gfp_mask, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2582) 			  "vmalloc: allocation failure: %lu bytes", real_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2583) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2584) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2586) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2587)  * __vmalloc_node - allocate virtually contiguous memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2588)  * @size:	    allocation size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2589)  * @align:	    desired alignment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2590)  * @gfp_mask:	    flags for the page level allocator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2591)  * @node:	    node to use for allocation or NUMA_NO_NODE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2592)  * @caller:	    caller's return address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2593)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2594)  * Allocate enough pages to cover @size from the page level allocator with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2595)  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2596)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2597)  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2598)  * and __GFP_NOFAIL are not supported
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2599)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2600)  * Any use of gfp flags outside of GFP_KERNEL should be consulted
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2601)  * with mm people.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2602)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2603)  * Return: pointer to the allocated memory or %NULL on error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2604)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2605) void *__vmalloc_node(unsigned long size, unsigned long align,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2606) 			    gfp_t gfp_mask, int node, const void *caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2607) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2608) 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2609) 				gfp_mask, PAGE_KERNEL, 0, node, caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2610) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2611) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2612)  * This is only for performance analysis of vmalloc and stress purpose.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2613)  * It is required by vmalloc test module, therefore do not use it other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2614)  * than that.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2615)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2616) #ifdef CONFIG_TEST_VMALLOC_MODULE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2617) EXPORT_SYMBOL_GPL(__vmalloc_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2618) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2619) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2620) void *__vmalloc(unsigned long size, gfp_t gfp_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2621) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2622) 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2623) 				__builtin_return_address(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2624) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2625) EXPORT_SYMBOL(__vmalloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2626) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2627) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2628)  * vmalloc - allocate virtually contiguous memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2629)  * @size:    allocation size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2630)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2631)  * Allocate enough pages to cover @size from the page level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2632)  * allocator and map them into contiguous kernel virtual space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2633)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2634)  * For tight control over page level allocator and protection flags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2635)  * use __vmalloc() instead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2636)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2637)  * Return: pointer to the allocated memory or %NULL on error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2638)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2639) void *vmalloc(unsigned long size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2640) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2641) 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2642) 				__builtin_return_address(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2643) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2644) EXPORT_SYMBOL(vmalloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2645) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2646) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2647)  * vzalloc - allocate virtually contiguous memory with zero fill
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2648)  * @size:    allocation size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2649)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2650)  * Allocate enough pages to cover @size from the page level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2651)  * allocator and map them into contiguous kernel virtual space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2652)  * The memory allocated is set to zero.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2653)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2654)  * For tight control over page level allocator and protection flags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2655)  * use __vmalloc() instead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2656)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2657)  * Return: pointer to the allocated memory or %NULL on error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2658)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2659) void *vzalloc(unsigned long size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2660) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2661) 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2662) 				__builtin_return_address(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2663) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2664) EXPORT_SYMBOL(vzalloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2665) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2666) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2667)  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2668)  * @size: allocation size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2669)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2670)  * The resulting memory area is zeroed so it can be mapped to userspace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2671)  * without leaking data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2672)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2673)  * Return: pointer to the allocated memory or %NULL on error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2674)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2675) void *vmalloc_user(unsigned long size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2676) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2677) 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2678) 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2679) 				    VM_USERMAP, NUMA_NO_NODE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2680) 				    __builtin_return_address(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2681) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2682) EXPORT_SYMBOL(vmalloc_user);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2684) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2685)  * vmalloc_node - allocate memory on a specific node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2686)  * @size:	  allocation size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2687)  * @node:	  numa node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2688)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2689)  * Allocate enough pages to cover @size from the page level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2690)  * allocator and map them into contiguous kernel virtual space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2691)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2692)  * For tight control over page level allocator and protection flags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2693)  * use __vmalloc() instead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2694)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2695)  * Return: pointer to the allocated memory or %NULL on error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2696)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2697) void *vmalloc_node(unsigned long size, int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2698) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2699) 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2700) 			__builtin_return_address(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2701) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2702) EXPORT_SYMBOL(vmalloc_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2703) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2704) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2705)  * vzalloc_node - allocate memory on a specific node with zero fill
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2706)  * @size:	allocation size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2707)  * @node:	numa node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2708)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2709)  * Allocate enough pages to cover @size from the page level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2710)  * allocator and map them into contiguous kernel virtual space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2711)  * The memory allocated is set to zero.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2712)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2713)  * Return: pointer to the allocated memory or %NULL on error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2714)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2715) void *vzalloc_node(unsigned long size, int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2716) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2717) 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2718) 				__builtin_return_address(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2719) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2720) EXPORT_SYMBOL(vzalloc_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2721) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2722) #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2723) #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2724) #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2725) #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2726) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2727) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2728)  * 64b systems should always have either DMA or DMA32 zones. For others
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2729)  * GFP_DMA32 should do the right thing and use the normal zone.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2730)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2731) #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2732) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2734) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2735)  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2736)  * @size:	allocation size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2737)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2738)  * Allocate enough 32bit PA addressable pages to cover @size from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2739)  * page level allocator and map them into contiguous kernel virtual space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2740)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2741)  * Return: pointer to the allocated memory or %NULL on error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2742)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2743) void *vmalloc_32(unsigned long size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2744) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2745) 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2746) 			__builtin_return_address(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2747) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2748) EXPORT_SYMBOL(vmalloc_32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2749) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2750) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2751)  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2752)  * @size:	     allocation size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2753)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2754)  * The resulting memory area is 32bit addressable and zeroed so it can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2755)  * mapped to userspace without leaking data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2756)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2757)  * Return: pointer to the allocated memory or %NULL on error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2758)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2759) void *vmalloc_32_user(unsigned long size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2760) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2761) 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2762) 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2763) 				    VM_USERMAP, NUMA_NO_NODE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2764) 				    __builtin_return_address(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2765) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2766) EXPORT_SYMBOL(vmalloc_32_user);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2767) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2768) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2769)  * small helper routine , copy contents to buf from addr.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2770)  * If the page is not present, fill zero.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2771)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2772) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2773) static int aligned_vread(char *buf, char *addr, unsigned long count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2774) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2775) 	struct page *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2776) 	int copied = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2777) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2778) 	while (count) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2779) 		unsigned long offset, length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2780) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2781) 		offset = offset_in_page(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2782) 		length = PAGE_SIZE - offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2783) 		if (length > count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2784) 			length = count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2785) 		p = vmalloc_to_page(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2786) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2787) 		 * To do safe access to this _mapped_ area, we need
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2788) 		 * lock. But adding lock here means that we need to add
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2789) 		 * overhead of vmalloc()/vfree() calles for this _debug_
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2790) 		 * interface, rarely used. Instead of that, we'll use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2791) 		 * kmap() and get small overhead in this access function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2792) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2793) 		if (p) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2794) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2795) 			 * we can expect USER0 is not used (see vread/vwrite's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2796) 			 * function description)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2797) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2798) 			void *map = kmap_atomic(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2799) 			memcpy(buf, map + offset, length);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2800) 			kunmap_atomic(map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2801) 		} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2802) 			memset(buf, 0, length);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2803) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2804) 		addr += length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2805) 		buf += length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2806) 		copied += length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2807) 		count -= length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2808) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2809) 	return copied;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2810) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2811) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2812) static int aligned_vwrite(char *buf, char *addr, unsigned long count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2813) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2814) 	struct page *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2815) 	int copied = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2816) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2817) 	while (count) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2818) 		unsigned long offset, length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2819) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2820) 		offset = offset_in_page(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2821) 		length = PAGE_SIZE - offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2822) 		if (length > count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2823) 			length = count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2824) 		p = vmalloc_to_page(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2825) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2826) 		 * To do safe access to this _mapped_ area, we need
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2827) 		 * lock. But adding lock here means that we need to add
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2828) 		 * overhead of vmalloc()/vfree() calles for this _debug_
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2829) 		 * interface, rarely used. Instead of that, we'll use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2830) 		 * kmap() and get small overhead in this access function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2831) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2832) 		if (p) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2833) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2834) 			 * we can expect USER0 is not used (see vread/vwrite's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2835) 			 * function description)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2836) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2837) 			void *map = kmap_atomic(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2838) 			memcpy(map + offset, buf, length);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2839) 			kunmap_atomic(map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2840) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2841) 		addr += length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2842) 		buf += length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2843) 		copied += length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2844) 		count -= length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2845) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2846) 	return copied;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2847) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2848) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2849) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2850)  * vread() - read vmalloc area in a safe way.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2851)  * @buf:     buffer for reading data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2852)  * @addr:    vm address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2853)  * @count:   number of bytes to be read.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2854)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2855)  * This function checks that addr is a valid vmalloc'ed area, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2856)  * copy data from that area to a given buffer. If the given memory range
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2857)  * of [addr...addr+count) includes some valid address, data is copied to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2858)  * proper area of @buf. If there are memory holes, they'll be zero-filled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2859)  * IOREMAP area is treated as memory hole and no copy is done.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2860)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2861)  * If [addr...addr+count) doesn't includes any intersects with alive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2862)  * vm_struct area, returns 0. @buf should be kernel's buffer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2863)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2864)  * Note: In usual ops, vread() is never necessary because the caller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2865)  * should know vmalloc() area is valid and can use memcpy().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2866)  * This is for routines which have to access vmalloc area without
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2867)  * any information, as /dev/kmem.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2868)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2869)  * Return: number of bytes for which addr and buf should be increased
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2870)  * (same number as @count) or %0 if [addr...addr+count) doesn't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2871)  * include any intersection with valid vmalloc area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2872)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2873) long vread(char *buf, char *addr, unsigned long count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2874) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2875) 	struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2876) 	struct vm_struct *vm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2877) 	char *vaddr, *buf_start = buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2878) 	unsigned long buflen = count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2879) 	unsigned long n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2880) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2881) 	/* Don't allow overflow */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2882) 	if ((unsigned long) addr + count < count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2883) 		count = -(unsigned long) addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2884) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2885) 	spin_lock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2886) 	list_for_each_entry(va, &vmap_area_list, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2887) 		if (!count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2888) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2889) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2890) 		if (!va->vm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2891) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2892) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2893) 		vm = va->vm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2894) 		vaddr = (char *) vm->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2895) 		if (addr >= vaddr + get_vm_area_size(vm))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2896) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2897) 		while (addr < vaddr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2898) 			if (count == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2899) 				goto finished;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2900) 			*buf = '\0';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2901) 			buf++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2902) 			addr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2903) 			count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2904) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2905) 		n = vaddr + get_vm_area_size(vm) - addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2906) 		if (n > count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2907) 			n = count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2908) 		if (!(vm->flags & VM_IOREMAP))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2909) 			aligned_vread(buf, addr, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2910) 		else /* IOREMAP area is treated as memory hole */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2911) 			memset(buf, 0, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2912) 		buf += n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2913) 		addr += n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2914) 		count -= n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2915) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2916) finished:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2917) 	spin_unlock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2918) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2919) 	if (buf == buf_start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2920) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2921) 	/* zero-fill memory holes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2922) 	if (buf != buf_start + buflen)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2923) 		memset(buf, 0, buflen - (buf - buf_start));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2924) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2925) 	return buflen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2926) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2927) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2928) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2929)  * vwrite() - write vmalloc area in a safe way.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2930)  * @buf:      buffer for source data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2931)  * @addr:     vm address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2932)  * @count:    number of bytes to be read.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2933)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2934)  * This function checks that addr is a valid vmalloc'ed area, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2935)  * copy data from a buffer to the given addr. If specified range of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2936)  * [addr...addr+count) includes some valid address, data is copied from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2937)  * proper area of @buf. If there are memory holes, no copy to hole.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2938)  * IOREMAP area is treated as memory hole and no copy is done.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2939)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2940)  * If [addr...addr+count) doesn't includes any intersects with alive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2941)  * vm_struct area, returns 0. @buf should be kernel's buffer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2942)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2943)  * Note: In usual ops, vwrite() is never necessary because the caller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2944)  * should know vmalloc() area is valid and can use memcpy().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2945)  * This is for routines which have to access vmalloc area without
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2946)  * any information, as /dev/kmem.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2947)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2948)  * Return: number of bytes for which addr and buf should be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2949)  * increased (same number as @count) or %0 if [addr...addr+count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2950)  * doesn't include any intersection with valid vmalloc area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2951)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2952) long vwrite(char *buf, char *addr, unsigned long count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2953) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2954) 	struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2955) 	struct vm_struct *vm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2956) 	char *vaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2957) 	unsigned long n, buflen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2958) 	int copied = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2959) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2960) 	/* Don't allow overflow */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2961) 	if ((unsigned long) addr + count < count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2962) 		count = -(unsigned long) addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2963) 	buflen = count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2964) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2965) 	spin_lock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2966) 	list_for_each_entry(va, &vmap_area_list, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2967) 		if (!count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2968) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2969) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2970) 		if (!va->vm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2971) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2972) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2973) 		vm = va->vm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2974) 		vaddr = (char *) vm->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2975) 		if (addr >= vaddr + get_vm_area_size(vm))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2976) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2977) 		while (addr < vaddr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2978) 			if (count == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2979) 				goto finished;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2980) 			buf++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2981) 			addr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2982) 			count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2983) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2984) 		n = vaddr + get_vm_area_size(vm) - addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2985) 		if (n > count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2986) 			n = count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2987) 		if (!(vm->flags & VM_IOREMAP)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2988) 			aligned_vwrite(buf, addr, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2989) 			copied++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2990) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2991) 		buf += n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2992) 		addr += n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2993) 		count -= n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2994) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2995) finished:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2996) 	spin_unlock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2997) 	if (!copied)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2998) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2999) 	return buflen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3000) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3001) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3002) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3003)  * remap_vmalloc_range_partial - map vmalloc pages to userspace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3004)  * @vma:		vma to cover
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3005)  * @uaddr:		target user address to start at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3006)  * @kaddr:		virtual address of vmalloc kernel memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3007)  * @pgoff:		offset from @kaddr to start at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3008)  * @size:		size of map area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3009)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3010)  * Returns:	0 for success, -Exxx on failure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3011)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3012)  * This function checks that @kaddr is a valid vmalloc'ed area,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3013)  * and that it is big enough to cover the range starting at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3014)  * @uaddr in @vma. Will return failure if that criteria isn't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3015)  * met.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3016)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3017)  * Similar to remap_pfn_range() (see mm/memory.c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3018)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3019) int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3020) 				void *kaddr, unsigned long pgoff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3021) 				unsigned long size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3022) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3023) 	struct vm_struct *area;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3024) 	unsigned long off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3025) 	unsigned long end_index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3026) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3027) 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3028) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3030) 	size = PAGE_ALIGN(size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3031) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3032) 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3033) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3034) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3035) 	area = find_vm_area(kaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3036) 	if (!area)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3037) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3038) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3039) 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3040) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3041) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3042) 	if (check_add_overflow(size, off, &end_index) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3043) 	    end_index > get_vm_area_size(area))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3044) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3045) 	kaddr += off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3046) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3047) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3048) 		struct page *page = vmalloc_to_page(kaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3049) 		int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3050) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3051) 		ret = vm_insert_page(vma, uaddr, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3052) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3053) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3054) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3055) 		uaddr += PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3056) 		kaddr += PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3057) 		size -= PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3058) 	} while (size > 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3059) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3060) 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3061) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3062) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3063) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3064) EXPORT_SYMBOL(remap_vmalloc_range_partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3065) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3066) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3067)  * remap_vmalloc_range - map vmalloc pages to userspace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3068)  * @vma:		vma to cover (map full range of vma)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3069)  * @addr:		vmalloc memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3070)  * @pgoff:		number of pages into addr before first page to map
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3071)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3072)  * Returns:	0 for success, -Exxx on failure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3073)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3074)  * This function checks that addr is a valid vmalloc'ed area, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3075)  * that it is big enough to cover the vma. Will return failure if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3076)  * that criteria isn't met.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3077)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3078)  * Similar to remap_pfn_range() (see mm/memory.c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3079)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3080) int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3081) 						unsigned long pgoff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3082) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3083) 	return remap_vmalloc_range_partial(vma, vma->vm_start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3084) 					   addr, pgoff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3085) 					   vma->vm_end - vma->vm_start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3086) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3087) EXPORT_SYMBOL(remap_vmalloc_range);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3088) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3089) void free_vm_area(struct vm_struct *area)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3090) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3091) 	struct vm_struct *ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3092) 	ret = remove_vm_area(area->addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3093) 	BUG_ON(ret != area);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3094) 	kfree(area);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3095) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3096) EXPORT_SYMBOL_GPL(free_vm_area);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3097) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3098) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3099) static struct vmap_area *node_to_va(struct rb_node *n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3100) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3101) 	return rb_entry_safe(n, struct vmap_area, rb_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3102) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3104) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3105)  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3106)  * @addr: target address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3107)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3108)  * Returns: vmap_area if it is found. If there is no such area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3109)  *   the first highest(reverse order) vmap_area is returned
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3110)  *   i.e. va->va_start < addr && va->va_end < addr or NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3111)  *   if there are no any areas before @addr.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3112)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3113) static struct vmap_area *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3114) pvm_find_va_enclose_addr(unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3115) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3116) 	struct vmap_area *va, *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3117) 	struct rb_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3119) 	n = free_vmap_area_root.rb_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3120) 	va = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3122) 	while (n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3123) 		tmp = rb_entry(n, struct vmap_area, rb_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3124) 		if (tmp->va_start <= addr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3125) 			va = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3126) 			if (tmp->va_end >= addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3127) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3129) 			n = n->rb_right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3130) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3131) 			n = n->rb_left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3132) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3133) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3135) 	return va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3136) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3138) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3139)  * pvm_determine_end_from_reverse - find the highest aligned address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3140)  * of free block below VMALLOC_END
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3141)  * @va:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3142)  *   in - the VA we start the search(reverse order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3143)  *   out - the VA with the highest aligned end address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3144)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3145)  * Returns: determined end address within vmap_area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3146)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3147) static unsigned long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3148) pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3149) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3150) 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3151) 	unsigned long addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3153) 	if (likely(*va)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3154) 		list_for_each_entry_from_reverse((*va),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3155) 				&free_vmap_area_list, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3156) 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3157) 			if ((*va)->va_start < addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3158) 				return addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3159) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3160) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3162) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3163) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3165) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3166)  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3167)  * @offsets: array containing offset of each area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3168)  * @sizes: array containing size of each area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3169)  * @nr_vms: the number of areas to allocate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3170)  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3171)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3172)  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3173)  *	    vm_structs on success, %NULL on failure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3174)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3175)  * Percpu allocator wants to use congruent vm areas so that it can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3176)  * maintain the offsets among percpu areas.  This function allocates
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3177)  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3178)  * be scattered pretty far, distance between two areas easily going up
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3179)  * to gigabytes.  To avoid interacting with regular vmallocs, these
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3180)  * areas are allocated from top.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3181)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3182)  * Despite its complicated look, this allocator is rather simple. It
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3183)  * does everything top-down and scans free blocks from the end looking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3184)  * for matching base. While scanning, if any of the areas do not fit the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3185)  * base address is pulled down to fit the area. Scanning is repeated till
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3186)  * all the areas fit and then all necessary data structures are inserted
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3187)  * and the result is returned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3188)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3189) struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3190) 				     const size_t *sizes, int nr_vms,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3191) 				     size_t align)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3192) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3193) 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3194) 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3195) 	struct vmap_area **vas, *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3196) 	struct vm_struct **vms;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3197) 	int area, area2, last_area, term_area;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3198) 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3199) 	bool purged = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3200) 	enum fit_type type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3202) 	/* verify parameters and allocate data structures */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3203) 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3204) 	for (last_area = 0, area = 0; area < nr_vms; area++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3205) 		start = offsets[area];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3206) 		end = start + sizes[area];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3208) 		/* is everything aligned properly? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3209) 		BUG_ON(!IS_ALIGNED(offsets[area], align));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3210) 		BUG_ON(!IS_ALIGNED(sizes[area], align));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3212) 		/* detect the area with the highest address */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3213) 		if (start > offsets[last_area])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3214) 			last_area = area;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3216) 		for (area2 = area + 1; area2 < nr_vms; area2++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3217) 			unsigned long start2 = offsets[area2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3218) 			unsigned long end2 = start2 + sizes[area2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3220) 			BUG_ON(start2 < end && start < end2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3221) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3222) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3223) 	last_end = offsets[last_area] + sizes[last_area];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3225) 	if (vmalloc_end - vmalloc_start < last_end) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3226) 		WARN_ON(true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3227) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3228) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3230) 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3231) 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3232) 	if (!vas || !vms)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3233) 		goto err_free2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3235) 	for (area = 0; area < nr_vms; area++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3236) 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3237) 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3238) 		if (!vas[area] || !vms[area])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3239) 			goto err_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3240) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3241) retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3242) 	spin_lock(&free_vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3244) 	/* start scanning - we scan from the top, begin with the last area */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3245) 	area = term_area = last_area;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3246) 	start = offsets[area];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3247) 	end = start + sizes[area];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3249) 	va = pvm_find_va_enclose_addr(vmalloc_end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3250) 	base = pvm_determine_end_from_reverse(&va, align) - end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3252) 	while (true) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3253) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3254) 		 * base might have underflowed, add last_end before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3255) 		 * comparing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3256) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3257) 		if (base + last_end < vmalloc_start + last_end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3258) 			goto overflow;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3260) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3261) 		 * Fitting base has not been found.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3262) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3263) 		if (va == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3264) 			goto overflow;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3266) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3267) 		 * If required width exceeds current VA block, move
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3268) 		 * base downwards and then recheck.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3269) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3270) 		if (base + end > va->va_end) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3271) 			base = pvm_determine_end_from_reverse(&va, align) - end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3272) 			term_area = area;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3273) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3274) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3276) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3277) 		 * If this VA does not fit, move base downwards and recheck.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3278) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3279) 		if (base + start < va->va_start) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3280) 			va = node_to_va(rb_prev(&va->rb_node));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3281) 			base = pvm_determine_end_from_reverse(&va, align) - end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3282) 			term_area = area;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3283) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3284) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3286) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3287) 		 * This area fits, move on to the previous one.  If
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3288) 		 * the previous one is the terminal one, we're done.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3289) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3290) 		area = (area + nr_vms - 1) % nr_vms;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3291) 		if (area == term_area)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3292) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3294) 		start = offsets[area];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3295) 		end = start + sizes[area];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3296) 		va = pvm_find_va_enclose_addr(base + end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3297) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3299) 	/* we've found a fitting base, insert all va's */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3300) 	for (area = 0; area < nr_vms; area++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3301) 		int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3303) 		start = base + offsets[area];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3304) 		size = sizes[area];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3306) 		va = pvm_find_va_enclose_addr(start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3307) 		if (WARN_ON_ONCE(va == NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3308) 			/* It is a BUG(), but trigger recovery instead. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3309) 			goto recovery;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3311) 		type = classify_va_fit_type(va, start, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3312) 		if (WARN_ON_ONCE(type == NOTHING_FIT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3313) 			/* It is a BUG(), but trigger recovery instead. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3314) 			goto recovery;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3316) 		ret = adjust_va_to_fit_type(va, start, size, type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3317) 		if (unlikely(ret))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3318) 			goto recovery;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3320) 		/* Allocated area. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3321) 		va = vas[area];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3322) 		va->va_start = start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3323) 		va->va_end = start + size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3324) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3326) 	spin_unlock(&free_vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3328) 	/* populate the kasan shadow space */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3329) 	for (area = 0; area < nr_vms; area++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3330) 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3331) 			goto err_free_shadow;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3332) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3333) 		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3334) 				       sizes[area]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3335) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3337) 	/* insert all vm's */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3338) 	spin_lock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3339) 	for (area = 0; area < nr_vms; area++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3340) 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3341) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3342) 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3343) 				 pcpu_get_vm_areas);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3344) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3345) 	spin_unlock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3347) 	kfree(vas);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3348) 	return vms;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3350) recovery:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3351) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3352) 	 * Remove previously allocated areas. There is no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3353) 	 * need in removing these areas from the busy tree,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3354) 	 * because they are inserted only on the final step
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3355) 	 * and when pcpu_get_vm_areas() is success.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3356) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3357) 	while (area--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3358) 		orig_start = vas[area]->va_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3359) 		orig_end = vas[area]->va_end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3360) 		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3361) 					    &free_vmap_area_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3362) 		if (va)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3363) 			kasan_release_vmalloc(orig_start, orig_end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3364) 				va->va_start, va->va_end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3365) 		vas[area] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3366) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3367) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3368) overflow:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3369) 	spin_unlock(&free_vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3370) 	if (!purged) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3371) 		purge_vmap_area_lazy();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3372) 		purged = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3373) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3374) 		/* Before "retry", check if we recover. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3375) 		for (area = 0; area < nr_vms; area++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3376) 			if (vas[area])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3377) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3378) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3379) 			vas[area] = kmem_cache_zalloc(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3380) 				vmap_area_cachep, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3381) 			if (!vas[area])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3382) 				goto err_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3383) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3385) 		goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3386) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3388) err_free:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3389) 	for (area = 0; area < nr_vms; area++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3390) 		if (vas[area])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3391) 			kmem_cache_free(vmap_area_cachep, vas[area]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3393) 		kfree(vms[area]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3394) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3395) err_free2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3396) 	kfree(vas);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3397) 	kfree(vms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3398) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3399) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3400) err_free_shadow:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3401) 	spin_lock(&free_vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3402) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3403) 	 * We release all the vmalloc shadows, even the ones for regions that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3404) 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3405) 	 * being able to tolerate this case.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3406) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3407) 	for (area = 0; area < nr_vms; area++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3408) 		orig_start = vas[area]->va_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3409) 		orig_end = vas[area]->va_end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3410) 		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3411) 					    &free_vmap_area_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3412) 		if (va)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3413) 			kasan_release_vmalloc(orig_start, orig_end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3414) 				va->va_start, va->va_end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3415) 		vas[area] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3416) 		kfree(vms[area]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3417) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3418) 	spin_unlock(&free_vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3419) 	kfree(vas);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3420) 	kfree(vms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3421) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3422) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3424) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3425)  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3426)  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3427)  * @nr_vms: the number of allocated areas
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3428)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3429)  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3430)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3431) void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3432) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3433) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3434) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3435) 	for (i = 0; i < nr_vms; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3436) 		free_vm_area(vms[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3437) 	kfree(vms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3438) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3439) #endif	/* CONFIG_SMP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3440) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3441) #ifdef CONFIG_PROC_FS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3442) static void *s_start(struct seq_file *m, loff_t *pos)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3443) 	__acquires(&vmap_purge_lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3444) 	__acquires(&vmap_area_lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3445) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3446) 	mutex_lock(&vmap_purge_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3447) 	spin_lock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3449) 	return seq_list_start(&vmap_area_list, *pos);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3450) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3452) static void *s_next(struct seq_file *m, void *p, loff_t *pos)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3453) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3454) 	return seq_list_next(p, &vmap_area_list, pos);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3455) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3456) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3457) static void s_stop(struct seq_file *m, void *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3458) 	__releases(&vmap_area_lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3459) 	__releases(&vmap_purge_lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3460) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3461) 	spin_unlock(&vmap_area_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3462) 	mutex_unlock(&vmap_purge_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3463) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3464) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3465) static void show_numa_info(struct seq_file *m, struct vm_struct *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3466) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3467) 	if (IS_ENABLED(CONFIG_NUMA)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3468) 		unsigned int nr, *counters = m->private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3469) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3470) 		if (!counters)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3471) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3472) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3473) 		if (v->flags & VM_UNINITIALIZED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3474) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3475) 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3476) 		smp_rmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3478) 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3479) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3480) 		for (nr = 0; nr < v->nr_pages; nr++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3481) 			counters[page_to_nid(v->pages[nr])]++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3482) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3483) 		for_each_node_state(nr, N_HIGH_MEMORY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3484) 			if (counters[nr])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3485) 				seq_printf(m, " N%u=%u", nr, counters[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3486) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3487) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3489) static void show_purge_info(struct seq_file *m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3490) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3491) 	struct llist_node *head;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3492) 	struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3494) 	head = READ_ONCE(vmap_purge_list.first);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3495) 	if (head == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3496) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3497) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3498) 	llist_for_each_entry(va, head, purge_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3499) 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3500) 			(void *)va->va_start, (void *)va->va_end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3501) 			va->va_end - va->va_start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3502) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3503) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3504) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3505) static int s_show(struct seq_file *m, void *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3506) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3507) 	struct vmap_area *va;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3508) 	struct vm_struct *v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3509) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3510) 	va = list_entry(p, struct vmap_area, list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3511) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3512) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3513) 	 * s_show can encounter race with remove_vm_area, !vm on behalf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3514) 	 * of vmap area is being tear down or vm_map_ram allocation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3515) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3516) 	if (!va->vm) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3517) 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3518) 			(void *)va->va_start, (void *)va->va_end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3519) 			va->va_end - va->va_start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3520) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3521) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3522) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3523) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3524) 	v = va->vm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3525) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3526) 	seq_printf(m, "0x%pK-0x%pK %7ld",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3527) 		v->addr, v->addr + v->size, v->size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3529) 	if (v->caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3530) 		seq_printf(m, " %pS", v->caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3531) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3532) 	if (v->nr_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3533) 		seq_printf(m, " pages=%d", v->nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3535) 	if (v->phys_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3536) 		seq_printf(m, " phys=%pa", &v->phys_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3537) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3538) 	if (v->flags & VM_IOREMAP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3539) 		seq_puts(m, " ioremap");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3540) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3541) 	if (v->flags & VM_ALLOC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3542) 		seq_puts(m, " vmalloc");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3544) 	if (v->flags & VM_MAP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3545) 		seq_puts(m, " vmap");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3546) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3547) 	if (v->flags & VM_USERMAP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3548) 		seq_puts(m, " user");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3550) 	if (v->flags & VM_DMA_COHERENT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3551) 		seq_puts(m, " dma-coherent");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3553) 	if (is_vmalloc_addr(v->pages))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3554) 		seq_puts(m, " vpages");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3556) 	show_numa_info(m, v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3557) 	trace_android_vh_show_stack_hash(m, v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3558) 	seq_putc(m, '\n');
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3559) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3560) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3561) 	 * As a final step, dump "unpurged" areas. Note,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3562) 	 * that entire "/proc/vmallocinfo" output will not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3563) 	 * be address sorted, because the purge list is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3564) 	 * sorted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3565) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3566) 	if (list_is_last(&va->list, &vmap_area_list))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3567) 		show_purge_info(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3568) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3569) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3570) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3571) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3572) static const struct seq_operations vmalloc_op = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3573) 	.start = s_start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3574) 	.next = s_next,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3575) 	.stop = s_stop,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3576) 	.show = s_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3577) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3578) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3579) static int __init proc_vmalloc_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3580) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3581) 	if (IS_ENABLED(CONFIG_NUMA))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3582) 		proc_create_seq_private("vmallocinfo", 0400, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3583) 				&vmalloc_op,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3584) 				nr_node_ids * sizeof(unsigned int), NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3585) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3586) 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3587) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3588) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3589) module_init(proc_vmalloc_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3590) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3591) #endif