Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * Slab allocator functions that are independent of the allocator strategy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * (C) 2012 Christoph Lameter <cl@linux.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9) #include <linux/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10) #include <linux/poison.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12) #include <linux/memory.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) #include <linux/cache.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) #include <linux/compiler.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) #include <linux/kfence.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) #include <linux/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) #include <linux/uaccess.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) #include <linux/seq_file.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) #include <linux/proc_fs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) #include <linux/debugfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #include <linux/kasan.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #include <asm/cacheflush.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) #include <asm/tlbflush.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #include <asm/page.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) #include <linux/memcontrol.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) #define CREATE_TRACE_POINTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) #include <trace/events/kmem.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) #undef CREATE_TRACE_POINTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) #include <trace/hooks/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) #include "internal.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) #include "slab.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) enum slab_state slab_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) LIST_HEAD(slab_caches);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) DEFINE_MUTEX(slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) struct kmem_cache *kmem_cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) #ifdef CONFIG_HARDENED_USERCOPY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) bool usercopy_fallback __ro_after_init =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) 		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) module_param(usercopy_fallback, bool, 0400);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) MODULE_PARM_DESC(usercopy_fallback,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) 		"WARN instead of reject usercopy whitelist violations");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) static LIST_HEAD(slab_caches_to_rcu_destroy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) 		    slab_caches_to_rcu_destroy_workfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55)  * Set of flags that will prevent slab merging
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) 		SLAB_FAILSLAB | kasan_never_merge())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65)  * Merge control. If this is set then no merging of slab caches will occur.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) static int __init setup_slab_nomerge(char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) 	slab_nomerge = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) #ifdef CONFIG_SLUB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) __setup("slab_nomerge", setup_slab_nomerge);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82)  * Determine the size of a slab object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) unsigned int kmem_cache_size(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) 	return s->object_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) EXPORT_SYMBOL(kmem_cache_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) #ifdef CONFIG_DEBUG_VM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) static int kmem_cache_sanity_check(const char *name, unsigned int size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) 	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) 	size_t i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) 	for (i = 0; i < nr; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 		if (s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) 			kmem_cache_free(s, p[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) 			kfree(p[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) 								void **p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 	size_t i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) 	for (i = 0; i < nr; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 		void *x = p[i] = kmem_cache_alloc(s, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) 		if (!x) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 			__kmem_cache_free_bulk(s, i, p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) 	return i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136)  * Figure out what the alignment of the objects will be given a set of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137)  * flags, a user specified alignment and the size of the objects.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) static unsigned int calculate_alignment(slab_flags_t flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 		unsigned int align, unsigned int size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 	 * If the user wants hardware cache aligned objects then follow that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) 	 * suggestion if the object is sufficiently large.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) 	 * The hardware cache alignment cannot override the specified
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) 	 * alignment though. If that is greater then use it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 	if (flags & SLAB_HWCACHE_ALIGN) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 		unsigned int ralign;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) 		ralign = cache_line_size();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) 		while (size <= ralign / 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) 			ralign /= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) 		align = max(align, ralign);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 	if (align < ARCH_SLAB_MINALIGN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 		align = ARCH_SLAB_MINALIGN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 	return ALIGN(align, sizeof(void *));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165)  * Find a mergeable slab cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) int slab_unmergeable(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 	if (s->ctor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) 	if (s->usersize)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 	 * We may have set a slab to be unmergeable during bootstrap.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) 	if (s->refcount < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 		slab_flags_t flags, const char *name, void (*ctor)(void *))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 	if (slab_nomerge)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 	if (ctor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 	size = ALIGN(size, sizeof(void *));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 	align = calculate_alignment(flags, align, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) 	size = ALIGN(size, align);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 	flags = kmem_cache_flags(size, flags, name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 	if (flags & SLAB_NEVER_MERGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 	list_for_each_entry_reverse(s, &slab_caches, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 		if (slab_unmergeable(s))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 		if (size > s->size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 		 * Check if alignment is compatible.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 		 * Courtesy of Adrian Drzewiecki
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) 		if ((s->size & ~(align - 1)) != s->size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 		if (s->size - size >= sizeof(void *))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) 		if (IS_ENABLED(CONFIG_SLAB) && align &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 			(align > s->align || s->align % align))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 		return s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) static struct kmem_cache *create_cache(const char *name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 		unsigned int object_size, unsigned int align,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 		slab_flags_t flags, unsigned int useroffset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) 		unsigned int usersize, void (*ctor)(void *),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 		struct kmem_cache *root_cache)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 	if (WARN_ON(useroffset + usersize > object_size))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 		useroffset = usersize = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 	err = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 	if (!s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 	s->name = name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 	s->size = s->object_size = object_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) 	s->align = align;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 	s->ctor = ctor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) 	s->useroffset = useroffset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) 	s->usersize = usersize;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 	err = __kmem_cache_create(s, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 		goto out_free_cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 	s->refcount = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 	list_add(&s->list, &slab_caches);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 		return ERR_PTR(err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 	return s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) out_free_cache:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 	kmem_cache_free(kmem_cache, s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 	goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275)  * kmem_cache_create_usercopy - Create a cache with a region suitable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276)  * for copying to userspace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277)  * @name: A string which is used in /proc/slabinfo to identify this cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278)  * @size: The size of objects to be created in this cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279)  * @align: The required alignment for the objects.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280)  * @flags: SLAB flags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281)  * @useroffset: Usercopy region offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282)  * @usersize: Usercopy region size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283)  * @ctor: A constructor for the objects.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285)  * Cannot be called within a interrupt, but can be interrupted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286)  * The @ctor is run when new pages are allocated by the cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288)  * The flags are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290)  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291)  * to catch references to uninitialised memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293)  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294)  * for buffer overruns.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296)  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297)  * cacheline.  This can be beneficial if you're counting cycles as closely
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298)  * as davem.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300)  * Return: a pointer to the cache on success, NULL on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) struct kmem_cache *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) kmem_cache_create_usercopy(const char *name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 		  unsigned int size, unsigned int align,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 		  slab_flags_t flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 		  unsigned int useroffset, unsigned int usersize,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 		  void (*ctor)(void *))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 	struct kmem_cache *s = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 	const char *cache_name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 	get_online_cpus();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 	get_online_mems();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) #ifdef CONFIG_SLUB_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 	 * If no slub_debug was enabled globally, the static key is not yet
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 	 * enabled by setup_slub_debug(). Enable it if the cache is being
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 	 * created with any of the debugging flags passed explicitly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 	if (flags & SLAB_DEBUG_FLAGS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 		static_branch_enable(&slub_debug_enabled);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 	mutex_lock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 	err = kmem_cache_sanity_check(name, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 		goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 	/* Refuse requests with allocator specific flags */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 	if (flags & ~SLAB_FLAGS_PERMITTED) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 		err = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 		goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) 	 * Some allocators will constraint the set of valid flags to a subset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 	 * case, and we'll just provide them with a sanitized version of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 	 * passed flags.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 	flags &= CACHE_CREATE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 	/* Fail closed on bad usersize of useroffset values. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 	if (WARN_ON(!usersize && useroffset) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 	    WARN_ON(size < usersize || size - usersize < useroffset))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 		usersize = useroffset = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 	if (!usersize)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 		s = __kmem_cache_alias(name, size, align, flags, ctor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 	if (s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 		goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 	cache_name = kstrdup_const(name, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 	if (!cache_name) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 		err = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 		goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 	s = create_cache(cache_name, size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 			 calculate_alignment(flags, align, size),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 			 flags, useroffset, usersize, ctor, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 	if (IS_ERR(s)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 		err = PTR_ERR(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 		kfree_const(cache_name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) out_unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 	mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 	put_online_mems();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 	put_online_cpus();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 		if (flags & SLAB_PANIC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 				name, err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 		else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 			pr_warn("kmem_cache_create(%s) failed with error %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 				name, err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 			dump_stack();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 	return s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) EXPORT_SYMBOL(kmem_cache_create_usercopy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393)  * kmem_cache_create - Create a cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394)  * @name: A string which is used in /proc/slabinfo to identify this cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395)  * @size: The size of objects to be created in this cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396)  * @align: The required alignment for the objects.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397)  * @flags: SLAB flags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398)  * @ctor: A constructor for the objects.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400)  * Cannot be called within a interrupt, but can be interrupted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401)  * The @ctor is run when new pages are allocated by the cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403)  * The flags are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405)  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406)  * to catch references to uninitialised memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408)  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409)  * for buffer overruns.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411)  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412)  * cacheline.  This can be beneficial if you're counting cycles as closely
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413)  * as davem.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415)  * Return: a pointer to the cache on success, NULL on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) struct kmem_cache *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) kmem_cache_create(const char *name, unsigned int size, unsigned int align,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 		slab_flags_t flags, void (*ctor)(void *))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 					  ctor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) EXPORT_SYMBOL(kmem_cache_create);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 	LIST_HEAD(to_destroy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 	struct kmem_cache *s, *s2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 	 * through RCU and the associated kmem_cache are dereferenced
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 	 * while freeing the pages, so the kmem_caches should be freed only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 	 * after the pending RCU operations are finished.  As rcu_barrier()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 	 * is a pretty slow operation, we batch all pending destructions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 	 * asynchronously.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 	mutex_lock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 	mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 	if (list_empty(&to_destroy))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 	rcu_barrier();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 		debugfs_slab_release(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 		kfence_shutdown_cache(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) #ifdef SLAB_SUPPORTS_SYSFS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 		sysfs_slab_release(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 		slab_kmem_cache_release(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) static int shutdown_cache(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 	/* free asan quarantined objects */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 	kasan_cache_shutdown(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 	if (__kmem_cache_shutdown(s) != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 		return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 	list_del(&s->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) #ifdef SLAB_SUPPORTS_SYSFS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 		sysfs_slab_unlink(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 		schedule_work(&slab_caches_to_rcu_destroy_work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 		kfence_shutdown_cache(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 		debugfs_slab_release(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) #ifdef SLAB_SUPPORTS_SYSFS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 		sysfs_slab_unlink(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 		sysfs_slab_release(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 		slab_kmem_cache_release(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) void slab_kmem_cache_release(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 	__kmem_cache_release(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 	kfree_const(s->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 	kmem_cache_free(kmem_cache, s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) void kmem_cache_destroy(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 	if (unlikely(!s))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 	get_online_cpus();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 	get_online_mems();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 	mutex_lock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 	s->refcount--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 	if (s->refcount)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 		goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 	err = shutdown_cache(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 		       s->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 		dump_stack();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) out_unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 	mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 	put_online_mems();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 	put_online_cpus();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) EXPORT_SYMBOL(kmem_cache_destroy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528)  * kmem_cache_shrink - Shrink a cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529)  * @cachep: The cache to shrink.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531)  * Releases as many slabs as possible for a cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532)  * To help debugging, a zero exit status indicates all slabs were released.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534)  * Return: %0 if all slabs were released, non-zero otherwise
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) int kmem_cache_shrink(struct kmem_cache *cachep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 	get_online_cpus();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 	get_online_mems();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 	kasan_cache_shrink(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 	ret = __kmem_cache_shrink(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 	put_online_mems();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 	put_online_cpus();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) EXPORT_SYMBOL(kmem_cache_shrink);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) bool slab_is_available(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 	return slab_state >= UP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) #ifndef CONFIG_SLOB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) /* Create a cache during boot when no slab services are available yet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) void __init create_boot_cache(struct kmem_cache *s, const char *name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 		unsigned int size, slab_flags_t flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 		unsigned int useroffset, unsigned int usersize)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 	unsigned int align = ARCH_KMALLOC_MINALIGN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 	s->name = name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 	s->size = s->object_size = size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 	 * For power of two sizes, guarantee natural alignment for kmalloc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 	 * caches, regardless of SL*B debugging options.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 	if (is_power_of_2(size))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 		align = max(align, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 	s->align = calculate_alignment(flags, align, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 	s->useroffset = useroffset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 	s->usersize = usersize;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 	err = __kmem_cache_create(s, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 					name, size, err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) 	s->refcount = -1;	/* Exempt from merging for now */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) struct kmem_cache *__init create_kmalloc_cache(const char *name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 		unsigned int size, slab_flags_t flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 		unsigned int useroffset, unsigned int usersize)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 	if (!s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 		panic("Out of memory when creating slab %s\n", name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 	create_boot_cache(s, name, size, flags, useroffset, usersize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 	kasan_cache_create_kmalloc(s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 	list_add(&s->list, &slab_caches);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 	s->refcount = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 	return s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) struct kmem_cache *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) EXPORT_SYMBOL(kmalloc_caches);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609)  * Conversion table for small slabs sizes / 8 to the index in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610)  * kmalloc array. This is necessary for slabs < 192 since we have non power
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611)  * of two cache sizes there. The size of larger slabs can be determined using
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612)  * fls.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) static u8 size_index[24] __ro_after_init = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 	3,	/* 8 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 	4,	/* 16 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 	5,	/* 24 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 	5,	/* 32 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 	6,	/* 40 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 	6,	/* 48 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 	6,	/* 56 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 	6,	/* 64 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 	1,	/* 72 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 	1,	/* 80 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 	1,	/* 88 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 	1,	/* 96 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 	7,	/* 104 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 	7,	/* 112 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 	7,	/* 120 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 	7,	/* 128 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 	2,	/* 136 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 	2,	/* 144 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 	2,	/* 152 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 	2,	/* 160 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 	2,	/* 168 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 	2,	/* 176 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 	2,	/* 184 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 	2	/* 192 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) static inline unsigned int size_index_elem(unsigned int bytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 	return (bytes - 1) / 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647)  * Find the kmem_cache structure that serves a given size of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648)  * allocation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 	unsigned int index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 	struct kmem_cache *s = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) 	if (size <= 192) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 		if (!size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 			return ZERO_SIZE_PTR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 		index = size_index[size_index_elem(size)];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 		index = fls(size - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 	trace_android_vh_kmalloc_slab(index, flags, &s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 	if (s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 		return s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 	return kmalloc_caches[kmalloc_type(flags)][index];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) #ifdef CONFIG_ZONE_DMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) #define INIT_KMALLOC_INFO(__size, __short_size)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) {								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 	.size = __size,						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) #define INIT_KMALLOC_INFO(__size, __short_size)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) {								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 	.size = __size,						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691)  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692)  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693)  * kmalloc-67108864.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) const struct kmalloc_info_struct kmalloc_info[] __initconst = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 	INIT_KMALLOC_INFO(0, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 	INIT_KMALLOC_INFO(96, 96),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 	INIT_KMALLOC_INFO(192, 192),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 	INIT_KMALLOC_INFO(8, 8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 	INIT_KMALLOC_INFO(16, 16),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 	INIT_KMALLOC_INFO(32, 32),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 	INIT_KMALLOC_INFO(64, 64),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 	INIT_KMALLOC_INFO(128, 128),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 	INIT_KMALLOC_INFO(256, 256),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 	INIT_KMALLOC_INFO(512, 512),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 	INIT_KMALLOC_INFO(1024, 1k),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 	INIT_KMALLOC_INFO(2048, 2k),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 	INIT_KMALLOC_INFO(4096, 4k),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 	INIT_KMALLOC_INFO(8192, 8k),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 	INIT_KMALLOC_INFO(16384, 16k),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 	INIT_KMALLOC_INFO(32768, 32k),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 	INIT_KMALLOC_INFO(65536, 64k),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 	INIT_KMALLOC_INFO(131072, 128k),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 	INIT_KMALLOC_INFO(262144, 256k),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 	INIT_KMALLOC_INFO(524288, 512k),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 	INIT_KMALLOC_INFO(1048576, 1M),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 	INIT_KMALLOC_INFO(2097152, 2M),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 	INIT_KMALLOC_INFO(4194304, 4M),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 	INIT_KMALLOC_INFO(8388608, 8M),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 	INIT_KMALLOC_INFO(16777216, 16M),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 	INIT_KMALLOC_INFO(33554432, 32M),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 	INIT_KMALLOC_INFO(67108864, 64M)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726)  * Patch up the size_index table if we have strange large alignment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727)  * requirements for the kmalloc array. This is only the case for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728)  * MIPS it seems. The standard arches will not generate any code here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730)  * Largest permitted alignment is 256 bytes due to the way we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731)  * handle the index determination for the smaller caches.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733)  * Make sure that nothing crazy happens if someone starts tinkering
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734)  * around with ARCH_KMALLOC_MINALIGN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) void __init setup_kmalloc_cache_index_table(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 		unsigned int elem = size_index_elem(i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 		if (elem >= ARRAY_SIZE(size_index))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 		size_index[elem] = KMALLOC_SHIFT_LOW;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 	if (KMALLOC_MIN_SIZE >= 64) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 		 * The 96 byte size cache is not used if the alignment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 		 * is 64 byte.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 		for (i = 64 + 8; i <= 96; i += 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 			size_index[size_index_elem(i)] = 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) 	if (KMALLOC_MIN_SIZE >= 128) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 		 * The 192 byte sized cache is not used if the alignment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 		 * instead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 		for (i = 128 + 8; i <= 192; i += 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 			size_index[size_index_elem(i)] = 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) static void __init
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 	if (type == KMALLOC_RECLAIM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 		flags |= SLAB_RECLAIM_ACCOUNT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 	kmalloc_caches[type][idx] = create_kmalloc_cache(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 					kmalloc_info[idx].name[type],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 					kmalloc_info[idx].size, flags, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 					kmalloc_info[idx].size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785)  * Create the kmalloc array. Some of the regular kmalloc arrays
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786)  * may already have been created because they were needed to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787)  * enable allocations for slab creation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) void __init create_kmalloc_caches(slab_flags_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 	enum kmalloc_cache_type type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 			if (!kmalloc_caches[type][i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 				new_kmalloc_cache(i, type, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 			 * Caches that are not of the two-to-the-power-of size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 			 * These have to be created immediately after the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 			 * earlier power of two caches
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 					!kmalloc_caches[type][1])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 				new_kmalloc_cache(1, type, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 					!kmalloc_caches[type][2])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 				new_kmalloc_cache(2, type, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 	/* Kmalloc array is now usable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 	slab_state = UP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) #ifdef CONFIG_ZONE_DMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 		if (s) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 				kmalloc_info[i].name[KMALLOC_DMA],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 				kmalloc_info[i].size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 				SLAB_CACHE_DMA | flags, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 				kmalloc_info[i].size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) #endif /* !CONFIG_SLOB */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) gfp_t kmalloc_fix_flags(gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 	flags &= ~GFP_SLAB_BUG_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 			invalid_mask, &invalid_mask, flags, &flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 	dump_stack();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 	return flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845)  * To avoid unnecessary overhead, we pass through large allocation requests
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846)  * directly to the page allocator. We use __GFP_COMP, because we will need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847)  * know the allocation order to free the pages properly in kfree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 	void *ret = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 		flags = kmalloc_fix_flags(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 	flags |= __GFP_COMP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 	page = alloc_pages(flags, order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 	if (likely(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 		ret = page_address(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 				      PAGE_SIZE << order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 	ret = kasan_kmalloc_large(ret, size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 	/* As ret might get tagged, call kmemleak hook after KASAN. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 	kmemleak_alloc(ret, size, 1, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) EXPORT_SYMBOL(kmalloc_order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) #ifdef CONFIG_TRACING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 	void *ret = kmalloc_order(size, flags, order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) EXPORT_SYMBOL(kmalloc_order_trace);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) #ifdef CONFIG_SLAB_FREELIST_RANDOM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) /* Randomize a generic freelist */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) static void freelist_randomize(struct rnd_state *state, unsigned int *list,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 			       unsigned int count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 	unsigned int rand;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 	for (i = 0; i < count; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 		list[i] = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 	/* Fisher-Yates shuffle */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 	for (i = count - 1; i > 0; i--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 		rand = prandom_u32_state(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 		rand %= (i + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 		swap(list[i], list[rand]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) /* Create a random sequence per cache */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 				    gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 	struct rnd_state state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 	if (count < 2 || cachep->random_seq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 	if (!cachep->random_seq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 	/* Get best entropy at this stage of boot */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 	prandom_seed_state(&state, get_random_long());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 	freelist_randomize(&state, cachep->random_seq, count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) /* Destroy the per-cache random freelist sequence */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) void cache_random_seq_destroy(struct kmem_cache *cachep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 	kfree(cachep->random_seq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 	cachep->random_seq = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) #endif /* CONFIG_SLAB_FREELIST_RANDOM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) #ifdef CONFIG_SLAB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) #define SLABINFO_RIGHTS (0600)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) #define SLABINFO_RIGHTS (0400)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) static void print_slabinfo_header(struct seq_file *m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 	 * Output format version, so at least we can change it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 	 * without _too_ many complaints.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) #ifdef CONFIG_DEBUG_SLAB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 	seq_puts(m, "slabinfo - version: 2.1\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) #ifdef CONFIG_DEBUG_SLAB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 	seq_putc(m, '\n');
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) void *slab_start(struct seq_file *m, loff_t *pos)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 	mutex_lock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 	return seq_list_start(&slab_caches, *pos);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) void *slab_next(struct seq_file *m, void *p, loff_t *pos)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 	return seq_list_next(p, &slab_caches, pos);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) void slab_stop(struct seq_file *m, void *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 	mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) static void cache_show(struct kmem_cache *s, struct seq_file *m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 	struct slabinfo sinfo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 	memset(&sinfo, 0, sizeof(sinfo));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 	get_slabinfo(s, &sinfo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 	seq_printf(m, " : tunables %4u %4u %4u",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 	slabinfo_show_stats(m, s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 	seq_putc(m, '\n');
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) static int slab_show(struct seq_file *m, void *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 	if (p == slab_caches.next)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 		print_slabinfo_header(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 	cache_show(s, m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) void dump_unreclaimable_slab(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 	struct kmem_cache *s, *s2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 	struct slabinfo sinfo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 	 * Here acquiring slab_mutex is risky since we don't prefer to get
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 	 * sleep in oom path. But, without mutex hold, it may introduce a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 	 * risk of crash.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 	 * Use mutex_trylock to protect the list traverse, dump nothing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 	 * without acquiring the mutex.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 	if (!mutex_trylock(&slab_mutex)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 	pr_info("Unreclaimable slab info:\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 	pr_info("Name                      Used          Total\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 	list_for_each_entry_safe(s, s2, &slab_caches, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 		get_slabinfo(s, &sinfo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 		if (sinfo.num_objs > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 			pr_info("%-17s %10luKB %10luKB\n", s->name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 				(sinfo.active_objs * s->size) / 1024,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 				(sinfo.num_objs * s->size) / 1024);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 	mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) #if defined(CONFIG_MEMCG_KMEM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) int memcg_slab_show(struct seq_file *m, void *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 	 * Deprecated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 	 * Please, take a look at tools/cgroup/slabinfo.py .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047)  * slabinfo_op - iterator that generates /proc/slabinfo
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049)  * Output layout:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050)  * cache-name
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051)  * num-active-objs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052)  * total-objs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053)  * object size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054)  * num-active-slabs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055)  * total-slabs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056)  * num-pages-per-slab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057)  * + further values on SMP and with statistics enabled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) static const struct seq_operations slabinfo_op = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 	.start = slab_start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 	.next = slab_next,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 	.stop = slab_stop,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 	.show = slab_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) static int slabinfo_open(struct inode *inode, struct file *file)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 	return seq_open(file, &slabinfo_op);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) static const struct proc_ops slabinfo_proc_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 	.proc_flags	= PROC_ENTRY_PERMANENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 	.proc_open	= slabinfo_open,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 	.proc_read	= seq_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 	.proc_write	= slabinfo_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 	.proc_lseek	= seq_lseek,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 	.proc_release	= seq_release,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) static int __init slab_proc_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) module_init(slab_proc_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) static __always_inline void *__do_krealloc(const void *p, size_t new_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 					   gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 	void *ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 	size_t ks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 	/* Don't use instrumented ksize to allow precise KASAN poisoning. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 	if (likely(!ZERO_OR_NULL_PTR(p))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 		if (!kasan_check_byte(p))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 		ks = kfence_ksize(p) ?: __ksize(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 		ks = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 	/* If the object still fits, repoison it precisely. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 	if (ks >= new_size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 		p = kasan_krealloc((void *)p, new_size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 		return (void *)p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 	ret = kmalloc_track_caller(new_size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 	if (ret && p) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 		/* Disable KASAN checks as the object's redzone is accessed. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 		kasan_disable_current();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 		memcpy(ret, kasan_reset_tag(p), ks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 		kasan_enable_current();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121)  * krealloc - reallocate memory. The contents will remain unchanged.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122)  * @p: object to reallocate memory for.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123)  * @new_size: how many bytes of memory are required.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124)  * @flags: the type of memory to allocate.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126)  * The contents of the object pointed to are preserved up to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127)  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128)  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129)  * %NULL pointer, the object pointed to is freed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131)  * Return: pointer to the allocated memory or %NULL in case of error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) void *krealloc(const void *p, size_t new_size, gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 	void *ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 	if (unlikely(!new_size)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 		kfree(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 		return ZERO_SIZE_PTR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 	ret = __do_krealloc(p, new_size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 		kfree(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) EXPORT_SYMBOL(krealloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151)  * kfree_sensitive - Clear sensitive information in memory before freeing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152)  * @p: object to free memory of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154)  * The memory of the object @p points to is zeroed before freed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155)  * If @p is %NULL, kfree_sensitive() does nothing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157)  * Note: this function zeroes the whole allocated buffer which can be a good
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158)  * deal bigger than the requested buffer size passed to kmalloc(). So be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159)  * careful when using this function in performance sensitive code.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) void kfree_sensitive(const void *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 	size_t ks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 	void *mem = (void *)p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 	ks = ksize(mem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 	if (ks)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 		memzero_explicit(mem, ks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 	kfree(mem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) EXPORT_SYMBOL(kfree_sensitive);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174)  * ksize - get the actual amount of memory allocated for a given object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175)  * @objp: Pointer to the object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177)  * kmalloc may internally round up allocations and return more memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178)  * than requested. ksize() can be used to determine the actual amount of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179)  * memory allocated. The caller may use this additional memory, even though
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180)  * a smaller amount of memory was initially specified with the kmalloc call.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181)  * The caller must guarantee that objp points to a valid object previously
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182)  * allocated with either kmalloc() or kmem_cache_alloc(). The object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183)  * must not be freed during the duration of the call.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185)  * Return: size of the actual memory used by @objp in bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) size_t ksize(const void *objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 	size_t size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 	 * We need to first check that the pointer to the object is valid, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 	 * only then unpoison the memory. The report printed from ksize() is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 	 * more useful, then when it's printed later when the behaviour could
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 	 * be undefined due to a potential use-after-free or double-free.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 	 * We use kasan_check_byte(), which is supported for the hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 	 * tag-based KASAN mode, unlike kasan_check_read/write().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 	 * If the pointed to memory is invalid, we return 0 to avoid users of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 	 * ksize() writing to and potentially corrupting the memory region.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 	 * We want to perform the check before __ksize(), to avoid potentially
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 	 * crashing in __ksize() due to accessing invalid metadata.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 	size = kfence_ksize(objp) ?: __ksize(objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 	 * We assume that ksize callers could use whole allocated area,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 	 * so we need to unpoison this area.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 	kasan_unpoison_range(objp, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 	return size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) EXPORT_SYMBOL(ksize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) /* Tracepoints definitions. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) EXPORT_TRACEPOINT_SYMBOL(kmalloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) EXPORT_TRACEPOINT_SYMBOL(kfree);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 	if (__should_failslab(s, gfpflags))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) ALLOW_ERROR_INJECTION(should_failslab, ERRNO);