Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * SLUB: A slab allocator that limits cache line use instead of queuing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  * objects in per cpu and per node lists.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  * The allocator synchronizes using per slab locks or atomic operatios
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  * and only uses a centralized lock to manage a pool of partial slabs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  * (C) 2007 SGI, Christoph Lameter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  * (C) 2011 Linux Foundation, Christoph Lameter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) #include <linux/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) #include <linux/swap.h> /* struct reclaim_state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) #include <linux/bit_spinlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) #include <linux/swab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) #include <linux/bitops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) #include "slab.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #include <linux/proc_fs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #include <linux/seq_file.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) #include <linux/kasan.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #include <linux/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) #include <linux/cpuset.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) #include <linux/mempolicy.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) #include <linux/ctype.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) #include <linux/debugobjects.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) #include <linux/kallsyms.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) #include <linux/kfence.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) #include <linux/memory.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) #include <linux/math64.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) #include <linux/fault-inject.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) #include <linux/stacktrace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) #include <linux/prefetch.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) #include <linux/memcontrol.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) #include <linux/random.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) #include <linux/debugfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) #include <trace/events/kmem.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) #include <trace/hooks/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) #include "internal.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47)  * Lock order:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48)  *   1. slab_mutex (Global Mutex)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49)  *   2. node->list_lock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50)  *   3. slab_lock(page) (Only on some arches and for debugging)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52)  *   slab_mutex
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54)  *   The role of the slab_mutex is to protect the list of all the slabs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55)  *   and to synchronize major metadata changes to slab cache structures.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57)  *   The slab_lock is only used for debugging and on arches that do not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58)  *   have the ability to do a cmpxchg_double. It only protects:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59)  *	A. page->freelist	-> List of object free in a page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60)  *	B. page->inuse		-> Number of objects in use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61)  *	C. page->objects	-> Number of objects in page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62)  *	D. page->frozen		-> frozen state
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64)  *   If a slab is frozen then it is exempt from list management. It is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65)  *   on any list except per cpu partial list. The processor that froze the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66)  *   slab is the one who can perform list operations on the page. Other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67)  *   processors may put objects onto the freelist but the processor that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68)  *   froze the slab is the only one that can retrieve the objects from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69)  *   page's freelist.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71)  *   The list_lock protects the partial and full list on each node and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72)  *   the partial slab counter. If taken then no new slabs may be added or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73)  *   removed from the lists nor make the number of partial slabs be modified.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74)  *   (Note that the total number of slabs is an atomic value that may be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75)  *   modified without taking the list lock).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77)  *   The list_lock is a centralized lock and thus we avoid taking it as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78)  *   much as possible. As long as SLUB does not have to handle partial
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79)  *   slabs, operations can continue without any centralized lock. F.e.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80)  *   allocating a long series of objects that fill up slabs does not require
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81)  *   the list lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82)  *   Interrupts are disabled during allocation and deallocation in order to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83)  *   make the slab allocator safe to use in the context of an irq. In addition
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84)  *   interrupts are disabled to ensure that the processor does not change
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85)  *   while handling per_cpu slabs, due to kernel preemption.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87)  * SLUB assigns one slab for allocation to each processor.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88)  * Allocations only occur from these slabs called cpu slabs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90)  * Slabs with free elements are kept on a partial list and during regular
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91)  * operations no list for full slabs is used. If an object in a full slab is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92)  * freed then the slab will show up again on the partial lists.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93)  * We track full slabs for debugging purposes though because otherwise we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94)  * cannot scan all objects.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96)  * Slabs are freed when they become empty. Teardown and setup is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97)  * minimal so we rely on the page allocators per cpu caches for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98)  * fast frees and allocs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100)  * page->frozen		The slab is frozen and exempt from list processing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101)  * 			This means that the slab is dedicated to a purpose
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102)  * 			such as satisfying allocations for a specific
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103)  * 			processor. Objects may be freed in the slab while
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104)  * 			it is frozen but slab_free will then skip the usual
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105)  * 			list operations. It is up to the processor holding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106)  * 			the slab to integrate the slab into the slab lists
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107)  * 			when the slab is no longer needed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109)  * 			One use of this flag is to mark slabs that are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110)  * 			used for allocations. Then such a slab becomes a cpu
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111)  * 			slab. The cpu slab may be equipped with an additional
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112)  * 			freelist that allows lockless access to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113)  * 			free objects in addition to the regular freelist
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114)  * 			that requires the slab lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116)  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117)  * 			options set. This moves	slab handling out of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118)  * 			the fast path and disables lockless freelists.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) #ifdef CONFIG_SLUB_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) #ifdef CONFIG_SLUB_DEBUG_ON
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) static inline bool kmem_cache_debug(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) void *fixup_red_left(struct kmem_cache *s, void *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 		p += s->red_left_pad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 	return p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) #ifdef CONFIG_SLUB_CPU_PARTIAL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 	return !kmem_cache_debug(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152)  * Issues still to be resolved:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154)  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156)  * - Variable sizing of the per node arrays
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) /* Enable to test recovery from slab corruption on boot */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) #undef SLUB_RESILIENCY_TEST
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) /* Enable to log cmpxchg failures */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) #undef SLUB_DEBUG_CMPXCHG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166)  * Mininum number of partial slabs. These will be left on the partial
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167)  * lists even if they are empty. kmem_cache_shrink may reclaim them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) #define MIN_PARTIAL 5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172)  * Maximum number of desirable partial slabs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173)  * The existence of more partial slabs makes kmem_cache_shrink
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174)  * sort the partial list by the number of objects in use.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) #define MAX_PARTIAL 10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 				SLAB_POISON | SLAB_STORE_USER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182)  * These debug flags cannot use CMPXCHG because there might be consistency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183)  * issues when checking or reading debug information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 				SLAB_TRACE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190)  * Debugging flags that require metadata to be stored in the slab.  These get
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191)  * disabled when slub_debug=O is used and a cache's min order increases with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192)  * metadata.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) #define OO_SHIFT	16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) #define OO_MASK		((1 << OO_SHIFT) - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) /* Internal SLUB flags */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) /* Poison object */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) /* Use cmpxchg_double */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) #ifdef CONFIG_SLUB_SYSFS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) static int sysfs_slab_add(struct kmem_cache *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) static int sysfs_slab_alias(struct kmem_cache *, const char *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 							{ return 0; }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) static void debugfs_slab_add(struct kmem_cache *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) static inline void debugfs_slab_add(struct kmem_cache *s) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) static inline void stat(const struct kmem_cache *s, enum stat_item si)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) #ifdef CONFIG_SLUB_STATS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 	 * avoid this_cpu_add()'s irq-disable overhead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 	raw_cpu_inc(s->cpu_slab->stat[si]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) /********************************************************************
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233)  * 			Core slab cache functions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234)  *******************************************************************/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237)  * Returns freelist pointer (ptr). With hardening, this is obfuscated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238)  * with an XOR of the address where the pointer is held and a per-cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239)  * random number.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 				 unsigned long ptr_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) #ifdef CONFIG_SLAB_FREELIST_HARDENED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 	 * Normally, this doesn't cause any issues, as both set_freepointer()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 	 * and get_freepointer() are called with a pointer with the same tag.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 	 * example, when __free_slub() iterates over objects in a cache, it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 	 * passes untagged pointers to check_object(). check_object() in turns
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 	 * calls get_freepointer() with an untagged pointer, which causes the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) 	 * freepointer to be restored incorrectly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) 	return (void *)((unsigned long)ptr ^ s->random ^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 	return ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) /* Returns the freelist pointer recorded at location ptr_addr. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) static inline void *freelist_dereference(const struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 					 void *ptr_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 			    (unsigned long)ptr_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) static inline void *get_freepointer(struct kmem_cache *s, void *object)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 	object = kasan_reset_tag(object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 	return freelist_dereference(s, object + s->offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) static void prefetch_freepointer(const struct kmem_cache *s, void *object)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 	prefetch(object + s->offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 	unsigned long freepointer_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) 	void *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 	if (!debug_pagealloc_enabled_static())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 		return get_freepointer(s, object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 	object = kasan_reset_tag(object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) 	freepointer_addr = (unsigned long)object + s->offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 	return freelist_ptr(s, p, freepointer_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) #ifdef CONFIG_SLAB_FREELIST_HARDENED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 	BUG_ON(object == fp); /* naive detection of double free or corruption */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) /* Loop over all objects in a slab */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) #define for_each_object(__p, __s, __addr, __objects) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 	for (__p = fixup_red_left(__s, __addr); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 		__p < (__addr) + (__objects) * (__s)->size; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 		__p += (__s)->size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) static inline unsigned int order_objects(unsigned int order, unsigned int size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 	return ((unsigned int)PAGE_SIZE << order) / size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) static inline struct kmem_cache_order_objects oo_make(unsigned int order,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 		unsigned int size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 	struct kmem_cache_order_objects x = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 		(order << OO_SHIFT) + order_objects(order, size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 	return x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) static inline unsigned int oo_order(struct kmem_cache_order_objects x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 	return x.x >> OO_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 	return x.x & OO_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339)  * Per slab locking using the pagelock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) static __always_inline void slab_lock(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 	VM_BUG_ON_PAGE(PageTail(page), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 	bit_spin_lock(PG_locked, &page->flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) static __always_inline void slab_unlock(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 	VM_BUG_ON_PAGE(PageTail(page), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 	__bit_spin_unlock(PG_locked, &page->flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) /* Interrupts must be disabled (for the fallback code to work right) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 		void *freelist_old, unsigned long counters_old,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 		void *freelist_new, unsigned long counters_new,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 		const char *n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 	VM_BUG_ON(!irqs_disabled());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361)     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 	if (s->flags & __CMPXCHG_DOUBLE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 		if (cmpxchg_double(&page->freelist, &page->counters,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 				   freelist_old, counters_old,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 				   freelist_new, counters_new))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 			return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 		slab_lock(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 		if (page->freelist == freelist_old &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 					page->counters == counters_old) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 			page->freelist = freelist_new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 			page->counters = counters_new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 			slab_unlock(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 			return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 		slab_unlock(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 	cpu_relax();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 	stat(s, CMPXCHG_DOUBLE_FAIL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) #ifdef SLUB_DEBUG_CMPXCHG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 		void *freelist_old, unsigned long counters_old,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 		void *freelist_new, unsigned long counters_new,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 		const char *n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397)     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 	if (s->flags & __CMPXCHG_DOUBLE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 		if (cmpxchg_double(&page->freelist, &page->counters,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 				   freelist_old, counters_old,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) 				   freelist_new, counters_new))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 			return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 		unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 		local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 		slab_lock(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 		if (page->freelist == freelist_old &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 					page->counters == counters_old) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 			page->freelist = freelist_new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 			page->counters = counters_new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 			slab_unlock(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 			local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 			return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 		slab_unlock(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 		local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 	cpu_relax();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 	stat(s, CMPXCHG_DOUBLE_FAIL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) #ifdef SLUB_DEBUG_CMPXCHG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) #ifdef CONFIG_SLUB_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) static DEFINE_SPINLOCK(object_map_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 		       struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 	void *addr = page_address(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 	void *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 	bitmap_zero(obj_map, page->objects);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 	for (p = page->freelist; p; p = get_freepointer(s, p))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 		set_bit(__obj_to_index(s, addr, p), obj_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449)  * Determine a map of object in use on a page.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451)  * Node listlock must be held to guarantee that the page does
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452)  * not vanish from under us.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) static unsigned long *get_map(struct kmem_cache *s, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 	__acquires(&object_map_lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 	VM_BUG_ON(!irqs_disabled());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 	spin_lock(&object_map_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 	__fill_map(object_map, s, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 	return object_map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) static void put_map(unsigned long *map) __releases(&object_map_lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 	VM_BUG_ON(map != object_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 	spin_unlock(&object_map_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) static inline unsigned int size_from_object(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 	if (s->flags & SLAB_RED_ZONE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 		return s->size - s->red_left_pad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 	return s->size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) static inline void *restore_red_left(struct kmem_cache *s, void *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 	if (s->flags & SLAB_RED_ZONE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 		p -= s->red_left_pad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 	return p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489)  * Debug settings:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) #if defined(CONFIG_SLUB_DEBUG_ON)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) slab_flags_t slub_debug;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) static char *slub_debug_string;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) static int disable_higher_order_debug;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501)  * slub is about to manipulate internal object metadata.  This memory lies
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502)  * outside the range of the allocated object, so accessing it would normally
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503)  * be reported by kasan as a bounds error.  metadata_access_enable() is used
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504)  * to tell kasan that these accesses are OK.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) static inline void metadata_access_enable(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 	kasan_disable_current();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) static inline void metadata_access_disable(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 	kasan_enable_current();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517)  * Object debugging
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) /* Verify that a pointer has an address that is valid within a slab page */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) static inline int check_valid_pointer(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 				struct page *page, void *object)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 	void *base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 	if (!object)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 	base = page_address(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 	object = kasan_reset_tag(object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 	object = restore_red_left(s, object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 	if (object < base || object >= base + page->objects * s->size ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 		(object - base) % s->size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) static void print_section(char *level, char *text, u8 *addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 			  unsigned int length)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 	metadata_access_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 			16, 1, kasan_reset_tag((void *)addr), length, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 	metadata_access_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550)  * See comment in calculate_sizes().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) static inline bool freeptr_outside_object(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 	return s->offset >= s->inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558)  * Return offset of the end of info block which is inuse + free pointer if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559)  * not overlapping with object.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) static inline unsigned int get_info_end(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 	if (freeptr_outside_object(s))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 		return s->inuse + sizeof(void *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 		return s->inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) static struct track *get_track(struct kmem_cache *s, void *object,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 	enum track_item alloc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 	struct track *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 	p = object + get_info_end(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 	return kasan_reset_tag(p + alloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580)  * This function will be used to loop through all the slab objects in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581)  * a page to give track structure for each object, the function fn will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582)  * be using this track structure and extract required info into its private
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583)  * data, the return value will be the number of track structures that are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584)  * processed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) unsigned long get_each_object_track(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 		struct page *page, enum track_item alloc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 		int (*fn)(const struct kmem_cache *, const void *,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 		const struct track *, void *), void *private)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 	void *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 	struct track *t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 	unsigned long num_track = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 	if (!slub_debug || !(s->flags & SLAB_STORE_USER))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 	slab_lock(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 	for_each_object(p, s, page_address(page), page->objects) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 		t = get_track(s, p, alloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 		metadata_access_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 		ret = fn(s, p, t, private);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 		metadata_access_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 		if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 		num_track += 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 	slab_unlock(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 	return num_track;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) EXPORT_SYMBOL_GPL(get_each_object_track);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) static void set_track(struct kmem_cache *s, void *object,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 			enum track_item alloc, unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 	struct track *p = get_track(s, object, alloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 	if (addr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) #ifdef CONFIG_STACKTRACE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 		unsigned int nr_entries;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 		metadata_access_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 		nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 					      TRACK_ADDRS_COUNT, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 		metadata_access_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 		if (nr_entries < TRACK_ADDRS_COUNT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 			p->addrs[nr_entries] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 		trace_android_vh_save_track_hash(alloc == TRACK_ALLOC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 						(unsigned long)p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 		p->addr = addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 		p->cpu = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 		p->pid = current->pid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 		p->when = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 		memset(p, 0, sizeof(struct track));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) static void init_tracking(struct kmem_cache *s, void *object)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 	if (!(s->flags & SLAB_STORE_USER))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 	set_track(s, object, TRACK_FREE, 0UL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 	set_track(s, object, TRACK_ALLOC, 0UL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) static void print_track(const char *s, struct track *t, unsigned long pr_time)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 	if (!t->addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) #ifdef CONFIG_STACKTRACE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 		int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 			if (t->addrs[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 				pr_err("\t%pS\n", (void *)t->addrs[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) void print_tracking(struct kmem_cache *s, void *object)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 	unsigned long pr_time = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 	if (!(s->flags & SLAB_STORE_USER))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) static void print_page_info(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 	       page, page->objects, page->inuse, page->freelist, page->flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) static void slab_bug(struct kmem_cache *s, char *fmt, ...)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 	struct va_format vaf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 	va_list args;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 	va_start(args, fmt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 	vaf.fmt = fmt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 	vaf.va = &args;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 	pr_err("=============================================================================\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 	pr_err("-----------------------------------------------------------------------------\n\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 	va_end(args);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) static void slab_fix(struct kmem_cache *s, char *fmt, ...)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 	struct va_format vaf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 	va_list args;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 	va_start(args, fmt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 	vaf.fmt = fmt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 	vaf.va = &args;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 	pr_err("FIX %s: %pV\n", s->name, &vaf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 	va_end(args);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 			       void **freelist, void *nextfree)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 	    !check_valid_pointer(s, page, nextfree) && freelist) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 		object_err(s, page, *freelist, "Freechain corrupt");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 		*freelist = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 		slab_fix(s, "Isolate corrupted freechain");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 	unsigned int off;	/* Offset of last byte */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 	u8 *addr = page_address(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 	print_tracking(s, p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 	print_page_info(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 	       p, p - addr, get_freepointer(s, p));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 	if (s->flags & SLAB_RED_ZONE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 			      s->red_left_pad);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 	else if (p > addr + 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 	print_section(KERN_ERR,         "Object   ", p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 	if (s->flags & SLAB_RED_ZONE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 			s->inuse - s->object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 	off = get_info_end(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 	if (s->flags & SLAB_STORE_USER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 		off += 2 * sizeof(struct track);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 	off += kasan_metadata_size(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 	if (off != size_from_object(s))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 		/* Beginning of the filler is the free pointer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 		print_section(KERN_ERR, "Padding  ", p + off,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) 			      size_from_object(s) - off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 	dump_stack();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) void object_err(struct kmem_cache *s, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 			u8 *object, char *reason)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 	slab_bug(s, "%s", reason);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 	print_trailer(s, page, object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 			const char *fmt, ...)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 	va_list args;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 	char buf[100];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 	va_start(args, fmt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 	vsnprintf(buf, sizeof(buf), fmt, args);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 	va_end(args);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 	slab_bug(s, "%s", buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 	print_page_info(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 	dump_stack();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) static void init_object(struct kmem_cache *s, void *object, u8 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	u8 *p = kasan_reset_tag(object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 	if (s->flags & SLAB_RED_ZONE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 		memset(p - s->red_left_pad, val, s->red_left_pad);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 	if (s->flags & __OBJECT_POISON) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 		memset(p, POISON_FREE, s->object_size - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 		p[s->object_size - 1] = POISON_END;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 	if (s->flags & SLAB_RED_ZONE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 		memset(p + s->object_size, val, s->inuse - s->object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 						void *from, void *to)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 	memset(from, data, to - from);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 			u8 *object, char *what,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 			u8 *start, unsigned int value, unsigned int bytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 	u8 *fault;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 	u8 *end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 	u8 *addr = page_address(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 	metadata_access_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 	metadata_access_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 	if (!fault)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 	end = start + bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 	while (end > fault && end[-1] == value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 		end--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 	slab_bug(s, "%s overwritten", what);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 					fault, end - 1, fault - addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 					fault[0], value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 	print_trailer(s, page, object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 	restore_bytes(s, what, value, fault, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842)  * Object layout:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844)  * object address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845)  * 	Bytes of the object to be managed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846)  * 	If the freepointer may overlay the object then the free
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847)  *	pointer is at the middle of the object.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849)  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850)  * 	0xa5 (POISON_END)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852)  * object + s->object_size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853)  * 	Padding to reach word boundary. This is also used for Redzoning.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854)  * 	Padding is extended by another word if Redzoning is enabled and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855)  * 	object_size == inuse.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857)  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858)  * 	0xcc (RED_ACTIVE) for objects in use.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860)  * object + s->inuse
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861)  * 	Meta data starts here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863)  * 	A. Free pointer (if we cannot overwrite object on free)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864)  * 	B. Tracking data for SLAB_STORE_USER
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865)  * 	C. Padding to reach required alignment boundary or at mininum
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866)  * 		one word if debugging is on to be able to detect writes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867)  * 		before the word boundary.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869)  *	Padding is done using 0x5a (POISON_INUSE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871)  * object + s->size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872)  * 	Nothing is used beyond s->size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874)  * If slabcaches are merged then the object_size and inuse boundaries are mostly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875)  * ignored. And therefore no slab options that rely on these boundaries
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876)  * may be used with merged slabcaches.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 	unsigned long off = get_info_end(s);	/* The end of info */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 	if (s->flags & SLAB_STORE_USER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 		/* We also have user information there */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 		off += 2 * sizeof(struct track);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 	off += kasan_metadata_size(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 	if (size_from_object(s) == off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 	return check_bytes_and_report(s, page, p, "Object padding",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 			p + off, POISON_INUSE, size_from_object(s) - off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) /* Check the pad bytes at the end of a slab page */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) static int slab_pad_check(struct kmem_cache *s, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 	u8 *start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 	u8 *fault;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 	u8 *end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 	u8 *pad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 	int length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 	int remainder;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 	if (!(s->flags & SLAB_POISON))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 	start = page_address(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 	length = page_size(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 	end = start + length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 	remainder = length % s->size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 	if (!remainder)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 	pad = end - remainder;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 	metadata_access_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 	metadata_access_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 	if (!fault)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 	while (end > fault && end[-1] == POISON_INUSE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 		end--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 			fault, end - 1, fault - start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 	print_section(KERN_ERR, "Padding ", pad, remainder);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) static int check_object(struct kmem_cache *s, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 					void *object, u8 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 	u8 *p = object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 	u8 *endobject = object + s->object_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 	if (s->flags & SLAB_RED_ZONE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 		if (!check_bytes_and_report(s, page, object, "Left Redzone",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 			object - s->red_left_pad, val, s->red_left_pad))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 		if (!check_bytes_and_report(s, page, object, "Right Redzone",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 			endobject, val, s->inuse - s->object_size))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 			check_bytes_and_report(s, page, p, "Alignment padding",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 				endobject, POISON_INUSE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 				s->inuse - s->object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 	if (s->flags & SLAB_POISON) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 			(!check_bytes_and_report(s, page, p, "Poison", p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 					POISON_FREE, s->object_size - 1) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 			 !check_bytes_and_report(s, page, p, "End Poison",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 				p + s->object_size - 1, POISON_END, 1)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 		 * check_pad_bytes cleans up on its own.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 		check_pad_bytes(s, page, p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 		 * Object and freepointer overlap. Cannot check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 		 * freepointer while object is allocated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 	/* Check free pointer validity */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 		object_err(s, page, p, "Freepointer corrupt");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 		 * No choice but to zap it and thus lose the remainder
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 		 * of the free objects in this slab. May cause
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 		 * another error because the object count is now wrong.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 		set_freepointer(s, p, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) static int check_slab(struct kmem_cache *s, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 	int maxobj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 	VM_BUG_ON(!irqs_disabled());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 	if (!PageSlab(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 		slab_err(s, page, "Not a valid slab page");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 	maxobj = order_objects(compound_order(page), s->size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 	if (page->objects > maxobj) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 		slab_err(s, page, "objects %u > max %u",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 			page->objects, maxobj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 	if (page->inuse > page->objects) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 		slab_err(s, page, "inuse %u > max %u",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 			page->inuse, page->objects);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 	/* Slab_pad_check fixes things up after itself */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 	slab_pad_check(s, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017)  * Determine if a certain object on a page is on the freelist. Must hold the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018)  * slab lock to guarantee that the chains are in a consistent state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 	int nr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 	void *fp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 	void *object = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 	int max_objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 	fp = page->freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 	while (fp && nr <= page->objects) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 		if (fp == search)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 			return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 		if (!check_valid_pointer(s, page, fp)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 			if (object) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 				object_err(s, page, object,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 					"Freechain corrupt");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 				set_freepointer(s, object, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 				slab_err(s, page, "Freepointer corrupt");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 				page->freelist = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 				page->inuse = page->objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 				slab_fix(s, "Freelist cleared");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 				return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 		object = fp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 		fp = get_freepointer(s, object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 		nr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 	max_objects = order_objects(compound_order(page), s->size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 	if (max_objects > MAX_OBJS_PER_PAGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 		max_objects = MAX_OBJS_PER_PAGE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 	if (page->objects != max_objects) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 			 page->objects, max_objects);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 		page->objects = max_objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 		slab_fix(s, "Number of objects adjusted.");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 	if (page->inuse != page->objects - nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 			 page->inuse, page->objects - nr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 		page->inuse = page->objects - nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 		slab_fix(s, "Object count adjusted.");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 	return search == NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) static void trace(struct kmem_cache *s, struct page *page, void *object,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 								int alloc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 	if (s->flags & SLAB_TRACE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 			s->name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 			alloc ? "alloc" : "free",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 			object, page->inuse,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 			page->freelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 		if (!alloc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 			print_section(KERN_INFO, "Object ", (void *)object,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 					s->object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 		dump_stack();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088)  * Tracking of fully allocated slabs for debugging purposes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) static void add_full(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 	struct kmem_cache_node *n, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 	if (!(s->flags & SLAB_STORE_USER))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 	lockdep_assert_held(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 	list_add(&page->slab_list, &n->full);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 	if (!(s->flags & SLAB_STORE_USER))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 	lockdep_assert_held(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 	list_del(&page->slab_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) /* Tracking of the number of slabs for debugging purposes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) static inline unsigned long slabs_node(struct kmem_cache *s, int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 	struct kmem_cache_node *n = get_node(s, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 	return atomic_long_read(&n->nr_slabs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 	return atomic_long_read(&n->nr_slabs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 	struct kmem_cache_node *n = get_node(s, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 	 * May be called early in order to allocate a slab for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 	 * kmem_cache_node structure. Solve the chicken-egg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 	 * dilemma by deferring the increment of the count during
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 	 * bootstrap (see early_kmem_cache_node_alloc).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 	if (likely(n)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 		atomic_long_inc(&n->nr_slabs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 		atomic_long_add(objects, &n->total_objects);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 	struct kmem_cache_node *n = get_node(s, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 	atomic_long_dec(&n->nr_slabs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 	atomic_long_sub(objects, &n->total_objects);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) /* Object debug checks for alloc/free paths */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) static void setup_object_debug(struct kmem_cache *s, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 								void *object)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 	init_object(s, object, SLUB_RED_INACTIVE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 	init_tracking(s, object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) static
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 	metadata_access_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 	memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 	metadata_access_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) static inline int alloc_consistency_checks(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 					struct page *page, void *object)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 	if (!check_slab(s, page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 	if (!check_valid_pointer(s, page, object)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 		object_err(s, page, object, "Freelist Pointer check fails");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) static noinline int alloc_debug_processing(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 					struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 					void *object, unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 		if (!alloc_consistency_checks(s, page, object))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 			goto bad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 	/* Success perform special debug activities for allocs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 	if (s->flags & SLAB_STORE_USER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 		set_track(s, object, TRACK_ALLOC, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 	trace(s, page, object, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 	init_object(s, object, SLUB_RED_ACTIVE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) bad:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 	if (PageSlab(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 		 * If this is a slab page then lets do the best we can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 		 * to avoid issues in the future. Marking all objects
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 		 * as used avoids touching the remaining objects.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 		slab_fix(s, "Marking all objects used");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 		page->inuse = page->objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 		page->freelist = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) static inline int free_consistency_checks(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 		struct page *page, void *object, unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 	if (!check_valid_pointer(s, page, object)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 		slab_err(s, page, "Invalid object pointer 0x%p", object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 	if (on_freelist(s, page, object)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 		object_err(s, page, object, "Object already free");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 	if (unlikely(s != page->slab_cache)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 		if (!PageSlab(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 				 object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 		} else if (!page->slab_cache) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 			       object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 			dump_stack();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 		} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) 			object_err(s, page, object,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) 					"page slab pointer corrupt.");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) /* Supports checking bulk free of a constructed freelist */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) static noinline int free_debug_processing(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) 	struct kmem_cache *s, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 	void *head, void *tail, int bulk_cnt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) 	unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 	void *object = head;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 	int cnt = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 	spin_lock_irqsave(&n->list_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 	slab_lock(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 		if (!check_slab(s, page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) next_object:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 	cnt++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 		if (!free_consistency_checks(s, page, object, addr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 	if (s->flags & SLAB_STORE_USER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 		set_track(s, object, TRACK_FREE, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 	trace(s, page, object, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) 	init_object(s, object, SLUB_RED_INACTIVE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 	/* Reached end of constructed freelist yet? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) 	if (object != tail) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 		object = get_freepointer(s, object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) 		goto next_object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 	ret = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 	if (cnt != bulk_cnt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) 			 bulk_cnt, cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) 	slab_unlock(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) 	spin_unlock_irqrestore(&n->list_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 	if (!ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) 		slab_fix(s, "Object at 0x%p not freed", object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300)  * Parse a block of slub_debug options. Blocks are delimited by ';'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302)  * @str:    start of block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303)  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304)  * @slabs:  return start of list of slabs, or NULL when there's no list
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305)  * @init:   assume this is initial parsing and not per-kmem-create parsing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307)  * returns the start of next block if there's any, or NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) static char *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 	bool higher_order_disable = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 	/* Skip any completely empty blocks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 	while (*str && *str == ';')
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 		str++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 	if (*str == ',') {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 		 * No options but restriction on slabs. This means full
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 		 * debugging for slabs matching a pattern.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 		*flags = DEBUG_DEFAULT_FLAGS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 		goto check_slabs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 	*flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 	/* Determine which debug features should be switched on */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 	for (; *str && *str != ',' && *str != ';'; str++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 		switch (tolower(*str)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 		case '-':
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 			*flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 		case 'f':
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) 			*flags |= SLAB_CONSISTENCY_CHECKS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 		case 'z':
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 			*flags |= SLAB_RED_ZONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 		case 'p':
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 			*flags |= SLAB_POISON;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 		case 'u':
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 			*flags |= SLAB_STORE_USER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 		case 't':
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 			*flags |= SLAB_TRACE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 		case 'a':
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 			*flags |= SLAB_FAILSLAB;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 		case 'o':
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 			 * Avoid enabling debugging on caches if its minimum
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 			 * order would increase as a result.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 			higher_order_disable = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 			if (init)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) check_slabs:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 	if (*str == ',')
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 		*slabs = ++str;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 		*slabs = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 	/* Skip over the slab list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 	while (*str && *str != ';')
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 		str++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 	/* Skip any completely empty blocks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 	while (*str && *str == ';')
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) 		str++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 	if (init && higher_order_disable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 		disable_higher_order_debug = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 	if (*str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 		return str;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) static int __init setup_slub_debug(char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 	slab_flags_t flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) 	slab_flags_t global_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 	char *saved_str;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 	char *slab_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 	bool global_slub_debug_changed = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 	bool slab_list_specified = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) 	global_flags = DEBUG_DEFAULT_FLAGS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 	if (*str++ != '=' || !*str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 		 * No options specified. Switch on full debugging.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 	saved_str = str;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 	while (str) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 		if (!slab_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 			global_flags = flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) 			global_slub_debug_changed = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) 			slab_list_specified = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) 	 * For backwards compatibility, a single list of flags with list of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 	 * slabs means debugging is only changed for those slabs, so the global
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) 	 * long as there is no option specifying flags without a slab list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) 	if (slab_list_specified) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) 		if (!global_slub_debug_changed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) 			global_flags = slub_debug;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) 		slub_debug_string = saved_str;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 	slub_debug = global_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 	if (slub_debug != 0 || slub_debug_string)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 		static_branch_enable(&slub_debug_enabled);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) 	if ((static_branch_unlikely(&init_on_alloc) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) 	     static_branch_unlikely(&init_on_free)) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) 	    (slub_debug & SLAB_POISON))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) __setup("slub_debug", setup_slub_debug);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441)  * kmem_cache_flags - apply debugging options to the cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442)  * @object_size:	the size of an object without meta data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443)  * @flags:		flags to set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444)  * @name:		name of the cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446)  * Debug option(s) are applied to @flags. In addition to the debug
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447)  * option(s), if a slab name (or multiple) is specified i.e.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448)  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449)  * then only the select slabs will receive the debug option(s).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) slab_flags_t kmem_cache_flags(unsigned int object_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) 	slab_flags_t flags, const char *name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) 	char *iter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) 	size_t len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) 	char *next_block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) 	slab_flags_t block_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) 	len = strlen(name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) 	next_block = slub_debug_string;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) 	/* Go through all blocks of debug options, see if any matches our slab's name */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) 	while (next_block) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) 		if (!iter)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) 		/* Found a block that has a slab list, search it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) 		while (*iter) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) 			char *end, *glob;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) 			size_t cmplen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) 			end = strchrnul(iter, ',');
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) 			if (next_block && next_block < end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) 				end = next_block - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) 			glob = strnchr(iter, end - iter, '*');
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) 			if (glob)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) 				cmplen = glob - iter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) 				cmplen = max_t(size_t, len, (end - iter));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) 			if (!strncmp(name, iter, cmplen)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) 				flags |= block_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) 				return flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) 			if (!*end || *end == ';')
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) 			iter = end + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) 	return flags | slub_debug;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) #else /* !CONFIG_SLUB_DEBUG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) static inline void setup_object_debug(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) 			struct page *page, void *object) {}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) static inline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) static inline int alloc_debug_processing(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) 	struct page *page, void *object, unsigned long addr) { return 0; }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) static inline int free_debug_processing(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) 	struct kmem_cache *s, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) 	void *head, void *tail, int bulk_cnt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) 	unsigned long addr) { return 0; }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) 			{ return 1; }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) static inline int check_object(struct kmem_cache *s, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) 			void *object, u8 val) { return 1; }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) 					struct page *page) {}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 					struct page *page) {}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) slab_flags_t kmem_cache_flags(unsigned int object_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) 	slab_flags_t flags, const char *name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) 	return flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) #define slub_debug 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) #define disable_higher_order_debug 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) static inline unsigned long slabs_node(struct kmem_cache *s, int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) 							{ return 0; }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) 							{ return 0; }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) static inline void inc_slabs_node(struct kmem_cache *s, int node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) 							int objects) {}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) static inline void dec_slabs_node(struct kmem_cache *s, int node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) 							int objects) {}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) 			       void **freelist, void *nextfree)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) #endif /* CONFIG_SLUB_DEBUG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542)  * Hooks for other subsystems that check memory allocations. In a typical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543)  * production configuration these hooks all should produce no code at all.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) 	ptr = kasan_kmalloc_large(ptr, size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) 	kmemleak_alloc(ptr, size, 1, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) 	return ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) static __always_inline void kfree_hook(void *x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 	kmemleak_free(x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) 	kasan_kfree_large(x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) static __always_inline bool slab_free_hook(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) 						void *x, bool init)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 	kmemleak_free_recursive(x, s->flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) 	 * Trouble is that we may no longer disable interrupts in the fast path
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) 	 * So in order to make the debug calls that expect irqs to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) 	 * disabled we need to disable interrupts temporarily.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) #ifdef CONFIG_LOCKDEP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) 		unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) 		local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) 		debug_check_no_locks_freed(x, s->object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) 		local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) 		debug_check_no_obj_freed(x, s->object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) 	/* Use KCSAN to help debug racy use-after-free. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) 		__kcsan_check_access(x, s->object_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) 	 * As memory initialization might be integrated into KASAN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) 	 * kasan_slab_free and initialization memset's must be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) 	 * kept together to avoid discrepancies in behavior.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) 	 * The initialization memset's clear the object and the metadata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) 	 * but don't touch the SLAB redzone.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) 	if (init) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) 		int rsize;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) 		if (!kasan_has_integrated_init())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) 			memset(kasan_reset_tag(x), 0, s->object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) 		       s->size - s->inuse - rsize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) 	/* KASAN might put x into memory quarantine, delaying its reuse. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) 	return kasan_slab_free(s, x, init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) static inline bool slab_free_freelist_hook(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) 					   void **head, void **tail,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) 					   int *cnt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) 	void *object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) 	void *next = *head;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) 	void *old_tail = *tail ? *tail : *head;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) 	if (is_kfence_address(next)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) 		slab_free_hook(s, next, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) 	/* Head and tail of the reconstructed freelist */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) 	*head = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) 	*tail = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) 		object = next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) 		next = get_freepointer(s, object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) 		/* If object's reuse doesn't have to be delayed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) 			/* Move object to the new freelist */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) 			set_freepointer(s, object, *head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) 			*head = object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) 			if (!*tail)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) 				*tail = object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) 			 * Adjust the reconstructed freelist depth
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) 			 * accordingly if object's reuse is delayed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) 			--(*cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) 	} while (object != old_tail);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) 	if (*head == *tail)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) 		*tail = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) 	return *head != NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) static void *setup_object(struct kmem_cache *s, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) 				void *object)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) 	setup_object_debug(s, page, object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) 	object = kasan_init_slab_obj(s, object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) 	if (unlikely(s->ctor)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) 		kasan_unpoison_object_data(s, object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) 		s->ctor(object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) 		kasan_poison_object_data(s, object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) 	return object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665)  * Slab allocation and freeing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) static inline struct page *alloc_slab_page(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671) 	unsigned int order = oo_order(oo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) 	if (node == NUMA_NO_NODE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) 		page = alloc_pages(flags, order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) 		page = __alloc_pages_node(node, flags, order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) 	if (page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) 		account_slab_page(page, order, s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) 	return page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) #ifdef CONFIG_SLAB_FREELIST_RANDOM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) /* Pre-initialize the random sequence cache */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) static int init_cache_random_seq(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) 	unsigned int count = oo_objects(s->oo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) 	/* Bailout if already initialised */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) 	if (s->random_seq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) 	err = cache_random_seq_create(s, count, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) 		pr_err("SLUB: Unable to initialize free list for %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) 			s->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) 	/* Transform to an offset on the set of pages */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) 	if (s->random_seq) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) 		unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) 		for (i = 0; i < count; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) 			s->random_seq[i] *= s->size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) /* Initialize each random sequence freelist per cache */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) static void __init init_freelist_randomization(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) 	mutex_lock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719) 	list_for_each_entry(s, &slab_caches, list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720) 		init_cache_random_seq(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722) 	mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) /* Get the next entry on the pre-computed freelist randomized */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) 				unsigned long *pos, void *start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) 				unsigned long page_limit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) 				unsigned long freelist_count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) 	unsigned int idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) 	 * If the target page allocation failed, the number of objects on the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) 	 * page might be smaller than the usual size defined by the cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) 		idx = s->random_seq[*pos];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) 		*pos += 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) 		if (*pos >= freelist_count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) 			*pos = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) 	} while (unlikely(idx >= page_limit));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) 	return (char *)start + idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) /* Shuffle the single linked freelist based on a random pre-computed sequence */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) 	void *start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751) 	void *cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) 	void *next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) 	unsigned long idx, pos, page_limit, freelist_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) 	if (page->objects < 2 || !s->random_seq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) 	freelist_count = oo_objects(s->oo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) 	pos = get_random_int() % freelist_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) 	page_limit = page->objects * s->size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) 	start = fixup_red_left(s, page_address(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) 	/* First entry is used as the base of the freelist */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) 				freelist_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) 	cur = setup_object(s, page, cur);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) 	page->freelist = cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) 	for (idx = 1; idx < page->objects; idx++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) 		next = next_freelist_entry(s, page, &pos, start, page_limit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) 			freelist_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) 		next = setup_object(s, page, next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774) 		set_freepointer(s, cur, next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) 		cur = next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) 	set_freepointer(s, cur, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779) 	return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) static inline int init_cache_random_seq(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) static inline void init_freelist_randomization(void) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791) #endif /* CONFIG_SLAB_FREELIST_RANDOM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) 	struct kmem_cache_order_objects oo = s->oo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) 	gfp_t alloc_gfp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798) 	void *start, *p, *next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799) 	int idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800) 	bool shuffle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802) 	flags &= gfp_allowed_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) 	if (gfpflags_allow_blocking(flags))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805) 		local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) 	flags |= s->allocflags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810) 	 * Let the initial higher-order allocation fail under memory pressure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) 	 * so we fall-back to the minimum order allocation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815) 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817) 	page = alloc_slab_page(s, alloc_gfp, node, oo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818) 	if (unlikely(!page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819) 		oo = s->min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) 		alloc_gfp = flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) 		 * Allocation may have failed due to fragmentation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) 		 * Try a lower order alloc if possible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825) 		page = alloc_slab_page(s, alloc_gfp, node, oo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) 		if (unlikely(!page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) 		stat(s, ORDER_FALLBACK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) 	page->objects = oo_objects(oo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833) 	page->slab_cache = s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834) 	__SetPageSlab(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) 	if (page_is_pfmemalloc(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836) 		SetPageSlabPfmemalloc(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838) 	kasan_poison_slab(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840) 	start = page_address(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842) 	setup_page_debug(s, page, start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844) 	shuffle = shuffle_freelist(s, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846) 	if (!shuffle) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) 		start = fixup_red_left(s, start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) 		start = setup_object(s, page, start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849) 		page->freelist = start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851) 			next = p + s->size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) 			next = setup_object(s, page, next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853) 			set_freepointer(s, p, next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) 			p = next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) 		set_freepointer(s, p, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) 	page->inuse = page->objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) 	page->frozen = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) 	if (gfpflags_allow_blocking(flags))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) 		local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) 	if (!page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) 	inc_slabs_node(s, page_to_nid(page), page->objects);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870) 	return page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873) static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875) 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) 		flags = kmalloc_fix_flags(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) 	return allocate_slab(s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879) 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882) static void __free_slab(struct kmem_cache *s, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884) 	int order = compound_order(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885) 	int pages = 1 << order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887) 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888) 		void *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890) 		slab_pad_check(s, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) 		for_each_object(p, s, page_address(page),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892) 						page->objects)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893) 			check_object(s, page, p, SLUB_RED_INACTIVE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896) 	__ClearPageSlabPfmemalloc(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) 	__ClearPageSlab(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899) 	page->mapping = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900) 	if (current->reclaim_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901) 		current->reclaim_state->reclaimed_slab += pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902) 	unaccount_slab_page(page, order, s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903) 	__free_pages(page, order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906) static void rcu_free_slab(struct rcu_head *h)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908) 	struct page *page = container_of(h, struct page, rcu_head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910) 	__free_slab(page->slab_cache, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913) static void free_slab(struct kmem_cache *s, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915) 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916) 		call_rcu(&page->rcu_head, rcu_free_slab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918) 		__free_slab(s, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921) static void discard_slab(struct kmem_cache *s, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923) 	dec_slabs_node(s, page_to_nid(page), page->objects);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) 	free_slab(s, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928)  * Management of partially allocated slabs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) static inline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931) __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) 	n->nr_partial++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934) 	if (tail == DEACTIVATE_TO_TAIL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) 		list_add_tail(&page->slab_list, &n->partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) 		list_add(&page->slab_list, &n->partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940) static inline void add_partial(struct kmem_cache_node *n,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) 				struct page *page, int tail)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) 	lockdep_assert_held(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) 	__add_partial(n, page, tail);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) static inline void remove_partial(struct kmem_cache_node *n,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948) 					struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) 	lockdep_assert_held(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951) 	list_del(&page->slab_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) 	n->nr_partial--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956)  * Remove slab from the partial list, freeze it and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957)  * return the pointer to the freelist.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959)  * Returns a list of objects or NULL if it fails.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) static inline void *acquire_slab(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962) 		struct kmem_cache_node *n, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) 		int mode, int *objects)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) 	void *freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) 	unsigned long counters;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) 	struct page new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969) 	lockdep_assert_held(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) 	 * Zap the freelist and set the frozen bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) 	 * The old freelist is the list of objects for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974) 	 * per cpu allocation list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) 	freelist = page->freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977) 	counters = page->counters;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) 	new.counters = counters;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979) 	*objects = new.objects - new.inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980) 	if (mode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) 		new.inuse = page->objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982) 		new.freelist = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984) 		new.freelist = freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987) 	VM_BUG_ON(new.frozen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988) 	new.frozen = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) 	if (!__cmpxchg_double_slab(s, page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) 			freelist, counters,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992) 			new.freelist, new.counters,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993) 			"acquire_slab"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) 	remove_partial(n, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) 	WARN_ON(!freelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) 	return freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001) static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005)  * Try to allocate a partial slab from a specific node.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007) static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) 				struct kmem_cache_cpu *c, gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) 	struct page *page, *page2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011) 	void *object = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012) 	unsigned int available = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013) 	int objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016) 	 * Racy check. If we mistakenly see no partial slabs then we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017) 	 * just allocate an empty slab. If we mistakenly try to get a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018) 	 * partial slab and there is none available then get_partial()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019) 	 * will return NULL.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) 	if (!n || !n->nr_partial)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) 	spin_lock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026) 		void *t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028) 		if (!pfmemalloc_match(page, flags))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031) 		t = acquire_slab(s, n, page, object == NULL, &objects);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) 		if (!t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) 		available += objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036) 		if (!object) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) 			c->page = page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) 			stat(s, ALLOC_FROM_PARTIAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) 			object = t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) 			put_cpu_partial(s, page, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042) 			stat(s, CPU_PARTIAL_NODE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) 		if (!kmem_cache_has_cpu_partial(s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045) 			|| available > slub_cpu_partial(s) / 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049) 	spin_unlock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050) 	return object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054)  * Get a page from somewhere. Search in increasing NUMA distances.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057) 		struct kmem_cache_cpu *c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060) 	struct zonelist *zonelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061) 	struct zoneref *z;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062) 	struct zone *zone;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) 	enum zone_type highest_zoneidx = gfp_zone(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064) 	void *object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065) 	unsigned int cpuset_mems_cookie;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068) 	 * The defrag ratio allows a configuration of the tradeoffs between
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069) 	 * inter node defragmentation and node local allocations. A lower
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) 	 * defrag_ratio increases the tendency to do local allocations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071) 	 * instead of attempting to obtain partial slabs from other nodes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073) 	 * If the defrag_ratio is set to 0 then kmalloc() always
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074) 	 * returns node local objects. If the ratio is higher then kmalloc()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) 	 * may return off node objects because partial slabs are obtained
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076) 	 * from other nodes and filled up.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078) 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079) 	 * (which makes defrag_ratio = 1000) then every (well almost)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080) 	 * allocation will first attempt to defrag slab caches on other nodes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) 	 * This means scanning over all nodes to look for partial slabs which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082) 	 * may be expensive if we do it every time we are trying to find a slab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083) 	 * with available objects.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085) 	if (!s->remote_node_defrag_ratio ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086) 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090) 		cpuset_mems_cookie = read_mems_allowed_begin();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091) 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092) 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) 			struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) 			n = get_node(s, zone_to_nid(zone));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) 			if (n && cpuset_zone_allowed(zone, flags) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098) 					n->nr_partial > s->min_partial) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) 				object = get_partial_node(s, n, c, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100) 				if (object) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101) 					/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) 					 * Don't check read_mems_allowed_retry()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) 					 * here - if mems_allowed was updated in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104) 					 * parallel, that was a harmless race
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) 					 * between allocation and the cpuset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106) 					 * update
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107) 					 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108) 					return object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112) 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113) #endif	/* CONFIG_NUMA */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118)  * Get a partial page, lock it and return it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120) static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121) 		struct kmem_cache_cpu *c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123) 	void *object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124) 	int searchnode = node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126) 	if (node == NUMA_NO_NODE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127) 		searchnode = numa_mem_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129) 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130) 	if (object || node != NUMA_NO_NODE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) 		return object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133) 	return get_any_partial(s, flags, c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136) #ifdef CONFIG_PREEMPTION
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138)  * Calculate the next globally unique transaction for disambiguation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139)  * during cmpxchg. The transactions start with the cpu number and are then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140)  * incremented by CONFIG_NR_CPUS.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142) #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2144) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2145)  * No preemption supported therefore also no need to check for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2146)  * different cpus.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2147)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2148) #define TID_STEP 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2149) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2151) static inline unsigned long next_tid(unsigned long tid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2152) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2153) 	return tid + TID_STEP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2154) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2156) #ifdef SLUB_DEBUG_CMPXCHG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2157) static inline unsigned int tid_to_cpu(unsigned long tid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2158) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2159) 	return tid % TID_STEP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2160) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2162) static inline unsigned long tid_to_event(unsigned long tid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2163) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2164) 	return tid / TID_STEP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2165) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2166) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2168) static inline unsigned int init_tid(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2169) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2170) 	return cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2171) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2173) static inline void note_cmpxchg_failure(const char *n,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2174) 		const struct kmem_cache *s, unsigned long tid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2175) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2176) #ifdef SLUB_DEBUG_CMPXCHG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2177) 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2179) 	pr_info("%s %s: cmpxchg redo ", n, s->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2181) #ifdef CONFIG_PREEMPTION
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2182) 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2183) 		pr_warn("due to cpu change %d -> %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2184) 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2185) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2186) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2187) 	if (tid_to_event(tid) != tid_to_event(actual_tid))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2188) 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2189) 			tid_to_event(tid), tid_to_event(actual_tid));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2190) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2191) 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2192) 			actual_tid, tid, next_tid(tid));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2193) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2194) 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2195) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2197) static void init_kmem_cache_cpus(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2198) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2199) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2201) 	for_each_possible_cpu(cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2202) 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2203) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2205) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2206)  * Remove the cpu slab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2207)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2208) static void deactivate_slab(struct kmem_cache *s, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2209) 				void *freelist, struct kmem_cache_cpu *c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2210) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2211) 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2212) 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2213) 	int lock = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2214) 	enum slab_modes l = M_NONE, m = M_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2215) 	void *nextfree;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2216) 	int tail = DEACTIVATE_TO_HEAD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2217) 	struct page new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2218) 	struct page old;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2220) 	if (page->freelist) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2221) 		stat(s, DEACTIVATE_REMOTE_FREES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2222) 		tail = DEACTIVATE_TO_TAIL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2223) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2225) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2226) 	 * Stage one: Free all available per cpu objects back
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2227) 	 * to the page freelist while it is still frozen. Leave the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2228) 	 * last one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2229) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2230) 	 * There is no need to take the list->lock because the page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2231) 	 * is still frozen.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2232) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2233) 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2234) 		void *prior;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2235) 		unsigned long counters;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2237) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2238) 		 * If 'nextfree' is invalid, it is possible that the object at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2239) 		 * 'freelist' is already corrupted.  So isolate all objects
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2240) 		 * starting at 'freelist'.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2241) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2242) 		if (freelist_corrupted(s, page, &freelist, nextfree))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2243) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2245) 		do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2246) 			prior = page->freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2247) 			counters = page->counters;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2248) 			set_freepointer(s, freelist, prior);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2249) 			new.counters = counters;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2250) 			new.inuse--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2251) 			VM_BUG_ON(!new.frozen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2253) 		} while (!__cmpxchg_double_slab(s, page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2254) 			prior, counters,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2255) 			freelist, new.counters,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2256) 			"drain percpu freelist"));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2258) 		freelist = nextfree;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2259) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2260) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2261) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2262) 	 * Stage two: Ensure that the page is unfrozen while the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2263) 	 * list presence reflects the actual number of objects
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2264) 	 * during unfreeze.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2265) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2266) 	 * We setup the list membership and then perform a cmpxchg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2267) 	 * with the count. If there is a mismatch then the page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2268) 	 * is not unfrozen but the page is on the wrong list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2269) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2270) 	 * Then we restart the process which may have to remove
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2271) 	 * the page from the list that we just put it on again
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2272) 	 * because the number of objects in the slab may have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2273) 	 * changed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2274) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2275) redo:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2277) 	old.freelist = page->freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2278) 	old.counters = page->counters;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2279) 	VM_BUG_ON(!old.frozen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2281) 	/* Determine target state of the slab */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2282) 	new.counters = old.counters;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2283) 	if (freelist) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2284) 		new.inuse--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2285) 		set_freepointer(s, freelist, old.freelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2286) 		new.freelist = freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2287) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2288) 		new.freelist = old.freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2290) 	new.frozen = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2292) 	if (!new.inuse && n->nr_partial >= s->min_partial)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2293) 		m = M_FREE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2294) 	else if (new.freelist) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2295) 		m = M_PARTIAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2296) 		if (!lock) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2297) 			lock = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2298) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2299) 			 * Taking the spinlock removes the possibility
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2300) 			 * that acquire_slab() will see a slab page that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2301) 			 * is frozen
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2302) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2303) 			spin_lock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2304) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2305) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2306) 		m = M_FULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2307) #ifdef CONFIG_SLUB_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2308) 		if ((s->flags & SLAB_STORE_USER) && !lock) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2309) 			lock = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2310) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2311) 			 * This also ensures that the scanning of full
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2312) 			 * slabs from diagnostic functions will not see
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2313) 			 * any frozen slabs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2314) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2315) 			spin_lock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2316) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2317) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2318) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2320) 	if (l != m) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2321) 		if (l == M_PARTIAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2322) 			remove_partial(n, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2323) 		else if (l == M_FULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2324) 			remove_full(s, n, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2326) 		if (m == M_PARTIAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2327) 			add_partial(n, page, tail);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2328) 		else if (m == M_FULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2329) 			add_full(s, n, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2330) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2332) 	l = m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2333) 	if (!__cmpxchg_double_slab(s, page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2334) 				old.freelist, old.counters,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2335) 				new.freelist, new.counters,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2336) 				"unfreezing slab"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2337) 		goto redo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2339) 	if (lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2340) 		spin_unlock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2341) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2342) 	if (m == M_PARTIAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2343) 		stat(s, tail);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2344) 	else if (m == M_FULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2345) 		stat(s, DEACTIVATE_FULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2346) 	else if (m == M_FREE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2347) 		stat(s, DEACTIVATE_EMPTY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2348) 		discard_slab(s, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2349) 		stat(s, FREE_SLAB);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2350) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2352) 	c->page = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2353) 	c->freelist = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2354) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2356) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2357)  * Unfreeze all the cpu partial slabs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2358)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2359)  * This function must be called with interrupts disabled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2360)  * for the cpu using c (or some other guarantee must be there
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2361)  * to guarantee no concurrent accesses).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2362)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2363) static void unfreeze_partials(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2364) 		struct kmem_cache_cpu *c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2365) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2366) #ifdef CONFIG_SLUB_CPU_PARTIAL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2367) 	struct kmem_cache_node *n = NULL, *n2 = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2368) 	struct page *page, *discard_page = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2370) 	while ((page = slub_percpu_partial(c))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2371) 		struct page new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2372) 		struct page old;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2373) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2374) 		slub_set_percpu_partial(c, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2376) 		n2 = get_node(s, page_to_nid(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2377) 		if (n != n2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2378) 			if (n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2379) 				spin_unlock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2381) 			n = n2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2382) 			spin_lock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2383) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2385) 		do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2387) 			old.freelist = page->freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2388) 			old.counters = page->counters;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2389) 			VM_BUG_ON(!old.frozen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2391) 			new.counters = old.counters;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2392) 			new.freelist = old.freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2394) 			new.frozen = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2396) 		} while (!__cmpxchg_double_slab(s, page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2397) 				old.freelist, old.counters,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2398) 				new.freelist, new.counters,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2399) 				"unfreezing slab"));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2400) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2401) 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2402) 			page->next = discard_page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2403) 			discard_page = page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2404) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2405) 			add_partial(n, page, DEACTIVATE_TO_TAIL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2406) 			stat(s, FREE_ADD_PARTIAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2407) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2408) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2410) 	if (n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2411) 		spin_unlock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2413) 	while (discard_page) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2414) 		page = discard_page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2415) 		discard_page = discard_page->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2417) 		stat(s, DEACTIVATE_EMPTY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2418) 		discard_slab(s, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2419) 		stat(s, FREE_SLAB);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2420) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2421) #endif	/* CONFIG_SLUB_CPU_PARTIAL */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2422) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2424) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2425)  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2426)  * partial page slot if available.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2427)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2428)  * If we did not find a slot then simply move all the partials to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2429)  * per node partial list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2430)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2431) static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2432) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2433) #ifdef CONFIG_SLUB_CPU_PARTIAL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2434) 	struct page *oldpage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2435) 	int pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2436) 	int pobjects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2438) 	preempt_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2439) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2440) 		pages = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2441) 		pobjects = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2442) 		oldpage = this_cpu_read(s->cpu_slab->partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2443) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2444) 		if (oldpage) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2445) 			pobjects = oldpage->pobjects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2446) 			pages = oldpage->pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2447) 			if (drain && pobjects > slub_cpu_partial(s)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2448) 				unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2449) 				/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2450) 				 * partial array is full. Move the existing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2451) 				 * set to the per node partial list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2452) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2453) 				local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2454) 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2455) 				local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2456) 				oldpage = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2457) 				pobjects = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2458) 				pages = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2459) 				stat(s, CPU_PARTIAL_DRAIN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2460) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2461) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2462) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2463) 		pages++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2464) 		pobjects += page->objects - page->inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2466) 		page->pages = pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2467) 		page->pobjects = pobjects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2468) 		page->next = oldpage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2469) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2470) 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2471) 								!= oldpage);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2472) 	if (unlikely(!slub_cpu_partial(s))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2473) 		unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2474) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2475) 		local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2476) 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2477) 		local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2478) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2479) 	preempt_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2480) #endif	/* CONFIG_SLUB_CPU_PARTIAL */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2481) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2482) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2483) static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2484) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2485) 	stat(s, CPUSLAB_FLUSH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2486) 	deactivate_slab(s, c->page, c->freelist, c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2488) 	c->tid = next_tid(c->tid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2489) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2491) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2492)  * Flush cpu slab.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2493)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2494)  * Called from IPI handler with interrupts disabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2495)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2496) static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2497) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2498) 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2499) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2500) 	if (c->page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2501) 		flush_slab(s, c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2502) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2503) 	unfreeze_partials(s, c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2504) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2505) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2506) static void flush_cpu_slab(void *d)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2507) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2508) 	struct kmem_cache *s = d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2509) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2510) 	__flush_cpu_slab(s, smp_processor_id());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2511) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2512) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2513) static bool has_cpu_slab(int cpu, void *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2514) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2515) 	struct kmem_cache *s = info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2516) 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2517) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2518) 	return c->page || slub_percpu_partial(c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2519) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2520) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2521) static void flush_all(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2522) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2523) 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2524) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2525) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2526) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2527)  * Use the cpu notifier to insure that the cpu slabs are flushed when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2528)  * necessary.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2529)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2530) static int slub_cpu_dead(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2531) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2532) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2533) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2535) 	mutex_lock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2536) 	list_for_each_entry(s, &slab_caches, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2537) 		local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2538) 		__flush_cpu_slab(s, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2539) 		local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2540) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2541) 	mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2542) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2543) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2545) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2546)  * Check if the objects in a per cpu structure fit numa
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2547)  * locality expectations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2548)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2549) static inline int node_match(struct page *page, int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2550) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2551) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2552) 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2553) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2554) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2555) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2556) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2557) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2558) #ifdef CONFIG_SLUB_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2559) static int count_free(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2560) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2561) 	return page->objects - page->inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2562) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2563) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2564) static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2565) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2566) 	return atomic_long_read(&n->total_objects);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2567) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2568) #endif /* CONFIG_SLUB_DEBUG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2569) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2570) #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SLUB_SYSFS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2571) static unsigned long count_partial(struct kmem_cache_node *n,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2572) 					int (*get_count)(struct page *))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2573) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2574) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2575) 	unsigned long x = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2576) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2578) 	spin_lock_irqsave(&n->list_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2579) 	list_for_each_entry(page, &n->partial, slab_list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2580) 		x += get_count(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2581) 	spin_unlock_irqrestore(&n->list_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2582) 	return x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2583) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2584) #endif /* CONFIG_SLUB_DEBUG || CONFIG_SLUB_SYSFS */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2586) static noinline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2587) slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2588) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2589) #ifdef CONFIG_SLUB_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2590) 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2591) 				      DEFAULT_RATELIMIT_BURST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2592) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2593) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2594) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2595) 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2596) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2598) 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2599) 		nid, gfpflags, &gfpflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2600) 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2601) 		s->name, s->object_size, s->size, oo_order(s->oo),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2602) 		oo_order(s->min));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2604) 	if (oo_order(s->min) > get_order(s->object_size))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2605) 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2606) 			s->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2607) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2608) 	for_each_kmem_cache_node(s, node, n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2609) 		unsigned long nr_slabs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2610) 		unsigned long nr_objs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2611) 		unsigned long nr_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2612) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2613) 		nr_free  = count_partial(n, count_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2614) 		nr_slabs = node_nr_slabs(n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2615) 		nr_objs  = node_nr_objs(n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2616) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2617) 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2618) 			node, nr_slabs, nr_objs, nr_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2619) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2620) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2621) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2622) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2623) static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2624) 			int node, struct kmem_cache_cpu **pc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2625) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2626) 	void *freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2627) 	struct kmem_cache_cpu *c = *pc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2628) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2630) 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2631) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2632) 	freelist = get_partial(s, flags, node, c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2633) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2634) 	if (freelist)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2635) 		return freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2636) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2637) 	page = new_slab(s, flags, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2638) 	if (page) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2639) 		c = raw_cpu_ptr(s->cpu_slab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2640) 		if (c->page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2641) 			flush_slab(s, c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2642) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2643) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2644) 		 * No other reference to the page yet so we can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2645) 		 * muck around with it freely without cmpxchg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2646) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2647) 		freelist = page->freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2648) 		page->freelist = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2649) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2650) 		stat(s, ALLOC_SLAB);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2651) 		c->page = page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2652) 		*pc = c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2653) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2654) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2655) 	return freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2656) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2658) static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2659) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2660) 	if (unlikely(PageSlabPfmemalloc(page)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2661) 		return gfp_pfmemalloc_allowed(gfpflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2662) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2663) 	return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2664) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2665) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2666) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2667)  * Check the page->freelist of a page and either transfer the freelist to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2668)  * per cpu freelist or deactivate the page.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2669)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2670)  * The page is still frozen if the return value is not NULL.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2671)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2672)  * If this function returns NULL then the page has been unfrozen.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2673)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2674)  * This function must be called with interrupt disabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2675)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2676) static inline void *get_freelist(struct kmem_cache *s, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2677) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2678) 	struct page new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2679) 	unsigned long counters;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2680) 	void *freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2681) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2682) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2683) 		freelist = page->freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2684) 		counters = page->counters;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2685) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2686) 		new.counters = counters;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2687) 		VM_BUG_ON(!new.frozen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2688) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2689) 		new.inuse = page->objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2690) 		new.frozen = freelist != NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2691) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2692) 	} while (!__cmpxchg_double_slab(s, page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2693) 		freelist, counters,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2694) 		NULL, new.counters,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2695) 		"get_freelist"));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2696) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2697) 	return freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2698) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2699) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2700) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2701)  * Slow path. The lockless freelist is empty or we need to perform
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2702)  * debugging duties.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2703)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2704)  * Processing is still very fast if new objects have been freed to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2705)  * regular freelist. In that case we simply take over the regular freelist
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2706)  * as the lockless freelist and zap the regular freelist.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2707)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2708)  * If that is not working then we fall back to the partial lists. We take the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2709)  * first element of the freelist as the object to allocate now and move the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2710)  * rest of the freelist to the lockless freelist.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2711)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2712)  * And if we were unable to get a new slab from the partial slab lists then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2713)  * we need to allocate a new slab. This is the slowest path since it involves
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2714)  * a call to the page allocator and the setup of a new slab.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2715)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2716)  * Version of __slab_alloc to use when we know that interrupts are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2717)  * already disabled (which is the case for bulk allocation).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2718)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2719) static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2720) 			  unsigned long addr, struct kmem_cache_cpu *c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2721) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2722) 	void *freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2723) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2724) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2725) 	stat(s, ALLOC_SLOWPATH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2726) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2727) 	page = c->page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2728) 	if (!page) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2729) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2730) 		 * if the node is not online or has no normal memory, just
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2731) 		 * ignore the node constraint
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2732) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2733) 		if (unlikely(node != NUMA_NO_NODE &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2734) 			     !node_state(node, N_NORMAL_MEMORY)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2735) 			node = NUMA_NO_NODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2736) 		goto new_slab;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2737) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2738) redo:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2739) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2740) 	if (unlikely(!node_match(page, node))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2741) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2742) 		 * same as above but node_match() being false already
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2743) 		 * implies node != NUMA_NO_NODE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2744) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2745) 		if (!node_state(node, N_NORMAL_MEMORY)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2746) 			node = NUMA_NO_NODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2747) 			goto redo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2748) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2749) 			stat(s, ALLOC_NODE_MISMATCH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2750) 			deactivate_slab(s, page, c->freelist, c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2751) 			goto new_slab;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2752) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2753) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2754) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2755) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2756) 	 * By rights, we should be searching for a slab page that was
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2757) 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2758) 	 * information when the page leaves the per-cpu allocator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2759) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2760) 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2761) 		deactivate_slab(s, page, c->freelist, c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2762) 		goto new_slab;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2763) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2764) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2765) 	/* must check again c->freelist in case of cpu migration or IRQ */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2766) 	freelist = c->freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2767) 	if (freelist)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2768) 		goto load_freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2769) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2770) 	freelist = get_freelist(s, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2771) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2772) 	if (!freelist) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2773) 		c->page = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2774) 		stat(s, DEACTIVATE_BYPASS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2775) 		goto new_slab;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2776) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2777) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2778) 	stat(s, ALLOC_REFILL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2779) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2780) load_freelist:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2781) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2782) 	 * freelist is pointing to the list of objects to be used.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2783) 	 * page is pointing to the page from which the objects are obtained.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2784) 	 * That page must be frozen for per cpu allocations to work.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2785) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2786) 	VM_BUG_ON(!c->page->frozen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2787) 	c->freelist = get_freepointer(s, freelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2788) 	c->tid = next_tid(c->tid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2789) 	return freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2790) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2791) new_slab:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2792) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2793) 	if (slub_percpu_partial(c)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2794) 		page = c->page = slub_percpu_partial(c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2795) 		slub_set_percpu_partial(c, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2796) 		stat(s, CPU_PARTIAL_ALLOC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2797) 		goto redo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2798) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2799) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2800) 	freelist = new_slab_objects(s, gfpflags, node, &c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2801) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2802) 	if (unlikely(!freelist)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2803) 		slab_out_of_memory(s, gfpflags, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2804) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2805) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2806) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2807) 	page = c->page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2808) 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2809) 		goto load_freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2810) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2811) 	/* Only entered in the debug case */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2812) 	if (kmem_cache_debug(s) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2813) 			!alloc_debug_processing(s, page, freelist, addr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2814) 		goto new_slab;	/* Slab failed checks. Next slab needed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2815) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2816) 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2817) 	return freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2818) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2819) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2820) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2821)  * Another one that disabled interrupt and compensates for possible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2822)  * cpu changes by refetching the per cpu area pointer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2823)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2824) static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2825) 			  unsigned long addr, struct kmem_cache_cpu *c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2826) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2827) 	void *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2828) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2829) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2830) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2831) #ifdef CONFIG_PREEMPTION
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2832) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2833) 	 * We may have been preempted and rescheduled on a different
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2834) 	 * cpu before disabling interrupts. Need to reload cpu area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2835) 	 * pointer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2836) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2837) 	c = this_cpu_ptr(s->cpu_slab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2838) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2839) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2840) 	p = ___slab_alloc(s, gfpflags, node, addr, c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2841) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2842) 	return p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2843) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2844) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2845) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2846)  * If the object has been wiped upon free, make sure it's fully initialized by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2847)  * zeroing out freelist pointer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2848)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2849) static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2850) 						   void *obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2851) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2852) 	if (unlikely(slab_want_init_on_free(s)) && obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2853) 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2854) 			0, sizeof(void *));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2855) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2856) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2857) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2858)  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2859)  * have the fastpath folded into their functions. So no function call
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2860)  * overhead for requests that can be satisfied on the fastpath.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2861)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2862)  * The fastpath works by first checking if the lockless freelist can be used.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2863)  * If not then __slab_alloc is called for slow processing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2864)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2865)  * Otherwise we can simply pick the next object from the lockless free list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2866)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2867) static __always_inline void *slab_alloc_node(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2868) 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2869) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2870) 	void *object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2871) 	struct kmem_cache_cpu *c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2872) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2873) 	unsigned long tid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2874) 	struct obj_cgroup *objcg = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2875) 	bool init = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2876) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2877) 	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2878) 	if (!s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2879) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2880) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2881) 	object = kfence_alloc(s, orig_size, gfpflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2882) 	if (unlikely(object))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2883) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2884) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2885) redo:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2886) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2887) 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2888) 	 * enabled. We may switch back and forth between cpus while
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2889) 	 * reading from one cpu area. That does not matter as long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2890) 	 * as we end up on the original cpu again when doing the cmpxchg.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2891) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2892) 	 * We should guarantee that tid and kmem_cache are retrieved on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2893) 	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2894) 	 * to check if it is matched or not.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2895) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2896) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2897) 		tid = this_cpu_read(s->cpu_slab->tid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2898) 		c = raw_cpu_ptr(s->cpu_slab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2899) 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2900) 		 unlikely(tid != READ_ONCE(c->tid)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2901) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2902) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2903) 	 * Irqless object alloc/free algorithm used here depends on sequence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2904) 	 * of fetching cpu_slab's data. tid should be fetched before anything
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2905) 	 * on c to guarantee that object and page associated with previous tid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2906) 	 * won't be used with current tid. If we fetch tid first, object and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2907) 	 * page could be one associated with next tid and our alloc/free
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2908) 	 * request will be failed. In this case, we will retry. So, no problem.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2909) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2910) 	barrier();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2911) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2912) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2913) 	 * The transaction ids are globally unique per cpu and per operation on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2914) 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2915) 	 * occurs on the right processor and that there was no operation on the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2916) 	 * linked list in between.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2917) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2918) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2919) 	object = c->freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2920) 	page = c->page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2921) 	if (unlikely(!object || !page || !node_match(page, node))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2922) 		object = __slab_alloc(s, gfpflags, node, addr, c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2923) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2924) 		void *next_object = get_freepointer_safe(s, object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2925) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2926) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2927) 		 * The cmpxchg will only match if there was no additional
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2928) 		 * operation and if we are on the right processor.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2929) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2930) 		 * The cmpxchg does the following atomically (without lock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2931) 		 * semantics!)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2932) 		 * 1. Relocate first pointer to the current per cpu area.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2933) 		 * 2. Verify that tid and freelist have not been changed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2934) 		 * 3. If they were not changed replace tid and freelist
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2935) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2936) 		 * Since this is without lock semantics the protection is only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2937) 		 * against code executing on this cpu *not* from access by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2938) 		 * other cpus.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2939) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2940) 		if (unlikely(!this_cpu_cmpxchg_double(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2941) 				s->cpu_slab->freelist, s->cpu_slab->tid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2942) 				object, tid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2943) 				next_object, next_tid(tid)))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2944) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2945) 			note_cmpxchg_failure("slab_alloc", s, tid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2946) 			goto redo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2947) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2948) 		prefetch_freepointer(s, next_object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2949) 		stat(s, ALLOC_FASTPATH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2950) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2951) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2952) 	maybe_wipe_obj_freeptr(s, object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2953) 	init = slab_want_init_on_alloc(gfpflags, s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2954) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2955) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2956) 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2957) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2958) 	return object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2959) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2960) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2961) static __always_inline void *slab_alloc(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2962) 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2963) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2964) 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2965) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2966) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2967) void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2968) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2969) 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2970) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2971) 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2972) 				s->size, gfpflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2973) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2974) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2975) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2976) EXPORT_SYMBOL(kmem_cache_alloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2977) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2978) #ifdef CONFIG_TRACING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2979) void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2980) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2981) 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2982) 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2983) 	ret = kasan_kmalloc(s, ret, size, gfpflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2984) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2985) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2986) EXPORT_SYMBOL(kmem_cache_alloc_trace);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2987) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2988) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2989) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2990) void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2991) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2992) 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2993) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2994) 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2995) 				    s->object_size, s->size, gfpflags, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2996) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2997) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2998) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2999) EXPORT_SYMBOL(kmem_cache_alloc_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3000) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3001) #ifdef CONFIG_TRACING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3002) void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3003) 				    gfp_t gfpflags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3004) 				    int node, size_t size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3005) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3006) 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3007) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3008) 	trace_kmalloc_node(_RET_IP_, ret,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3009) 			   size, s->size, gfpflags, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3010) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3011) 	ret = kasan_kmalloc(s, ret, size, gfpflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3012) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3013) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3014) EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3015) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3016) #endif	/* CONFIG_NUMA */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3017) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3018) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3019)  * Slow path handling. This may still be called frequently since objects
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3020)  * have a longer lifetime than the cpu slabs in most processing loads.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3021)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3022)  * So we still attempt to reduce cache line usage. Just take the slab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3023)  * lock and free the item. If there is no additional partial page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3024)  * handling required then we can return immediately.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3025)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3026) static void __slab_free(struct kmem_cache *s, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3027) 			void *head, void *tail, int cnt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3028) 			unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3030) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3031) 	void *prior;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3032) 	int was_frozen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3033) 	struct page new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3034) 	unsigned long counters;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3035) 	struct kmem_cache_node *n = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3036) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3037) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3038) 	stat(s, FREE_SLOWPATH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3039) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3040) 	if (kfence_free(head))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3041) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3042) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3043) 	if (kmem_cache_debug(s) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3044) 	    !free_debug_processing(s, page, head, tail, cnt, addr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3045) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3046) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3047) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3048) 		if (unlikely(n)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3049) 			spin_unlock_irqrestore(&n->list_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3050) 			n = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3051) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3052) 		prior = page->freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3053) 		counters = page->counters;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3054) 		set_freepointer(s, tail, prior);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3055) 		new.counters = counters;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3056) 		was_frozen = new.frozen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3057) 		new.inuse -= cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3058) 		if ((!new.inuse || !prior) && !was_frozen) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3059) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3060) 			if (kmem_cache_has_cpu_partial(s) && !prior) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3061) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3062) 				/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3063) 				 * Slab was on no list before and will be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3064) 				 * partially empty
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3065) 				 * We can defer the list move and instead
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3066) 				 * freeze it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3067) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3068) 				new.frozen = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3069) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3070) 			} else { /* Needs to be taken off a list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3071) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3072) 				n = get_node(s, page_to_nid(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3073) 				/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3074) 				 * Speculatively acquire the list_lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3075) 				 * If the cmpxchg does not succeed then we may
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3076) 				 * drop the list_lock without any processing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3077) 				 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3078) 				 * Otherwise the list_lock will synchronize with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3079) 				 * other processors updating the list of slabs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3080) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3081) 				spin_lock_irqsave(&n->list_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3082) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3083) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3084) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3085) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3086) 	} while (!cmpxchg_double_slab(s, page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3087) 		prior, counters,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3088) 		head, new.counters,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3089) 		"__slab_free"));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3090) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3091) 	if (likely(!n)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3092) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3093) 		if (likely(was_frozen)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3094) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3095) 			 * The list lock was not taken therefore no list
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3096) 			 * activity can be necessary.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3097) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3098) 			stat(s, FREE_FROZEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3099) 		} else if (new.frozen) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3100) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3101) 			 * If we just froze the page then put it onto the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3102) 			 * per cpu partial list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3103) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3104) 			put_cpu_partial(s, page, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3105) 			stat(s, CPU_PARTIAL_FREE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3106) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3108) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3109) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3111) 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3112) 		goto slab_empty;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3114) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3115) 	 * Objects left in the slab. If it was not on the partial list before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3116) 	 * then add it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3117) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3118) 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3119) 		remove_full(s, n, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3120) 		add_partial(n, page, DEACTIVATE_TO_TAIL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3121) 		stat(s, FREE_ADD_PARTIAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3122) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3123) 	spin_unlock_irqrestore(&n->list_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3124) 	return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3126) slab_empty:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3127) 	if (prior) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3128) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3129) 		 * Slab on the partial list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3130) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3131) 		remove_partial(n, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3132) 		stat(s, FREE_REMOVE_PARTIAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3133) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3134) 		/* Slab must be on the full list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3135) 		remove_full(s, n, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3136) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3138) 	spin_unlock_irqrestore(&n->list_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3139) 	stat(s, FREE_SLAB);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3140) 	discard_slab(s, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3141) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3143) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3144)  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3145)  * can perform fastpath freeing without additional function calls.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3146)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3147)  * The fastpath is only possible if we are freeing to the current cpu slab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3148)  * of this processor. This typically the case if we have just allocated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3149)  * the item before.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3150)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3151)  * If fastpath is not possible then fall back to __slab_free where we deal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3152)  * with all sorts of special processing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3153)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3154)  * Bulk free of a freelist with several objects (all pointing to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3155)  * same page) possible by specifying head and tail ptr, plus objects
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3156)  * count (cnt). Bulk free indicated by tail pointer being set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3157)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3158) static __always_inline void do_slab_free(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3159) 				struct page *page, void *head, void *tail,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3160) 				int cnt, unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3161) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3162) 	void *tail_obj = tail ? : head;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3163) 	struct kmem_cache_cpu *c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3164) 	unsigned long tid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3166) 	/* memcg_slab_free_hook() is already called for bulk free. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3167) 	if (!tail)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3168) 		memcg_slab_free_hook(s, &head, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3169) redo:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3170) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3171) 	 * Determine the currently cpus per cpu slab.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3172) 	 * The cpu may change afterward. However that does not matter since
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3173) 	 * data is retrieved via this pointer. If we are on the same cpu
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3174) 	 * during the cmpxchg then the free will succeed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3175) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3176) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3177) 		tid = this_cpu_read(s->cpu_slab->tid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3178) 		c = raw_cpu_ptr(s->cpu_slab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3179) 	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3180) 		 unlikely(tid != READ_ONCE(c->tid)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3182) 	/* Same with comment on barrier() in slab_alloc_node() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3183) 	barrier();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3185) 	if (likely(page == c->page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3186) 		void **freelist = READ_ONCE(c->freelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3188) 		set_freepointer(s, tail_obj, freelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3190) 		if (unlikely(!this_cpu_cmpxchg_double(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3191) 				s->cpu_slab->freelist, s->cpu_slab->tid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3192) 				freelist, tid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3193) 				head, next_tid(tid)))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3195) 			note_cmpxchg_failure("slab_free", s, tid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3196) 			goto redo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3197) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3198) 		stat(s, FREE_FASTPATH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3199) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3200) 		__slab_free(s, page, head, tail_obj, cnt, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3202) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3204) static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3205) 				      void *head, void *tail, int cnt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3206) 				      unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3207) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3208) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3209) 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3210) 	 * to remove objects, whose reuse must be delayed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3211) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3212) 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3213) 		do_slab_free(s, page, head, tail, cnt, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3214) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3216) #ifdef CONFIG_KASAN_GENERIC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3217) void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3218) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3219) 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3220) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3221) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3223) void kmem_cache_free(struct kmem_cache *s, void *x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3224) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3225) 	s = cache_from_obj(s, x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3226) 	if (!s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3227) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3228) 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3229) 	trace_kmem_cache_free(_RET_IP_, x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3230) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3231) EXPORT_SYMBOL(kmem_cache_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3233) struct detached_freelist {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3234) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3235) 	void *tail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3236) 	void *freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3237) 	int cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3238) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3239) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3241) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3242)  * This function progressively scans the array with free objects (with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3243)  * a limited look ahead) and extract objects belonging to the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3244)  * page.  It builds a detached freelist directly within the given
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3245)  * page/objects.  This can happen without any need for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3246)  * synchronization, because the objects are owned by running process.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3247)  * The freelist is build up as a single linked list in the objects.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3248)  * The idea is, that this detached freelist can then be bulk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3249)  * transferred to the real freelist(s), but only requiring a single
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3250)  * synchronization primitive.  Look ahead in the array is limited due
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3251)  * to performance reasons.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3252)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3253) static inline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3254) int build_detached_freelist(struct kmem_cache *s, size_t size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3255) 			    void **p, struct detached_freelist *df)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3256) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3257) 	size_t first_skipped_index = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3258) 	int lookahead = 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3259) 	void *object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3260) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3262) 	/* Always re-init detached_freelist */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3263) 	df->page = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3264) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3265) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3266) 		object = p[--size];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3267) 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3268) 	} while (!object && size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3270) 	if (!object)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3271) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3273) 	page = virt_to_head_page(object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3274) 	if (!s) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3275) 		/* Handle kalloc'ed objects */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3276) 		if (unlikely(!PageSlab(page))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3277) 			BUG_ON(!PageCompound(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3278) 			kfree_hook(object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3279) 			__free_pages(page, compound_order(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3280) 			p[size] = NULL; /* mark object processed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3281) 			return size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3282) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3283) 		/* Derive kmem_cache from object */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3284) 		df->s = page->slab_cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3285) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3286) 		df->s = cache_from_obj(s, object); /* Support for memcg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3287) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3289) 	if (is_kfence_address(object)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3290) 		slab_free_hook(df->s, object, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3291) 		__kfence_free(object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3292) 		p[size] = NULL; /* mark object processed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3293) 		return size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3294) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3295) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3296) 	/* Start new detached freelist */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3297) 	df->page = page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3298) 	set_freepointer(df->s, object, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3299) 	df->tail = object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3300) 	df->freelist = object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3301) 	p[size] = NULL; /* mark object processed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3302) 	df->cnt = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3304) 	while (size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3305) 		object = p[--size];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3306) 		if (!object)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3307) 			continue; /* Skip processed objects */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3309) 		/* df->page is always set at this point */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3310) 		if (df->page == virt_to_head_page(object)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3311) 			/* Opportunity build freelist */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3312) 			set_freepointer(df->s, object, df->freelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3313) 			df->freelist = object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3314) 			df->cnt++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3315) 			p[size] = NULL; /* mark object processed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3317) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3318) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3320) 		/* Limit look ahead search */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3321) 		if (!--lookahead)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3322) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3324) 		if (!first_skipped_index)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3325) 			first_skipped_index = size + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3326) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3328) 	return first_skipped_index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3329) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3330) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3331) /* Note that interrupts must be enabled when calling this function. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3332) void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3333) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3334) 	if (WARN_ON(!size))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3335) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3337) 	memcg_slab_free_hook(s, p, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3338) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3339) 		struct detached_freelist df;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3341) 		size = build_detached_freelist(s, size, p, &df);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3342) 		if (!df.page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3343) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3344) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3345) 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3346) 	} while (likely(size));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3347) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3348) EXPORT_SYMBOL(kmem_cache_free_bulk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3350) /* Note that interrupts must be enabled when calling this function. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3351) int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3352) 			  void **p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3353) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3354) 	struct kmem_cache_cpu *c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3355) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3356) 	struct obj_cgroup *objcg = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3358) 	/* memcg and kmem_cache debug support */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3359) 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3360) 	if (unlikely(!s))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3361) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3362) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3363) 	 * Drain objects in the per cpu slab, while disabling local
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3364) 	 * IRQs, which protects against PREEMPT and interrupts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3365) 	 * handlers invoking normal fastpath.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3366) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3367) 	local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3368) 	c = this_cpu_ptr(s->cpu_slab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3370) 	for (i = 0; i < size; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3371) 		void *object = kfence_alloc(s, s->object_size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3373) 		if (unlikely(object)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3374) 			p[i] = object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3375) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3376) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3377) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3378) 		object = c->freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3379) 		if (unlikely(!object)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3380) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3381) 			 * We may have removed an object from c->freelist using
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3382) 			 * the fastpath in the previous iteration; in that case,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3383) 			 * c->tid has not been bumped yet.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3384) 			 * Since ___slab_alloc() may reenable interrupts while
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3385) 			 * allocating memory, we should bump c->tid now.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3386) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3387) 			c->tid = next_tid(c->tid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3388) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3389) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3390) 			 * Invoking slow path likely have side-effect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3391) 			 * of re-populating per CPU c->freelist
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3392) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3393) 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3394) 					    _RET_IP_, c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3395) 			if (unlikely(!p[i]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3396) 				goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3398) 			c = this_cpu_ptr(s->cpu_slab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3399) 			maybe_wipe_obj_freeptr(s, p[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3400) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3401) 			continue; /* goto for-loop */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3402) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3403) 		c->freelist = get_freepointer(s, object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3404) 		p[i] = object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3405) 		maybe_wipe_obj_freeptr(s, p[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3406) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3407) 	c->tid = next_tid(c->tid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3408) 	local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3410) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3411) 	 * memcg and kmem_cache debug support and memory initialization.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3412) 	 * Done outside of the IRQ disabled fastpath loop.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3413) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3414) 	slab_post_alloc_hook(s, objcg, flags, size, p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3415) 				slab_want_init_on_alloc(flags, s));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3416) 	return i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3417) error:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3418) 	local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3419) 	slab_post_alloc_hook(s, objcg, flags, i, p, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3420) 	__kmem_cache_free_bulk(s, i, p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3421) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3422) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3423) EXPORT_SYMBOL(kmem_cache_alloc_bulk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3426) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3427)  * Object placement in a slab is made very easy because we always start at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3428)  * offset 0. If we tune the size of the object to the alignment then we can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3429)  * get the required alignment by putting one properly sized object after
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3430)  * another.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3431)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3432)  * Notice that the allocation order determines the sizes of the per cpu
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3433)  * caches. Each processor has always one slab available for allocations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3434)  * Increasing the allocation order reduces the number of times that slabs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3435)  * must be moved on and off the partial lists and is therefore a factor in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3436)  * locking overhead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3437)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3439) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3440)  * Mininum / Maximum order of slab pages. This influences locking overhead
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3441)  * and slab fragmentation. A higher order reduces the number of partial slabs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3442)  * and increases the number of allocations possible without having to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3443)  * take the list_lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3444)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3445) static unsigned int slub_min_order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3446) static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3447) static unsigned int slub_min_objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3449) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3450)  * Calculate the order of allocation given an slab object size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3451)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3452)  * The order of allocation has significant impact on performance and other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3453)  * system components. Generally order 0 allocations should be preferred since
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3454)  * order 0 does not cause fragmentation in the page allocator. Larger objects
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3455)  * be problematic to put into order 0 slabs because there may be too much
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3456)  * unused space left. We go to a higher order if more than 1/16th of the slab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3457)  * would be wasted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3458)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3459)  * In order to reach satisfactory performance we must ensure that a minimum
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3460)  * number of objects is in one slab. Otherwise we may generate too much
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3461)  * activity on the partial lists which requires taking the list_lock. This is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3462)  * less a concern for large slabs though which are rarely used.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3463)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3464)  * slub_max_order specifies the order where we begin to stop considering the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3465)  * number of objects in a slab as critical. If we reach slub_max_order then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3466)  * we try to keep the page order as low as possible. So we accept more waste
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3467)  * of space in favor of a small page order.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3468)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3469)  * Higher order allocations also allow the placement of more objects in a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3470)  * slab and thereby reduce object handling overhead. If the user has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3471)  * requested a higher mininum order then we start with that one instead of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3472)  * the smallest order which will fit the object.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3473)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3474) static inline unsigned int slab_order(unsigned int size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3475) 		unsigned int min_objects, unsigned int max_order,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3476) 		unsigned int fract_leftover)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3477) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3478) 	unsigned int min_order = slub_min_order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3479) 	unsigned int order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3480) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3481) 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3482) 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3483) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3484) 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3485) 			order <= max_order; order++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3486) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3487) 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3488) 		unsigned int rem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3489) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3490) 		rem = slab_size % size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3492) 		if (rem <= slab_size / fract_leftover)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3493) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3494) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3495) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3496) 	return order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3497) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3499) static inline int calculate_order(unsigned int size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3500) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3501) 	unsigned int order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3502) 	unsigned int min_objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3503) 	unsigned int max_objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3504) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3505) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3506) 	 * Attempt to find best configuration for a slab. This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3507) 	 * works by first attempting to generate a layout with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3508) 	 * the best configuration and backing off gradually.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3509) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3510) 	 * First we increase the acceptable waste in a slab. Then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3511) 	 * we reduce the minimum objects required in a slab.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3512) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3513) 	min_objects = slub_min_objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3514) 	if (!min_objects)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3515) 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3516) 	max_objects = order_objects(slub_max_order, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3517) 	min_objects = min(min_objects, max_objects);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3519) 	while (min_objects > 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3520) 		unsigned int fraction;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3521) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3522) 		fraction = 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3523) 		while (fraction >= 4) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3524) 			order = slab_order(size, min_objects,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3525) 					slub_max_order, fraction);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3526) 			if (order <= slub_max_order)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3527) 				return order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3528) 			fraction /= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3529) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3530) 		min_objects--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3531) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3533) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3534) 	 * We were unable to place multiple objects in a slab. Now
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3535) 	 * lets see if we can place a single object there.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3536) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3537) 	order = slab_order(size, 1, slub_max_order, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3538) 	if (order <= slub_max_order)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3539) 		return order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3540) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3541) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3542) 	 * Doh this slab cannot be placed using slub_max_order.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3543) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3544) 	order = slab_order(size, 1, MAX_ORDER, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3545) 	if (order < MAX_ORDER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3546) 		return order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3547) 	return -ENOSYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3548) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3550) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3551) init_kmem_cache_node(struct kmem_cache_node *n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3552) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3553) 	n->nr_partial = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3554) 	spin_lock_init(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3555) 	INIT_LIST_HEAD(&n->partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3556) #ifdef CONFIG_SLUB_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3557) 	atomic_long_set(&n->nr_slabs, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3558) 	atomic_long_set(&n->total_objects, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3559) 	INIT_LIST_HEAD(&n->full);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3560) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3561) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3563) static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3564) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3565) 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3566) 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3568) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3569) 	 * Must align to double word boundary for the double cmpxchg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3570) 	 * instructions to work; see __pcpu_double_call_return_bool().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3571) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3572) 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3573) 				     2 * sizeof(void *));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3575) 	if (!s->cpu_slab)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3576) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3578) 	init_kmem_cache_cpus(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3579) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3580) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3581) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3582) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3583) static struct kmem_cache *kmem_cache_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3584) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3585) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3586)  * No kmalloc_node yet so do it by hand. We know that this is the first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3587)  * slab on the node for this slabcache. There are no concurrent accesses
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3588)  * possible.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3589)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3590)  * Note that this function only works on the kmem_cache_node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3591)  * when allocating for the kmem_cache_node. This is used for bootstrapping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3592)  * memory on a fresh node that has no slab structures yet.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3593)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3594) static void early_kmem_cache_node_alloc(int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3595) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3596) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3597) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3598) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3599) 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3600) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3601) 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3602) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3603) 	BUG_ON(!page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3604) 	if (page_to_nid(page) != node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3605) 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3606) 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3607) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3608) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3609) 	n = page->freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3610) 	BUG_ON(!n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3611) #ifdef CONFIG_SLUB_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3612) 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3613) 	init_tracking(kmem_cache_node, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3614) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3615) 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3616) 	page->freelist = get_freepointer(kmem_cache_node, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3617) 	page->inuse = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3618) 	page->frozen = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3619) 	kmem_cache_node->node[node] = n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3620) 	init_kmem_cache_node(n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3621) 	inc_slabs_node(kmem_cache_node, node, page->objects);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3622) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3623) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3624) 	 * No locks need to be taken here as it has just been
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3625) 	 * initialized and there is no concurrent access.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3626) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3627) 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3628) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3630) static void free_kmem_cache_nodes(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3631) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3632) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3633) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3634) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3635) 	for_each_kmem_cache_node(s, node, n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3636) 		s->node[node] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3637) 		kmem_cache_free(kmem_cache_node, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3638) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3639) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3640) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3641) void __kmem_cache_release(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3642) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3643) 	cache_random_seq_destroy(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3644) 	free_percpu(s->cpu_slab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3645) 	free_kmem_cache_nodes(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3646) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3647) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3648) static int init_kmem_cache_nodes(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3649) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3650) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3651) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3652) 	for_each_node_state(node, N_NORMAL_MEMORY) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3653) 		struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3654) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3655) 		if (slab_state == DOWN) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3656) 			early_kmem_cache_node_alloc(node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3657) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3658) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3659) 		n = kmem_cache_alloc_node(kmem_cache_node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3660) 						GFP_KERNEL, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3661) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3662) 		if (!n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3663) 			free_kmem_cache_nodes(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3664) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3665) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3666) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3667) 		init_kmem_cache_node(n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3668) 		s->node[node] = n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3669) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3670) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3671) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3672) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3673) static void set_min_partial(struct kmem_cache *s, unsigned long min)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3674) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3675) 	if (min < MIN_PARTIAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3676) 		min = MIN_PARTIAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3677) 	else if (min > MAX_PARTIAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3678) 		min = MAX_PARTIAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3679) 	s->min_partial = min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3680) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3681) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3682) static void set_cpu_partial(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3683) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3684) #ifdef CONFIG_SLUB_CPU_PARTIAL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3685) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3686) 	 * cpu_partial determined the maximum number of objects kept in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3687) 	 * per cpu partial lists of a processor.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3688) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3689) 	 * Per cpu partial lists mainly contain slabs that just have one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3690) 	 * object freed. If they are used for allocation then they can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3691) 	 * filled up again with minimal effort. The slab will never hit the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3692) 	 * per node partial lists and therefore no locking will be required.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3693) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3694) 	 * This setting also determines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3695) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3696) 	 * A) The number of objects from per cpu partial slabs dumped to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3697) 	 *    per node list when we reach the limit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3698) 	 * B) The number of objects in cpu partial slabs to extract from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3699) 	 *    per node list when we run out of per cpu objects. We only fetch
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3700) 	 *    50% to keep some capacity around for frees.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3701) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3702) 	if (!kmem_cache_has_cpu_partial(s))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3703) 		slub_set_cpu_partial(s, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3704) 	else if (s->size >= PAGE_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3705) 		slub_set_cpu_partial(s, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3706) 	else if (s->size >= 1024)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3707) 		slub_set_cpu_partial(s, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3708) 	else if (s->size >= 256)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3709) 		slub_set_cpu_partial(s, 13);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3710) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3711) 		slub_set_cpu_partial(s, 30);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3712) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3713) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3714) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3715) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3716)  * calculate_sizes() determines the order and the distribution of data within
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3717)  * a slab object.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3718)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3719) static int calculate_sizes(struct kmem_cache *s, int forced_order)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3720) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3721) 	slab_flags_t flags = s->flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3722) 	unsigned int size = s->object_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3723) 	unsigned int order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3724) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3725) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3726) 	 * Round up object size to the next word boundary. We can only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3727) 	 * place the free pointer at word boundaries and this determines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3728) 	 * the possible location of the free pointer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3729) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3730) 	size = ALIGN(size, sizeof(void *));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3731) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3732) #ifdef CONFIG_SLUB_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3733) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3734) 	 * Determine if we can poison the object itself. If the user of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3735) 	 * the slab may touch the object after free or before allocation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3736) 	 * then we should never poison the object itself.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3737) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3738) 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3739) 			!s->ctor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3740) 		s->flags |= __OBJECT_POISON;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3741) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3742) 		s->flags &= ~__OBJECT_POISON;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3743) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3744) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3745) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3746) 	 * If we are Redzoning then check if there is some space between the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3747) 	 * end of the object and the free pointer. If not then add an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3748) 	 * additional word to have some bytes to store Redzone information.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3749) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3750) 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3751) 		size += sizeof(void *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3752) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3753) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3754) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3755) 	 * With that we have determined the number of bytes in actual use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3756) 	 * by the object and redzoning.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3757) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3758) 	s->inuse = size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3759) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3760) 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3761) 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3762) 	    s->ctor) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3763) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3764) 		 * Relocate free pointer after the object if it is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3765) 		 * permitted to overwrite the first word of the object on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3766) 		 * kmem_cache_free.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3767) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3768) 		 * This is the case if we do RCU, have a constructor or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3769) 		 * destructor, are poisoning the objects, or are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3770) 		 * redzoning an object smaller than sizeof(void *).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3771) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3772) 		 * The assumption that s->offset >= s->inuse means free
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3773) 		 * pointer is outside of the object is used in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3774) 		 * freeptr_outside_object() function. If that is no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3775) 		 * longer true, the function needs to be modified.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3776) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3777) 		s->offset = size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3778) 		size += sizeof(void *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3779) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3780) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3781) 		 * Store freelist pointer near middle of object to keep
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3782) 		 * it away from the edges of the object to avoid small
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3783) 		 * sized over/underflows from neighboring allocations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3784) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3785) 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3786) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3787) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3788) #ifdef CONFIG_SLUB_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3789) 	if (flags & SLAB_STORE_USER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3790) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3791) 		 * Need to store information about allocs and frees after
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3792) 		 * the object.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3793) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3794) 		size += 2 * sizeof(struct track);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3795) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3796) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3797) 	kasan_cache_create(s, &size, &s->flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3798) #ifdef CONFIG_SLUB_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3799) 	if (flags & SLAB_RED_ZONE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3800) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3801) 		 * Add some empty padding so that we can catch
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3802) 		 * overwrites from earlier objects rather than let
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3803) 		 * tracking information or the free pointer be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3804) 		 * corrupted if a user writes before the start
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3805) 		 * of the object.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3806) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3807) 		size += sizeof(void *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3808) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3809) 		s->red_left_pad = sizeof(void *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3810) 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3811) 		size += s->red_left_pad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3812) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3813) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3814) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3815) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3816) 	 * SLUB stores one object immediately after another beginning from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3817) 	 * offset 0. In order to align the objects we have to simply size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3818) 	 * each object to conform to the alignment.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3819) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3820) 	size = ALIGN(size, s->align);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3821) 	s->size = size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3822) 	s->reciprocal_size = reciprocal_value(size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3823) 	if (forced_order >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3824) 		order = forced_order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3825) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3826) 		order = calculate_order(size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3827) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3828) 	if ((int)order < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3829) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3830) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3831) 	s->allocflags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3832) 	if (order)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3833) 		s->allocflags |= __GFP_COMP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3834) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3835) 	if (s->flags & SLAB_CACHE_DMA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3836) 		s->allocflags |= GFP_DMA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3837) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3838) 	if (s->flags & SLAB_CACHE_DMA32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3839) 		s->allocflags |= GFP_DMA32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3841) 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3842) 		s->allocflags |= __GFP_RECLAIMABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3843) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3844) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3845) 	 * Determine the number of objects per slab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3846) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3847) 	s->oo = oo_make(order, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3848) 	s->min = oo_make(get_order(size), size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3849) 	if (oo_objects(s->oo) > oo_objects(s->max))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3850) 		s->max = s->oo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3851) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3852) 	return !!oo_objects(s->oo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3853) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3854) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3855) static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3856) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3857) 	s->flags = kmem_cache_flags(s->size, flags, s->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3858) #ifdef CONFIG_SLAB_FREELIST_HARDENED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3859) 	s->random = get_random_long();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3860) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3861) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3862) 	if (!calculate_sizes(s, -1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3863) 		goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3864) 	if (disable_higher_order_debug) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3865) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3866) 		 * Disable debugging flags that store metadata if the min slab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3867) 		 * order increased.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3868) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3869) 		if (get_order(s->size) > get_order(s->object_size)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3870) 			s->flags &= ~DEBUG_METADATA_FLAGS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3871) 			s->offset = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3872) 			if (!calculate_sizes(s, -1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3873) 				goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3874) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3875) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3876) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3877) #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3878)     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3879) 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3880) 		/* Enable fast mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3881) 		s->flags |= __CMPXCHG_DOUBLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3882) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3883) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3884) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3885) 	 * The larger the object size is, the more pages we want on the partial
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3886) 	 * list to avoid pounding the page allocator excessively.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3887) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3888) 	set_min_partial(s, ilog2(s->size) / 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3889) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3890) 	set_cpu_partial(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3891) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3892) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3893) 	s->remote_node_defrag_ratio = 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3894) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3895) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3896) 	/* Initialize the pre-computed randomized freelist if slab is up */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3897) 	if (slab_state >= UP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3898) 		if (init_cache_random_seq(s))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3899) 			goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3900) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3901) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3902) 	if (!init_kmem_cache_nodes(s))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3903) 		goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3904) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3905) 	if (alloc_kmem_cache_cpus(s))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3906) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3907) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3908) error:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3909) 	__kmem_cache_release(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3910) 	return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3911) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3912) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3913) static void list_slab_objects(struct kmem_cache *s, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3914) 			      const char *text)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3915) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3916) #ifdef CONFIG_SLUB_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3917) 	void *addr = page_address(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3918) 	unsigned long *map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3919) 	void *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3920) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3921) 	slab_err(s, page, text, s->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3922) 	slab_lock(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3923) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3924) 	map = get_map(s, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3925) 	for_each_object(p, s, addr, page->objects) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3926) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3927) 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3928) 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3929) 			print_tracking(s, p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3930) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3931) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3932) 	put_map(map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3933) 	slab_unlock(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3934) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3935) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3936) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3937) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3938)  * Attempt to free all partial slabs on a node.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3939)  * This is called from __kmem_cache_shutdown(). We must take list_lock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3940)  * because sysfs file might still access partial list after the shutdowning.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3941)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3942) static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3943) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3944) 	LIST_HEAD(discard);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3945) 	struct page *page, *h;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3946) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3947) 	BUG_ON(irqs_disabled());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3948) 	spin_lock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3949) 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3950) 		if (!page->inuse) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3951) 			remove_partial(n, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3952) 			list_add(&page->slab_list, &discard);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3953) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3954) 			list_slab_objects(s, page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3955) 			  "Objects remaining in %s on __kmem_cache_shutdown()");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3956) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3957) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3958) 	spin_unlock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3959) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3960) 	list_for_each_entry_safe(page, h, &discard, slab_list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3961) 		discard_slab(s, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3962) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3963) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3964) bool __kmem_cache_empty(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3965) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3966) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3967) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3968) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3969) 	for_each_kmem_cache_node(s, node, n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3970) 		if (n->nr_partial || slabs_node(s, node))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3971) 			return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3972) 	return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3973) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3974) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3975) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3976)  * Release all resources used by a slab cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3977)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3978) int __kmem_cache_shutdown(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3979) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3980) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3981) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3982) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3983) 	flush_all(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3984) 	/* Attempt to free all objects */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3985) 	for_each_kmem_cache_node(s, node, n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3986) 		free_partial(s, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3987) 		if (n->nr_partial || slabs_node(s, node))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3988) 			return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3989) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3990) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3991) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3992) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3993) /********************************************************************
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3994)  *		Kmalloc subsystem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3995)  *******************************************************************/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3996) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3997) static int __init setup_slub_min_order(char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3998) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3999) 	get_option(&str, (int *)&slub_min_order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4000) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4001) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4002) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4003) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4004) __setup("slub_min_order=", setup_slub_min_order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4005) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4006) static int __init setup_slub_max_order(char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4007) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4008) 	get_option(&str, (int *)&slub_max_order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4009) 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4010) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4011) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4012) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4013) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4014) __setup("slub_max_order=", setup_slub_max_order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4015) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4016) static int __init setup_slub_min_objects(char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4017) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4018) 	get_option(&str, (int *)&slub_min_objects);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4019) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4020) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4021) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4022) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4023) __setup("slub_min_objects=", setup_slub_min_objects);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4024) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4025) void *__kmalloc(size_t size, gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4026) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4027) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4028) 	void *ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4030) 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4031) 		return kmalloc_large(size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4032) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4033) 	s = kmalloc_slab(size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4034) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4035) 	if (unlikely(ZERO_OR_NULL_PTR(s)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4036) 		return s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4037) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4038) 	ret = slab_alloc(s, flags, _RET_IP_, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4039) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4040) 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4041) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4042) 	ret = kasan_kmalloc(s, ret, size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4043) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4044) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4045) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4046) EXPORT_SYMBOL(__kmalloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4047) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4048) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4049) static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4050) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4051) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4052) 	void *ptr = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4053) 	unsigned int order = get_order(size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4054) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4055) 	flags |= __GFP_COMP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4056) 	page = alloc_pages_node(node, flags, order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4057) 	if (page) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4058) 		ptr = page_address(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4059) 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4060) 				      PAGE_SIZE << order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4061) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4062) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4063) 	return kmalloc_large_node_hook(ptr, size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4064) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4065) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4066) void *__kmalloc_node(size_t size, gfp_t flags, int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4067) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4068) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4069) 	void *ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4070) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4071) 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4072) 		ret = kmalloc_large_node(size, flags, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4073) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4074) 		trace_kmalloc_node(_RET_IP_, ret,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4075) 				   size, PAGE_SIZE << get_order(size),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4076) 				   flags, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4077) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4078) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4079) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4080) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4081) 	s = kmalloc_slab(size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4082) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4083) 	if (unlikely(ZERO_OR_NULL_PTR(s)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4084) 		return s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4085) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4086) 	ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4087) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4088) 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4089) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4090) 	ret = kasan_kmalloc(s, ret, size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4091) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4092) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4093) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4094) EXPORT_SYMBOL(__kmalloc_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4095) #endif	/* CONFIG_NUMA */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4096) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4097) #ifdef CONFIG_HARDENED_USERCOPY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4098) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4099)  * Rejects incorrectly sized objects and objects that are to be copied
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4100)  * to/from userspace but do not fall entirely within the containing slab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4101)  * cache's usercopy region.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4102)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4103)  * Returns NULL if check passes, otherwise const char * to name of cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4104)  * to indicate an error.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4105)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4106) void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4107) 			 bool to_user)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4108) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4109) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4110) 	unsigned int offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4111) 	size_t object_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4112) 	bool is_kfence = is_kfence_address(ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4114) 	ptr = kasan_reset_tag(ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4116) 	/* Find object and usable object size. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4117) 	s = page->slab_cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4119) 	/* Reject impossible pointers. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4120) 	if (ptr < page_address(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4121) 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4122) 			       to_user, 0, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4124) 	/* Find offset within object. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4125) 	if (is_kfence)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4126) 		offset = ptr - kfence_object_start(ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4127) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4128) 		offset = (ptr - page_address(page)) % s->size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4130) 	/* Adjust for redzone and reject if within the redzone. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4131) 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4132) 		if (offset < s->red_left_pad)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4133) 			usercopy_abort("SLUB object in left red zone",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4134) 				       s->name, to_user, offset, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4135) 		offset -= s->red_left_pad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4136) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4138) 	/* Allow address range falling entirely within usercopy region. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4139) 	if (offset >= s->useroffset &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4140) 	    offset - s->useroffset <= s->usersize &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4141) 	    n <= s->useroffset - offset + s->usersize)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4142) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4144) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4145) 	 * If the copy is still within the allocated object, produce
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4146) 	 * a warning instead of rejecting the copy. This is intended
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4147) 	 * to be a temporary method to find any missing usercopy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4148) 	 * whitelists.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4149) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4150) 	object_size = slab_ksize(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4151) 	if (usercopy_fallback &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4152) 	    offset <= object_size && n <= object_size - offset) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4153) 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4154) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4155) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4157) 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4158) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4159) #endif /* CONFIG_HARDENED_USERCOPY */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4161) size_t __ksize(const void *object)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4162) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4163) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4165) 	if (unlikely(object == ZERO_SIZE_PTR))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4166) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4168) 	page = virt_to_head_page(object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4170) 	if (unlikely(!PageSlab(page))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4171) 		WARN_ON(!PageCompound(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4172) 		return page_size(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4173) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4175) 	return slab_ksize(page->slab_cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4176) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4177) EXPORT_SYMBOL(__ksize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4179) void kfree(const void *x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4180) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4181) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4182) 	void *object = (void *)x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4184) 	trace_kfree(_RET_IP_, x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4185) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4186) 	if (unlikely(ZERO_OR_NULL_PTR(x)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4187) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4189) 	page = virt_to_head_page(x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4190) 	if (unlikely(!PageSlab(page))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4191) 		unsigned int order = compound_order(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4193) 		BUG_ON(!PageCompound(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4194) 		kfree_hook(object);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4195) 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4196) 				      -(PAGE_SIZE << order));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4197) 		__free_pages(page, order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4198) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4199) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4200) 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4201) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4202) EXPORT_SYMBOL(kfree);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4204) #define SHRINK_PROMOTE_MAX 32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4206) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4207)  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4208)  * up most to the head of the partial lists. New allocations will then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4209)  * fill those up and thus they can be removed from the partial lists.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4210)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4211)  * The slabs with the least items are placed last. This results in them
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4212)  * being allocated from last increasing the chance that the last objects
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4213)  * are freed in them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4214)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4215) int __kmem_cache_shrink(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4216) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4217) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4218) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4219) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4220) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4221) 	struct page *t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4222) 	struct list_head discard;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4223) 	struct list_head promote[SHRINK_PROMOTE_MAX];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4224) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4225) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4227) 	flush_all(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4228) 	for_each_kmem_cache_node(s, node, n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4229) 		INIT_LIST_HEAD(&discard);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4230) 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4231) 			INIT_LIST_HEAD(promote + i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4233) 		spin_lock_irqsave(&n->list_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4235) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4236) 		 * Build lists of slabs to discard or promote.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4237) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4238) 		 * Note that concurrent frees may occur while we hold the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4239) 		 * list_lock. page->inuse here is the upper limit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4240) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4241) 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4242) 			int free = page->objects - page->inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4244) 			/* Do not reread page->inuse */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4245) 			barrier();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4247) 			/* We do not keep full slabs on the list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4248) 			BUG_ON(free <= 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4250) 			if (free == page->objects) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4251) 				list_move(&page->slab_list, &discard);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4252) 				n->nr_partial--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4253) 			} else if (free <= SHRINK_PROMOTE_MAX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4254) 				list_move(&page->slab_list, promote + free - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4255) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4257) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4258) 		 * Promote the slabs filled up most to the head of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4259) 		 * partial list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4260) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4261) 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4262) 			list_splice(promote + i, &n->partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4264) 		spin_unlock_irqrestore(&n->list_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4266) 		/* Release empty slabs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4267) 		list_for_each_entry_safe(page, t, &discard, slab_list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4268) 			discard_slab(s, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4270) 		if (slabs_node(s, node))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4271) 			ret = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4272) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4273) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4274) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4275) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4277) static int slab_mem_going_offline_callback(void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4278) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4279) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4281) 	mutex_lock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4282) 	list_for_each_entry(s, &slab_caches, list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4283) 		__kmem_cache_shrink(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4284) 	mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4286) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4287) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4289) static void slab_mem_offline_callback(void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4290) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4291) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4292) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4293) 	struct memory_notify *marg = arg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4294) 	int offline_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4295) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4296) 	offline_node = marg->status_change_nid_normal;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4298) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4299) 	 * If the node still has available memory. we need kmem_cache_node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4300) 	 * for it yet.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4301) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4302) 	if (offline_node < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4303) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4305) 	mutex_lock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4306) 	list_for_each_entry(s, &slab_caches, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4307) 		n = get_node(s, offline_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4308) 		if (n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4309) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4310) 			 * if n->nr_slabs > 0, slabs still exist on the node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4311) 			 * that is going down. We were unable to free them,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4312) 			 * and offline_pages() function shouldn't call this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4313) 			 * callback. So, we must fail.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4314) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4315) 			BUG_ON(slabs_node(s, offline_node));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4317) 			s->node[offline_node] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4318) 			kmem_cache_free(kmem_cache_node, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4319) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4320) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4321) 	mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4322) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4324) static int slab_mem_going_online_callback(void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4325) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4326) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4327) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4328) 	struct memory_notify *marg = arg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4329) 	int nid = marg->status_change_nid_normal;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4330) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4332) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4333) 	 * If the node's memory is already available, then kmem_cache_node is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4334) 	 * already created. Nothing to do.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4335) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4336) 	if (nid < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4337) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4339) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4340) 	 * We are bringing a node online. No memory is available yet. We must
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4341) 	 * allocate a kmem_cache_node structure in order to bring the node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4342) 	 * online.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4343) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4344) 	mutex_lock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4345) 	list_for_each_entry(s, &slab_caches, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4346) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4347) 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4348) 		 *      since memory is not yet available from the node that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4349) 		 *      is brought up.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4350) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4351) 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4352) 		if (!n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4353) 			ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4354) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4355) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4356) 		init_kmem_cache_node(n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4357) 		s->node[nid] = n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4358) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4359) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4360) 	mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4361) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4362) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4364) static int slab_memory_callback(struct notifier_block *self,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4365) 				unsigned long action, void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4366) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4367) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4369) 	switch (action) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4370) 	case MEM_GOING_ONLINE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4371) 		ret = slab_mem_going_online_callback(arg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4372) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4373) 	case MEM_GOING_OFFLINE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4374) 		ret = slab_mem_going_offline_callback(arg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4375) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4376) 	case MEM_OFFLINE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4377) 	case MEM_CANCEL_ONLINE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4378) 		slab_mem_offline_callback(arg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4379) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4380) 	case MEM_ONLINE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4381) 	case MEM_CANCEL_OFFLINE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4382) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4383) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4384) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4385) 		ret = notifier_from_errno(ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4386) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4387) 		ret = NOTIFY_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4388) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4389) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4391) static struct notifier_block slab_memory_callback_nb = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4392) 	.notifier_call = slab_memory_callback,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4393) 	.priority = SLAB_CALLBACK_PRI,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4394) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4396) /********************************************************************
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4397)  *			Basic setup of slabs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4398)  *******************************************************************/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4399) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4400) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4401)  * Used for early kmem_cache structures that were allocated using
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4402)  * the page allocator. Allocate them properly then fix up the pointers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4403)  * that may be pointing to the wrong kmem_cache structure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4404)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4406) static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4407) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4408) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4409) 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4410) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4412) 	memcpy(s, static_cache, kmem_cache->object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4413) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4414) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4415) 	 * This runs very early, and only the boot processor is supposed to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4416) 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4417) 	 * IPIs around.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4418) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4419) 	__flush_cpu_slab(s, smp_processor_id());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4420) 	for_each_kmem_cache_node(s, node, n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4421) 		struct page *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4422) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4423) 		list_for_each_entry(p, &n->partial, slab_list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4424) 			p->slab_cache = s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4426) #ifdef CONFIG_SLUB_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4427) 		list_for_each_entry(p, &n->full, slab_list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4428) 			p->slab_cache = s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4429) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4430) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4431) 	list_add(&s->list, &slab_caches);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4432) 	return s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4433) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4434) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4435) void __init kmem_cache_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4436) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4437) 	static __initdata struct kmem_cache boot_kmem_cache,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4438) 		boot_kmem_cache_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4439) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4440) 	if (debug_guardpage_minorder())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4441) 		slub_max_order = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4443) 	kmem_cache_node = &boot_kmem_cache_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4444) 	kmem_cache = &boot_kmem_cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4446) 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4447) 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4449) 	register_hotmemory_notifier(&slab_memory_callback_nb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4451) 	/* Able to allocate the per node structures */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4452) 	slab_state = PARTIAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4454) 	create_boot_cache(kmem_cache, "kmem_cache",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4455) 			offsetof(struct kmem_cache, node) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4456) 				nr_node_ids * sizeof(struct kmem_cache_node *),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4457) 		       SLAB_HWCACHE_ALIGN, 0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4459) 	kmem_cache = bootstrap(&boot_kmem_cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4460) 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4462) 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4463) 	setup_kmalloc_cache_index_table();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4464) 	create_kmalloc_caches(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4466) 	/* Setup random freelists for each cache */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4467) 	init_freelist_randomization();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4468) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4469) 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4470) 				  slub_cpu_dead);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4472) 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4473) 		cache_line_size(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4474) 		slub_min_order, slub_max_order, slub_min_objects,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4475) 		nr_cpu_ids, nr_node_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4476) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4478) void __init kmem_cache_init_late(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4479) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4480) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4481) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4482) struct kmem_cache *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4483) __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4484) 		   slab_flags_t flags, void (*ctor)(void *))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4485) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4486) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4488) 	s = find_mergeable(size, align, flags, name, ctor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4489) 	if (s) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4490) 		s->refcount++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4492) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4493) 		 * Adjust the object sizes so that we clear
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4494) 		 * the complete object on kzalloc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4495) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4496) 		s->object_size = max(s->object_size, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4497) 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4499) 		if (sysfs_slab_alias(s, name)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4500) 			s->refcount--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4501) 			s = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4502) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4503) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4504) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4505) 	return s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4506) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4508) int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4509) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4510) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4511) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4512) 	err = kmem_cache_open(s, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4513) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4514) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4515) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4516) 	/* Mutex is not taken during early boot */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4517) 	if (slab_state <= UP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4518) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4519) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4520) 	err = sysfs_slab_add(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4521) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4522) 		__kmem_cache_release(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4523) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4524) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4525) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4526) 	if (s->flags & SLAB_STORE_USER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4527) 		debugfs_slab_add(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4529) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4530) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4531) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4532) void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4533) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4534) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4535) 	void *ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4536) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4537) 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4538) 		return kmalloc_large(size, gfpflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4540) 	s = kmalloc_slab(size, gfpflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4541) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4542) 	if (unlikely(ZERO_OR_NULL_PTR(s)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4543) 		return s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4545) 	ret = slab_alloc(s, gfpflags, caller, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4546) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4547) 	/* Honor the call site pointer we received. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4548) 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4550) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4551) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4552) EXPORT_SYMBOL(__kmalloc_track_caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4553) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4554) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4555) void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4556) 					int node, unsigned long caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4557) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4558) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4559) 	void *ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4560) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4561) 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4562) 		ret = kmalloc_large_node(size, gfpflags, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4563) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4564) 		trace_kmalloc_node(caller, ret,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4565) 				   size, PAGE_SIZE << get_order(size),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4566) 				   gfpflags, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4568) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4569) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4571) 	s = kmalloc_slab(size, gfpflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4572) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4573) 	if (unlikely(ZERO_OR_NULL_PTR(s)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4574) 		return s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4575) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4576) 	ret = slab_alloc_node(s, gfpflags, node, caller, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4578) 	/* Honor the call site pointer we received. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4579) 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4581) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4582) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4583) EXPORT_SYMBOL(__kmalloc_node_track_caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4584) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4586) #ifdef CONFIG_SLUB_SYSFS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4587) static int count_inuse(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4588) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4589) 	return page->inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4590) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4591) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4592) static int count_total(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4593) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4594) 	return page->objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4595) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4596) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4598) #ifdef CONFIG_SLUB_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4599) static void validate_slab(struct kmem_cache *s, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4600) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4601) 	void *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4602) 	void *addr = page_address(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4603) 	unsigned long *map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4604) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4605) 	slab_lock(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4606) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4607) 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4608) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4610) 	/* Now we know that a valid freelist exists */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4611) 	map = get_map(s, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4612) 	for_each_object(p, s, addr, page->objects) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4613) 		u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4614) 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4615) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4616) 		if (!check_object(s, page, p, val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4617) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4618) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4619) 	put_map(map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4620) unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4621) 	slab_unlock(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4622) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4623) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4624) static int validate_slab_node(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4625) 		struct kmem_cache_node *n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4626) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4627) 	unsigned long count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4628) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4629) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4630) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4631) 	spin_lock_irqsave(&n->list_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4632) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4633) 	list_for_each_entry(page, &n->partial, slab_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4634) 		validate_slab(s, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4635) 		count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4636) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4637) 	if (count != n->nr_partial)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4638) 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4639) 		       s->name, count, n->nr_partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4640) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4641) 	if (!(s->flags & SLAB_STORE_USER))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4642) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4643) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4644) 	list_for_each_entry(page, &n->full, slab_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4645) 		validate_slab(s, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4646) 		count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4647) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4648) 	if (count != atomic_long_read(&n->nr_slabs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4649) 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4650) 		       s->name, count, atomic_long_read(&n->nr_slabs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4651) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4652) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4653) 	spin_unlock_irqrestore(&n->list_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4654) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4655) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4656) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4657) static long validate_slab_cache(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4658) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4659) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4660) 	unsigned long count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4661) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4662) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4663) 	flush_all(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4664) 	for_each_kmem_cache_node(s, node, n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4665) 		count += validate_slab_node(s, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4666) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4667) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4668) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4670) #ifdef CONFIG_DEBUG_FS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4671) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4672)  * Generate lists of code addresses where slabcache objects are allocated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4673)  * and freed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4674)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4675) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4676) struct location {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4677) 	unsigned long count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4678) 	unsigned long addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4679) 	long long sum_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4680) 	long min_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4681) 	long max_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4682) 	long min_pid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4683) 	long max_pid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4684) 	DECLARE_BITMAP(cpus, NR_CPUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4685) 	nodemask_t nodes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4686) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4687) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4688) struct loc_track {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4689) 	unsigned long max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4690) 	unsigned long count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4691) 	struct location *loc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4692) 	loff_t idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4693) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4694) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4695) static struct dentry *slab_debugfs_root;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4696) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4697) static void free_loc_track(struct loc_track *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4698) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4699) 	if (t->max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4700) 		free_pages((unsigned long)t->loc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4701) 			get_order(sizeof(struct location) * t->max));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4702) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4703) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4704) static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4705) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4706) 	struct location *l;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4707) 	int order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4708) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4709) 	order = get_order(sizeof(struct location) * max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4710) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4711) 	l = (void *)__get_free_pages(flags, order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4712) 	if (!l)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4713) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4714) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4715) 	if (t->count) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4716) 		memcpy(l, t->loc, sizeof(struct location) * t->count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4717) 		free_loc_track(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4718) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4719) 	t->max = max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4720) 	t->loc = l;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4721) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4722) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4723) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4724) static int add_location(struct loc_track *t, struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4725) 				const struct track *track)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4726) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4727) 	long start, end, pos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4728) 	struct location *l;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4729) 	unsigned long caddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4730) 	unsigned long age = jiffies - track->when;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4731) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4732) 	start = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4733) 	end = t->count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4734) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4735) 	for ( ; ; ) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4736) 		pos = start + (end - start + 1) / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4737) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4738) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4739) 		 * There is nothing at "end". If we end up there
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4740) 		 * we need to add something to before end.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4741) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4742) 		if (pos == end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4743) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4744) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4745) 		caddr = t->loc[pos].addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4746) 		if (track->addr == caddr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4747) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4748) 			l = &t->loc[pos];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4749) 			l->count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4750) 			if (track->when) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4751) 				l->sum_time += age;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4752) 				if (age < l->min_time)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4753) 					l->min_time = age;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4754) 				if (age > l->max_time)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4755) 					l->max_time = age;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4756) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4757) 				if (track->pid < l->min_pid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4758) 					l->min_pid = track->pid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4759) 				if (track->pid > l->max_pid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4760) 					l->max_pid = track->pid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4761) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4762) 				cpumask_set_cpu(track->cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4763) 						to_cpumask(l->cpus));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4764) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4765) 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4766) 			return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4767) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4768) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4769) 		if (track->addr < caddr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4770) 			end = pos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4771) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4772) 			start = pos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4773) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4774) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4775) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4776) 	 * Not found. Insert new tracking element.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4777) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4778) 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4779) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4780) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4781) 	l = t->loc + pos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4782) 	if (pos < t->count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4783) 		memmove(l + 1, l,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4784) 			(t->count - pos) * sizeof(struct location));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4785) 	t->count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4786) 	l->count = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4787) 	l->addr = track->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4788) 	l->sum_time = age;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4789) 	l->min_time = age;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4790) 	l->max_time = age;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4791) 	l->min_pid = track->pid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4792) 	l->max_pid = track->pid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4793) 	cpumask_clear(to_cpumask(l->cpus));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4794) 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4795) 	nodes_clear(l->nodes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4796) 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4797) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4798) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4799) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4800) static void process_slab(struct loc_track *t, struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4801) 		struct page *page, enum track_item alloc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4802) 		unsigned long *obj_map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4803) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4804) 	void *addr = page_address(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4805) 	void *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4806) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4807) 	__fill_map(obj_map, s, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4808) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4809) 	for_each_object(p, s, addr, page->objects)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4810) 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4811) 			add_location(t, s, get_track(s, p, alloc));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4812) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4813) #endif	/* CONFIG_DEBUG_FS */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4814) #endif	/* CONFIG_SLUB_DEBUG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4815) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4816) #ifdef SLUB_RESILIENCY_TEST
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4817) static void __init resiliency_test(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4818) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4819) 	u8 *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4820) 	int type = KMALLOC_NORMAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4821) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4822) 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4823) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4824) 	pr_err("SLUB resiliency testing\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4825) 	pr_err("-----------------------\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4826) 	pr_err("A. Corruption after allocation\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4827) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4828) 	p = kzalloc(16, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4829) 	p[16] = 0x12;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4830) 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4831) 	       p + 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4832) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4833) 	validate_slab_cache(kmalloc_caches[type][4]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4834) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4835) 	/* Hmmm... The next two are dangerous */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4836) 	p = kzalloc(32, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4837) 	p[32 + sizeof(void *)] = 0x34;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4838) 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4839) 	       p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4840) 	pr_err("If allocated object is overwritten then not detectable\n\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4841) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4842) 	validate_slab_cache(kmalloc_caches[type][5]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4843) 	p = kzalloc(64, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4844) 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4845) 	*p = 0x56;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4846) 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4847) 	       p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4848) 	pr_err("If allocated object is overwritten then not detectable\n\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4849) 	validate_slab_cache(kmalloc_caches[type][6]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4850) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4851) 	pr_err("\nB. Corruption after free\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4852) 	p = kzalloc(128, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4853) 	kfree(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4854) 	*p = 0x78;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4855) 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4856) 	validate_slab_cache(kmalloc_caches[type][7]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4857) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4858) 	p = kzalloc(256, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4859) 	kfree(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4860) 	p[50] = 0x9a;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4861) 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4862) 	validate_slab_cache(kmalloc_caches[type][8]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4863) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4864) 	p = kzalloc(512, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4865) 	kfree(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4866) 	p[512] = 0xab;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4867) 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4868) 	validate_slab_cache(kmalloc_caches[type][9]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4869) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4870) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4871) #ifdef CONFIG_SLUB_SYSFS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4872) static void resiliency_test(void) {};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4873) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4874) #endif	/* SLUB_RESILIENCY_TEST */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4875) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4876) #ifdef CONFIG_SLUB_SYSFS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4877) enum slab_stat_type {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4878) 	SL_ALL,			/* All slabs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4879) 	SL_PARTIAL,		/* Only partially allocated slabs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4880) 	SL_CPU,			/* Only slabs used for cpu caches */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4881) 	SL_OBJECTS,		/* Determine allocated objects not slabs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4882) 	SL_TOTAL		/* Determine object capacity not slabs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4883) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4884) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4885) #define SO_ALL		(1 << SL_ALL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4886) #define SO_PARTIAL	(1 << SL_PARTIAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4887) #define SO_CPU		(1 << SL_CPU)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4888) #define SO_OBJECTS	(1 << SL_OBJECTS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4889) #define SO_TOTAL	(1 << SL_TOTAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4890) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4891) #ifdef CONFIG_MEMCG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4892) static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4893) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4894) static int __init setup_slub_memcg_sysfs(char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4895) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4896) 	int v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4897) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4898) 	if (get_option(&str, &v) > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4899) 		memcg_sysfs_enabled = v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4900) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4901) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4902) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4903) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4904) __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4905) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4906) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4907) static ssize_t show_slab_objects(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4908) 			    char *buf, unsigned long flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4909) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4910) 	unsigned long total = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4911) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4912) 	int x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4913) 	unsigned long *nodes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4914) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4915) 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4916) 	if (!nodes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4917) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4918) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4919) 	if (flags & SO_CPU) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4920) 		int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4921) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4922) 		for_each_possible_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4923) 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4924) 							       cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4925) 			int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4926) 			struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4927) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4928) 			page = READ_ONCE(c->page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4929) 			if (!page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4930) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4931) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4932) 			node = page_to_nid(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4933) 			if (flags & SO_TOTAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4934) 				x = page->objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4935) 			else if (flags & SO_OBJECTS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4936) 				x = page->inuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4937) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4938) 				x = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4939) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4940) 			total += x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4941) 			nodes[node] += x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4942) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4943) 			page = slub_percpu_partial_read_once(c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4944) 			if (page) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4945) 				node = page_to_nid(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4946) 				if (flags & SO_TOTAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4947) 					WARN_ON_ONCE(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4948) 				else if (flags & SO_OBJECTS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4949) 					WARN_ON_ONCE(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4950) 				else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4951) 					x = page->pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4952) 				total += x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4953) 				nodes[node] += x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4954) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4955) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4956) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4957) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4958) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4959) 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4960) 	 * already held which will conflict with an existing lock order:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4961) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4962) 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4963) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4964) 	 * We don't really need mem_hotplug_lock (to hold off
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4965) 	 * slab_mem_going_offline_callback) here because slab's memory hot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4966) 	 * unplug code doesn't destroy the kmem_cache->node[] data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4967) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4968) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4969) #ifdef CONFIG_SLUB_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4970) 	if (flags & SO_ALL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4971) 		struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4972) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4973) 		for_each_kmem_cache_node(s, node, n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4974) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4975) 			if (flags & SO_TOTAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4976) 				x = atomic_long_read(&n->total_objects);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4977) 			else if (flags & SO_OBJECTS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4978) 				x = atomic_long_read(&n->total_objects) -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4979) 					count_partial(n, count_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4980) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4981) 				x = atomic_long_read(&n->nr_slabs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4982) 			total += x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4983) 			nodes[node] += x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4984) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4985) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4986) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4987) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4988) 	if (flags & SO_PARTIAL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4989) 		struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4990) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4991) 		for_each_kmem_cache_node(s, node, n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4992) 			if (flags & SO_TOTAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4993) 				x = count_partial(n, count_total);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4994) 			else if (flags & SO_OBJECTS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4995) 				x = count_partial(n, count_inuse);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4996) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4997) 				x = n->nr_partial;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4998) 			total += x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4999) 			nodes[node] += x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5000) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5001) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5002) 	x = sprintf(buf, "%lu", total);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5003) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5004) 	for (node = 0; node < nr_node_ids; node++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5005) 		if (nodes[node])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5006) 			x += sprintf(buf + x, " N%d=%lu",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5007) 					node, nodes[node]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5008) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5009) 	kfree(nodes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5010) 	return x + sprintf(buf + x, "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5011) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5012) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5013) #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5014) #define to_slab(n) container_of(n, struct kmem_cache, kobj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5015) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5016) struct slab_attribute {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5017) 	struct attribute attr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5018) 	ssize_t (*show)(struct kmem_cache *s, char *buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5019) 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5020) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5021) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5022) #define SLAB_ATTR_RO(_name) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5023) 	static struct slab_attribute _name##_attr = \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5024) 	__ATTR(_name, 0400, _name##_show, NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5025) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5026) #define SLAB_ATTR(_name) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5027) 	static struct slab_attribute _name##_attr =  \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5028) 	__ATTR(_name, 0600, _name##_show, _name##_store)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5030) static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5031) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5032) 	return sprintf(buf, "%u\n", s->size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5033) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5034) SLAB_ATTR_RO(slab_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5035) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5036) static ssize_t align_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5037) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5038) 	return sprintf(buf, "%u\n", s->align);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5039) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5040) SLAB_ATTR_RO(align);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5041) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5042) static ssize_t object_size_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5043) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5044) 	return sprintf(buf, "%u\n", s->object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5045) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5046) SLAB_ATTR_RO(object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5047) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5048) static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5049) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5050) 	return sprintf(buf, "%u\n", oo_objects(s->oo));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5051) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5052) SLAB_ATTR_RO(objs_per_slab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5053) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5054) static ssize_t order_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5055) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5056) 	return sprintf(buf, "%u\n", oo_order(s->oo));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5057) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5058) SLAB_ATTR_RO(order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5059) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5060) static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5061) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5062) 	return sprintf(buf, "%lu\n", s->min_partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5063) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5064) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5065) static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5066) 				 size_t length)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5067) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5068) 	unsigned long min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5069) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5070) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5071) 	err = kstrtoul(buf, 10, &min);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5072) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5073) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5074) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5075) 	set_min_partial(s, min);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5076) 	return length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5077) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5078) SLAB_ATTR(min_partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5079) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5080) static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5081) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5082) 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5083) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5084) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5085) static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5086) 				 size_t length)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5087) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5088) 	unsigned int objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5089) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5090) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5091) 	err = kstrtouint(buf, 10, &objects);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5092) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5093) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5094) 	if (objects && !kmem_cache_has_cpu_partial(s))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5095) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5096) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5097) 	slub_set_cpu_partial(s, objects);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5098) 	flush_all(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5099) 	return length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5100) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5101) SLAB_ATTR(cpu_partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5103) static ssize_t ctor_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5104) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5105) 	if (!s->ctor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5106) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5107) 	return sprintf(buf, "%pS\n", s->ctor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5108) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5109) SLAB_ATTR_RO(ctor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5111) static ssize_t aliases_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5112) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5113) 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5114) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5115) SLAB_ATTR_RO(aliases);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5117) static ssize_t partial_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5118) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5119) 	return show_slab_objects(s, buf, SO_PARTIAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5120) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5121) SLAB_ATTR_RO(partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5123) static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5124) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5125) 	return show_slab_objects(s, buf, SO_CPU);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5126) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5127) SLAB_ATTR_RO(cpu_slabs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5129) static ssize_t objects_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5130) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5131) 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5132) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5133) SLAB_ATTR_RO(objects);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5135) static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5136) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5137) 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5138) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5139) SLAB_ATTR_RO(objects_partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5141) static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5142) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5143) 	int objects = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5144) 	int pages = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5145) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5146) 	int len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5148) 	for_each_online_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5149) 		struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5151) 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5153) 		if (page) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5154) 			pages += page->pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5155) 			objects += page->pobjects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5156) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5157) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5159) 	len = sprintf(buf, "%d(%d)", objects, pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5161) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5162) 	for_each_online_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5163) 		struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5165) 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5167) 		if (page && len < PAGE_SIZE - 20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5168) 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5169) 				page->pobjects, page->pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5170) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5171) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5172) 	return len + sprintf(buf + len, "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5173) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5174) SLAB_ATTR_RO(slabs_cpu_partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5176) static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5177) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5178) 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5179) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5180) SLAB_ATTR_RO(reclaim_account);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5182) static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5183) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5184) 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5185) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5186) SLAB_ATTR_RO(hwcache_align);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5188) #ifdef CONFIG_ZONE_DMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5189) static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5190) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5191) 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5192) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5193) SLAB_ATTR_RO(cache_dma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5194) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5196) static ssize_t usersize_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5197) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5198) 	return sprintf(buf, "%u\n", s->usersize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5199) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5200) SLAB_ATTR_RO(usersize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5202) static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5203) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5204) 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5205) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5206) SLAB_ATTR_RO(destroy_by_rcu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5208) #ifdef CONFIG_SLUB_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5209) static ssize_t slabs_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5210) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5211) 	return show_slab_objects(s, buf, SO_ALL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5212) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5213) SLAB_ATTR_RO(slabs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5215) static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5216) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5217) 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5218) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5219) SLAB_ATTR_RO(total_objects);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5221) static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5222) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5223) 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5224) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5225) SLAB_ATTR_RO(sanity_checks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5227) static ssize_t trace_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5228) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5229) 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5230) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5231) SLAB_ATTR_RO(trace);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5233) static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5234) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5235) 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5236) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5238) SLAB_ATTR_RO(red_zone);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5240) static ssize_t poison_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5241) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5242) 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5243) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5245) SLAB_ATTR_RO(poison);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5247) static ssize_t store_user_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5248) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5249) 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5250) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5252) SLAB_ATTR_RO(store_user);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5254) static ssize_t validate_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5255) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5256) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5257) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5259) static ssize_t validate_store(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5260) 			const char *buf, size_t length)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5261) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5262) 	int ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5264) 	if (buf[0] == '1') {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5265) 		ret = validate_slab_cache(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5266) 		if (ret >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5267) 			ret = length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5268) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5269) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5270) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5271) SLAB_ATTR(validate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5273) #endif /* CONFIG_SLUB_DEBUG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5275) #ifdef CONFIG_FAILSLAB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5276) static ssize_t failslab_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5277) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5278) 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5279) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5280) SLAB_ATTR_RO(failslab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5281) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5283) static ssize_t shrink_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5284) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5285) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5286) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5288) static ssize_t shrink_store(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5289) 			const char *buf, size_t length)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5290) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5291) 	if (buf[0] == '1')
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5292) 		kmem_cache_shrink(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5293) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5294) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5295) 	return length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5296) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5297) SLAB_ATTR(shrink);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5299) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5300) static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5301) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5302) 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5303) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5305) static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5306) 				const char *buf, size_t length)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5307) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5308) 	unsigned int ratio;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5309) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5311) 	err = kstrtouint(buf, 10, &ratio);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5312) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5313) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5314) 	if (ratio > 100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5315) 		return -ERANGE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5317) 	s->remote_node_defrag_ratio = ratio * 10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5319) 	return length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5320) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5321) SLAB_ATTR(remote_node_defrag_ratio);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5322) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5324) #ifdef CONFIG_SLUB_STATS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5325) static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5326) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5327) 	unsigned long sum  = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5328) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5329) 	int len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5330) 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5332) 	if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5333) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5334) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5335) 	for_each_online_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5336) 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5338) 		data[cpu] = x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5339) 		sum += x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5340) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5341) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5342) 	len = sprintf(buf, "%lu", sum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5344) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5345) 	for_each_online_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5346) 		if (data[cpu] && len < PAGE_SIZE - 20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5347) 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5348) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5349) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5350) 	kfree(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5351) 	return len + sprintf(buf + len, "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5352) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5353) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5354) static void clear_stat(struct kmem_cache *s, enum stat_item si)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5355) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5356) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5358) 	for_each_online_cpu(cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5359) 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5360) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5362) #define STAT_ATTR(si, text) 					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5363) static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5364) {								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5365) 	return show_stat(s, buf, si);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5366) }								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5367) static ssize_t text##_store(struct kmem_cache *s,		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5368) 				const char *buf, size_t length)	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5369) {								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5370) 	if (buf[0] != '0')					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5371) 		return -EINVAL;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5372) 	clear_stat(s, si);					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5373) 	return length;						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5374) }								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5375) SLAB_ATTR(text);						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5377) STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5378) STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5379) STAT_ATTR(FREE_FASTPATH, free_fastpath);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5380) STAT_ATTR(FREE_SLOWPATH, free_slowpath);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5381) STAT_ATTR(FREE_FROZEN, free_frozen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5382) STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5383) STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5384) STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5385) STAT_ATTR(ALLOC_SLAB, alloc_slab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5386) STAT_ATTR(ALLOC_REFILL, alloc_refill);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5387) STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5388) STAT_ATTR(FREE_SLAB, free_slab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5389) STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5390) STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5391) STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5392) STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5393) STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5394) STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5395) STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5396) STAT_ATTR(ORDER_FALLBACK, order_fallback);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5397) STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5398) STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5399) STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5400) STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5401) STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5402) STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5403) #endif	/* CONFIG_SLUB_STATS */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5404) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5405) static struct attribute *slab_attrs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5406) 	&slab_size_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5407) 	&object_size_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5408) 	&objs_per_slab_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5409) 	&order_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5410) 	&min_partial_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5411) 	&cpu_partial_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5412) 	&objects_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5413) 	&objects_partial_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5414) 	&partial_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5415) 	&cpu_slabs_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5416) 	&ctor_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5417) 	&aliases_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5418) 	&align_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5419) 	&hwcache_align_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5420) 	&reclaim_account_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5421) 	&destroy_by_rcu_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5422) 	&shrink_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5423) 	&slabs_cpu_partial_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5424) #ifdef CONFIG_SLUB_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5425) 	&total_objects_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5426) 	&slabs_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5427) 	&sanity_checks_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5428) 	&trace_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5429) 	&red_zone_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5430) 	&poison_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5431) 	&store_user_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5432) 	&validate_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5433) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5434) #ifdef CONFIG_ZONE_DMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5435) 	&cache_dma_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5436) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5437) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5438) 	&remote_node_defrag_ratio_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5439) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5440) #ifdef CONFIG_SLUB_STATS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5441) 	&alloc_fastpath_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5442) 	&alloc_slowpath_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5443) 	&free_fastpath_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5444) 	&free_slowpath_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5445) 	&free_frozen_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5446) 	&free_add_partial_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5447) 	&free_remove_partial_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5448) 	&alloc_from_partial_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5449) 	&alloc_slab_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5450) 	&alloc_refill_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5451) 	&alloc_node_mismatch_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5452) 	&free_slab_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5453) 	&cpuslab_flush_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5454) 	&deactivate_full_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5455) 	&deactivate_empty_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5456) 	&deactivate_to_head_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5457) 	&deactivate_to_tail_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5458) 	&deactivate_remote_frees_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5459) 	&deactivate_bypass_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5460) 	&order_fallback_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5461) 	&cmpxchg_double_fail_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5462) 	&cmpxchg_double_cpu_fail_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5463) 	&cpu_partial_alloc_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5464) 	&cpu_partial_free_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5465) 	&cpu_partial_node_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5466) 	&cpu_partial_drain_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5467) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5468) #ifdef CONFIG_FAILSLAB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5469) 	&failslab_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5470) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5471) 	&usersize_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5472) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5473) 	NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5474) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5475) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5476) static const struct attribute_group slab_attr_group = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5477) 	.attrs = slab_attrs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5478) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5479) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5480) static ssize_t slab_attr_show(struct kobject *kobj,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5481) 				struct attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5482) 				char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5483) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5484) 	struct slab_attribute *attribute;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5485) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5486) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5488) 	attribute = to_slab_attr(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5489) 	s = to_slab(kobj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5491) 	if (!attribute->show)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5492) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5494) 	err = attribute->show(s, buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5495) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5496) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5497) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5499) static ssize_t slab_attr_store(struct kobject *kobj,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5500) 				struct attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5501) 				const char *buf, size_t len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5502) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5503) 	struct slab_attribute *attribute;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5504) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5505) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5506) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5507) 	attribute = to_slab_attr(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5508) 	s = to_slab(kobj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5509) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5510) 	if (!attribute->store)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5511) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5512) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5513) 	err = attribute->store(s, buf, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5514) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5515) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5516) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5517) static void kmem_cache_release(struct kobject *k)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5518) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5519) 	slab_kmem_cache_release(to_slab(k));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5520) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5521) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5522) static const struct sysfs_ops slab_sysfs_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5523) 	.show = slab_attr_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5524) 	.store = slab_attr_store,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5525) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5526) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5527) static struct kobj_type slab_ktype = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5528) 	.sysfs_ops = &slab_sysfs_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5529) 	.release = kmem_cache_release,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5530) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5531) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5532) static struct kset *slab_kset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5533) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5534) static inline struct kset *cache_kset(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5535) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5536) 	return slab_kset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5537) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5538) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5539) #define ID_STR_LENGTH 64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5540) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5541) /* Create a unique string id for a slab cache:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5542)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5543)  * Format	:[flags-]size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5544)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5545) static char *create_unique_id(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5546) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5547) 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5548) 	char *p = name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5550) 	BUG_ON(!name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5551) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5552) 	*p++ = ':';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5553) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5554) 	 * First flags affecting slabcache operations. We will only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5555) 	 * get here for aliasable slabs so we do not need to support
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5556) 	 * too many flags. The flags here must cover all flags that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5557) 	 * are matched during merging to guarantee that the id is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5558) 	 * unique.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5559) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5560) 	if (s->flags & SLAB_CACHE_DMA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5561) 		*p++ = 'd';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5562) 	if (s->flags & SLAB_CACHE_DMA32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5563) 		*p++ = 'D';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5564) 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5565) 		*p++ = 'a';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5566) 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5567) 		*p++ = 'F';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5568) 	if (s->flags & SLAB_ACCOUNT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5569) 		*p++ = 'A';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5570) 	if (p != name + 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5571) 		*p++ = '-';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5572) 	p += sprintf(p, "%07u", s->size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5573) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5574) 	BUG_ON(p > name + ID_STR_LENGTH - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5575) 	return name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5576) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5578) static int sysfs_slab_add(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5579) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5580) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5581) 	const char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5582) 	struct kset *kset = cache_kset(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5583) 	int unmergeable = slab_unmergeable(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5584) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5585) 	if (!kset) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5586) 		kobject_init(&s->kobj, &slab_ktype);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5587) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5588) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5589) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5590) 	if (!unmergeable && disable_higher_order_debug &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5591) 			(slub_debug & DEBUG_METADATA_FLAGS))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5592) 		unmergeable = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5593) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5594) 	if (unmergeable) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5595) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5596) 		 * Slabcache can never be merged so we can use the name proper.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5597) 		 * This is typically the case for debug situations. In that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5598) 		 * case we can catch duplicate names easily.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5599) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5600) 		sysfs_remove_link(&slab_kset->kobj, s->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5601) 		name = s->name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5602) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5603) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5604) 		 * Create a unique name for the slab as a target
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5605) 		 * for the symlinks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5606) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5607) 		name = create_unique_id(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5608) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5610) 	s->kobj.kset = kset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5611) 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5612) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5613) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5614) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5615) 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5616) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5617) 		goto out_del_kobj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5618) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5619) 	if (!unmergeable) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5620) 		/* Setup first alias */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5621) 		sysfs_slab_alias(s, s->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5622) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5623) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5624) 	if (!unmergeable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5625) 		kfree(name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5626) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5627) out_del_kobj:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5628) 	kobject_del(&s->kobj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5629) 	goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5630) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5631) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5632) void sysfs_slab_unlink(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5633) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5634) 	if (slab_state >= FULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5635) 		kobject_del(&s->kobj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5636) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5637) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5638) void sysfs_slab_release(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5639) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5640) 	if (slab_state >= FULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5641) 		kobject_put(&s->kobj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5642) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5643) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5644) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5645)  * Need to buffer aliases during bootup until sysfs becomes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5646)  * available lest we lose that information.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5647)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5648) struct saved_alias {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5649) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5650) 	const char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5651) 	struct saved_alias *next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5652) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5653) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5654) static struct saved_alias *alias_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5655) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5656) static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5657) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5658) 	struct saved_alias *al;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5659) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5660) 	if (slab_state == FULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5661) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5662) 		 * If we have a leftover link then remove it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5663) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5664) 		sysfs_remove_link(&slab_kset->kobj, name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5665) 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5666) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5667) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5668) 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5669) 	if (!al)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5670) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5671) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5672) 	al->s = s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5673) 	al->name = name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5674) 	al->next = alias_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5675) 	alias_list = al;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5676) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5677) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5678) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5679) static int __init slab_sysfs_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5680) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5681) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5682) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5684) 	mutex_lock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5685) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5686) 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5687) 	if (!slab_kset) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5688) 		mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5689) 		pr_err("Cannot register slab subsystem.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5690) 		return -ENOSYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5691) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5692) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5693) 	slab_state = FULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5694) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5695) 	list_for_each_entry(s, &slab_caches, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5696) 		err = sysfs_slab_add(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5697) 		if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5698) 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5699) 			       s->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5700) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5701) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5702) 	while (alias_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5703) 		struct saved_alias *al = alias_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5704) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5705) 		alias_list = alias_list->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5706) 		err = sysfs_slab_alias(al->s, al->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5707) 		if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5708) 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5709) 			       al->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5710) 		kfree(al);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5711) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5712) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5713) 	mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5714) 	resiliency_test();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5715) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5716) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5717) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5718) __initcall(slab_sysfs_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5719) #endif /* CONFIG_SLUB_SYSFS */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5720) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5721) #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5722) static int slab_debugfs_show(struct seq_file *seq, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5723) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5724) 	struct loc_track *t = seq->private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5725) 	struct location *l;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5726) 	unsigned long idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5727) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5728) 	idx = (unsigned long) t->idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5729) 	if (idx < t->count) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5730) 		l = &t->loc[idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5731) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5732) 		seq_printf(seq, "%7ld ", l->count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5734) 		if (l->addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5735) 			seq_printf(seq, "%pS", (void *)l->addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5736) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5737) 			seq_puts(seq, "<not-available>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5738) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5739) 		if (l->sum_time != l->min_time) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5740) 			seq_printf(seq, " age=%ld/%llu/%ld",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5741) 				l->min_time, div_u64(l->sum_time, l->count),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5742) 				l->max_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5743) 		} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5744) 			seq_printf(seq, " age=%ld", l->min_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5745) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5746) 		if (l->min_pid != l->max_pid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5747) 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5748) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5749) 			seq_printf(seq, " pid=%ld",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5750) 				l->min_pid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5751) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5752) 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5753) 			seq_printf(seq, " cpus=%*pbl",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5754) 				 cpumask_pr_args(to_cpumask(l->cpus)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5755) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5756) 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5757) 			seq_printf(seq, " nodes=%*pbl",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5758) 				 nodemask_pr_args(&l->nodes));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5759) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5760) 		seq_puts(seq, "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5761) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5762) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5763) 	if (!idx && !t->count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5764) 		seq_puts(seq, "No data\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5765) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5766) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5767) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5768) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5769) static void slab_debugfs_stop(struct seq_file *seq, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5770) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5771) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5772) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5773) static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5774) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5775) 	struct loc_track *t = seq->private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5776) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5777) 	t->idx = ++(*ppos);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5778) 	if (*ppos <= t->count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5779) 		return ppos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5780) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5781) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5782) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5783) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5784) static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5785) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5786) 	struct loc_track *t = seq->private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5787) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5788) 	t->idx = *ppos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5789) 	return ppos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5790) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5791) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5792) static const struct seq_operations slab_debugfs_sops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5793) 	.start  = slab_debugfs_start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5794) 	.next   = slab_debugfs_next,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5795) 	.stop   = slab_debugfs_stop,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5796) 	.show   = slab_debugfs_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5797) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5798) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5799) static int slab_debug_trace_open(struct inode *inode, struct file *filep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5800) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5801) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5802) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5803) 	enum track_item alloc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5804) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5805) 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5806) 						sizeof(struct loc_track));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5807) 	struct kmem_cache *s = file_inode(filep)->i_private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5808) 	unsigned long *obj_map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5809) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5810) 	if (!t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5811) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5812) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5813) 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5814) 	if (!obj_map) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5815) 		seq_release_private(inode, filep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5816) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5817) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5818) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5819) 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5820) 		alloc = TRACK_ALLOC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5821) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5822) 		alloc = TRACK_FREE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5823) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5824) 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5825) 		bitmap_free(obj_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5826) 		seq_release_private(inode, filep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5827) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5828) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5829) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5830) 	/* Push back cpu slabs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5831) 	flush_all(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5832) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5833) 	for_each_kmem_cache_node(s, node, n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5834) 		unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5835) 		struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5836) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5837) 		if (!atomic_long_read(&n->nr_slabs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5838) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5839) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5840) 		spin_lock_irqsave(&n->list_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5841) 		list_for_each_entry(page, &n->partial, slab_list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5842) 			process_slab(t, s, page, alloc, obj_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5843) 		list_for_each_entry(page, &n->full, slab_list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5844) 			process_slab(t, s, page, alloc, obj_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5845) 		spin_unlock_irqrestore(&n->list_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5846) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5847) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5848) 	bitmap_free(obj_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5849) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5850) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5851) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5852) static int slab_debug_trace_release(struct inode *inode, struct file *file)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5853) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5854) 	struct seq_file *seq = file->private_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5855) 	struct loc_track *t = seq->private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5856) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5857) 	free_loc_track(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5858) 	return seq_release_private(inode, file);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5859) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5860) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5861) static const struct file_operations slab_debugfs_fops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5862) 	.open    = slab_debug_trace_open,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5863) 	.read    = seq_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5864) 	.llseek  = seq_lseek,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5865) 	.release = slab_debug_trace_release,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5866) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5867) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5868) static void debugfs_slab_add(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5869) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5870) 	struct dentry *slab_cache_dir;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5871) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5872) 	if (unlikely(!slab_debugfs_root))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5873) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5874) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5875) 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5876) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5877) 	debugfs_create_file("alloc_traces", 0400,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5878) 		slab_cache_dir, s, &slab_debugfs_fops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5879) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5880) 	debugfs_create_file("free_traces", 0400,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5881) 		slab_cache_dir, s, &slab_debugfs_fops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5882) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5883) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5884) void debugfs_slab_release(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5885) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5886) 	debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5887) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5888) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5889) static int __init slab_debugfs_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5890) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5891) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5892) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5893) 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5894) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5895) 	list_for_each_entry(s, &slab_caches, list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5896) 		if (s->flags & SLAB_STORE_USER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5897) 			debugfs_slab_add(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5898) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5899) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5900) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5901) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5902) __initcall(slab_debugfs_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5903) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5904) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5905)  * The /proc/slabinfo ABI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5906)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5907) #ifdef CONFIG_SLUB_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5908) void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5909) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5910) 	unsigned long nr_slabs = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5911) 	unsigned long nr_objs = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5912) 	unsigned long nr_free = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5913) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5914) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5915) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5916) 	for_each_kmem_cache_node(s, node, n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5917) 		nr_slabs += node_nr_slabs(n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5918) 		nr_objs += node_nr_objs(n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5919) 		nr_free += count_partial(n, count_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5920) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5921) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5922) 	sinfo->active_objs = nr_objs - nr_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5923) 	sinfo->num_objs = nr_objs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5924) 	sinfo->active_slabs = nr_slabs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5925) 	sinfo->num_slabs = nr_slabs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5926) 	sinfo->objects_per_slab = oo_objects(s->oo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5927) 	sinfo->cache_order = oo_order(s->oo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5928) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5929) EXPORT_SYMBOL_GPL(get_slabinfo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5930) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5931) void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5932) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5933) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5934) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5935) ssize_t slabinfo_write(struct file *file, const char __user *buffer,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5936) 		       size_t count, loff_t *ppos)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5937) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5938) 	return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5939) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5940) #endif /* CONFIG_SLUB_DEBUG */