Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * linux/mm/slab.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  * Written by Mark Hemment, 1996/97.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * (markhe@nextd.demon.co.uk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  * Major cleanup, different bufctl logic, per-cpu arrays
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  *	(c) 2000 Manfred Spraul
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12)  * Cleanup, make the head arrays unconditional, preparation for NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13)  * 	(c) 2002 Manfred Spraul
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15)  * An implementation of the Slab Allocator as described in outline in;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16)  *	UNIX Internals: The New Frontiers by Uresh Vahalia
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17)  *	Pub: Prentice Hall	ISBN 0-13-101908-2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18)  * or with a little more detail in;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19)  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20)  *	Jeff Bonwick (Sun Microsystems).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21)  *	Presented at: USENIX Summer 1994 Technical Conference
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23)  * The memory is organized in caches, one cache for each object type.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24)  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25)  * Each cache consists out of many slabs (they are small (usually one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26)  * page long) and always contiguous), and each slab contains multiple
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27)  * initialized objects.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29)  * This means, that your constructor is used only for newly allocated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30)  * slabs and you must pass objects with the same initializations to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31)  * kmem_cache_free.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33)  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34)  * normal). If you need a special memory type, then must create a new
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35)  * cache for that memory type.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37)  * In order to reduce fragmentation, the slabs are sorted in 3 groups:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38)  *   full slabs with 0 free objects
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39)  *   partial slabs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40)  *   empty slabs with no allocated objects
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42)  * If partial slabs exist, then new allocations come from these slabs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43)  * otherwise from empty slabs or new slabs are allocated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45)  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46)  * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48)  * Each cache has a short per-cpu head array, most allocs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49)  * and frees go into that array, and if that array overflows, then 1/2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50)  * of the entries in the array are given back into the global cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51)  * The head array is strictly LIFO and should improve the cache hit rates.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52)  * On SMP, it additionally reduces the spinlock operations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54)  * The c_cpuarray may not be read with enabled local interrupts -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55)  * it's changed with a smp_call_function().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57)  * SMP synchronization:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58)  *  constructors and destructors are called without any locking.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59)  *  Several members in struct kmem_cache and struct slab never change, they
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60)  *	are accessed without any locking.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61)  *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62)  *  	and local interrupts are disabled so slab code is preempt-safe.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63)  *  The non-constant members are protected with a per-cache irq spinlock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65)  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66)  * in 2000 - many ideas in the current implementation are derived from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67)  * his patch.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69)  * Further notes from the original documentation:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71)  * 11 April '97.  Started multi-threading - markhe
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72)  *	The global cache-chain is protected by the mutex 'slab_mutex'.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73)  *	The sem is only needed when accessing/extending the cache-chain, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74)  *	can never happen inside an interrupt (kmem_cache_create(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75)  *	kmem_cache_shrink() and kmem_cache_reap()).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77)  *	At present, each engine can be growing a cache.  This should be blocked.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79)  * 15 March 2005. NUMA slab allocator.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80)  *	Shai Fultheim <shai@scalex86.org>.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81)  *	Shobhit Dayal <shobhit@calsoftinc.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82)  *	Alok N Kataria <alokk@calsoftinc.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83)  *	Christoph Lameter <christoph@lameter.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85)  *	Modified the slab allocator to be node aware on NUMA systems.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86)  *	Each node has its own list of partial, free and full slabs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87)  *	All object allocations for a node occur from node specific slab lists.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) #include	<linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) #include	<linux/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) #include	<linux/poison.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) #include	<linux/swap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) #include	<linux/cache.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) #include	<linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) #include	<linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) #include	<linux/compiler.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) #include	<linux/cpuset.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) #include	<linux/proc_fs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) #include	<linux/seq_file.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) #include	<linux/notifier.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) #include	<linux/kallsyms.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) #include	<linux/kfence.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) #include	<linux/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) #include	<linux/sysctl.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) #include	<linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) #include	<linux/rcupdate.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) #include	<linux/string.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) #include	<linux/uaccess.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) #include	<linux/nodemask.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) #include	<linux/kmemleak.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) #include	<linux/mempolicy.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) #include	<linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) #include	<linux/fault-inject.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) #include	<linux/rtmutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) #include	<linux/reciprocal_div.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) #include	<linux/debugobjects.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) #include	<linux/memory.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) #include	<linux/prefetch.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) #include	<linux/sched/task_stack.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) #include	<net/sock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) #include	<asm/cacheflush.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) #include	<asm/tlbflush.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) #include	<asm/page.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) #include <trace/events/kmem.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) #include	"internal.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) #include	"slab.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135)  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136)  *		  0 for faster, smaller code (especially in the critical paths).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138)  * STATS	- 1 to collect stats for /proc/slabinfo.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139)  *		  0 for faster, smaller code (especially in the critical paths).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141)  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) #ifdef CONFIG_DEBUG_SLAB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) #define	DEBUG		1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) #define	STATS		1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) #define	FORCED_DEBUG	1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) #define	DEBUG		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) #define	STATS		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) #define	FORCED_DEBUG	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) /* Shouldn't this be in a header file somewhere? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) #define	BYTES_PER_WORD		sizeof(void *)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) #ifndef ARCH_KMALLOC_FLAGS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) #if FREELIST_BYTE_INDEX
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) typedef unsigned char freelist_idx_t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) typedef unsigned short freelist_idx_t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174)  * struct array_cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176)  * Purpose:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177)  * - LIFO ordering, to hand out cache-warm objects from _alloc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178)  * - reduce the number of linked list operations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179)  * - reduce spinlock operations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181)  * The limit is stored in the per-cpu structure to reduce the data cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182)  * footprint.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) struct array_cache {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 	unsigned int avail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 	unsigned int limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 	unsigned int batchcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 	unsigned int touched;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 	void *entry[];	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 			 * Must have this definition in here for the proper
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 			 * alignment of array_cache. Also simplifies accessing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 			 * the entries.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) struct alien_cache {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 	spinlock_t lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 	struct array_cache ac;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203)  * Need this for bootstrapping a per node allocator.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) #define	CACHE_CACHE 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) #define	SIZE_NODE (MAX_NUMNODES)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) static int drain_freelist(struct kmem_cache *cache,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 			struct kmem_cache_node *n, int tofree);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) static void free_block(struct kmem_cache *cachep, void **objpp, int len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 			int node, struct list_head *list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) static void cache_reap(struct work_struct *unused);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) 						void **list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) static inline void fixup_slab_list(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) 				struct kmem_cache_node *n, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 				void **list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) static int slab_early_init = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) static void kmem_cache_node_init(struct kmem_cache_node *parent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 	INIT_LIST_HEAD(&parent->slabs_full);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 	INIT_LIST_HEAD(&parent->slabs_partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 	INIT_LIST_HEAD(&parent->slabs_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 	parent->total_slabs = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) 	parent->free_slabs = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 	parent->shared = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 	parent->alien = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 	parent->colour_next = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) 	spin_lock_init(&parent->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 	parent->free_objects = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 	parent->free_touched = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) #define MAKE_LIST(cachep, listp, slab, nodeid)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 	do {								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 		INIT_LIST_HEAD(listp);					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 	} while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 	do {								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) 	} while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) #define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) #define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) #define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) #define BATCHREFILL_LIMIT	16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262)  * Optimization question: fewer reaps means less probability for unnessary
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263)  * cpucache drain/refill cycles.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265)  * OTOH the cpuarrays can contain lots of objects,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266)  * which could lock up otherwise freeable slabs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) #define REAPTIMEOUT_AC		(2*HZ)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) #define REAPTIMEOUT_NODE	(4*HZ)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) #if STATS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) #define	STATS_INC_ACTIVE(x)	((x)->num_active++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) #define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) #define	STATS_INC_GROWN(x)	((x)->grown++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) #define	STATS_SET_HIGH(x)						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 	do {								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 		if ((x)->num_active > (x)->high_mark)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 			(x)->high_mark = (x)->num_active;		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 	} while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) #define	STATS_INC_ERR(x)	((x)->errors++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) #define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) #define	STATS_SET_FREEABLE(x, i)					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 	do {								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 		if ((x)->max_freeable < i)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 			(x)->max_freeable = i;				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) 	} while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) #define	STATS_INC_ACTIVE(x)	do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) #define	STATS_DEC_ACTIVE(x)	do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) #define	STATS_INC_ALLOCED(x)	do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) #define	STATS_INC_GROWN(x)	do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) #define	STATS_SET_HIGH(x)	do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) #define	STATS_INC_ERR(x)	do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) #define	STATS_INC_NODEALLOCS(x)	do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) #define	STATS_INC_NODEFREES(x)	do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) #define STATS_INC_ACOVERFLOW(x)   do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) #define	STATS_SET_FREEABLE(x, i) do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) #define STATS_INC_ALLOCHIT(x)	do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) #define STATS_INC_ALLOCMISS(x)	do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) #define STATS_INC_FREEHIT(x)	do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) #define STATS_INC_FREEMISS(x)	do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) #if DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316)  * memory layout of objects:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317)  * 0		: objp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318)  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319)  * 		the end of an object is aligned with the end of the real
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320)  * 		allocation. Catches writes behind the end of the allocation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321)  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322)  * 		redzone word.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323)  * cachep->obj_offset: The real object.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324)  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325)  * cachep->size - 1* BYTES_PER_WORD: last caller address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326)  *					[BYTES_PER_WORD long]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) static int obj_offset(struct kmem_cache *cachep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 	return cachep->obj_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 	return (unsigned long long*) (objp + obj_offset(cachep) -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 				      sizeof(unsigned long long));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 	if (cachep->flags & SLAB_STORE_USER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 		return (unsigned long long *)(objp + cachep->size -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 					      sizeof(unsigned long long) -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 					      REDZONE_ALIGN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 	return (unsigned long long *) (objp + cachep->size -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 				       sizeof(unsigned long long));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) static void **dbg_userword(struct kmem_cache *cachep, void *objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 	return (void **)(objp + cachep->size - BYTES_PER_WORD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) #define obj_offset(x)			0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367)  * Do not go above this order unless 0 objects fit into the slab or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368)  * overridden on the command line.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) #define	SLAB_MAX_ORDER_HI	1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) #define	SLAB_MAX_ORDER_LO	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) static int slab_max_order = SLAB_MAX_ORDER_LO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) static bool slab_max_order_set __initdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 				 unsigned int idx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 	return page->s_mem + cache->size * idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) #define BOOT_CPUCACHE_ENTRIES	1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) /* internal cache of cache description objs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) static struct kmem_cache kmem_cache_boot = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 	.batchcount = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 	.limit = BOOT_CPUCACHE_ENTRIES,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 	.shared = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 	.size = sizeof(struct kmem_cache),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 	.name = "kmem_cache",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 	return this_cpu_ptr(cachep->cpu_cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399)  * Calculate the number of objects and left-over bytes for a given buffer size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 		slab_flags_t flags, size_t *left_over)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 	unsigned int num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 	size_t slab_size = PAGE_SIZE << gfporder;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 	 * The slab management structure can be either off the slab or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 	 * on it. For the latter case, the memory allocated for a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 	 * slab is used for:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 	 * - @buffer_size bytes for each object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 	 * - One freelist_idx_t for each object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 	 * We don't need to consider alignment of freelist because
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 	 * freelist will be at the end of slab page. The objects will be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 	 * at the correct alignment.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 	 * If the slab management structure is off the slab, then the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 	 * alignment will already be calculated into the size. Because
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	 * the slabs are all pages aligned, the objects will be at the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 	 * correct alignment when allocated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 		num = slab_size / buffer_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 		*left_over = slab_size % buffer_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 		*left_over = slab_size %
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 			(buffer_size + sizeof(freelist_idx_t));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 	return num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) #if DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) static void __slab_error(const char *function, struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 			char *msg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 	pr_err("slab error in %s(): cache `%s': %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 	       function, cachep->name, msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 	dump_stack();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450)  * By default on NUMA we use alien caches to stage the freeing of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451)  * objects allocated from other nodes. This causes massive memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452)  * inefficiencies when using fake NUMA setup to split memory into a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453)  * large number of small nodes, so it can be disabled on the command
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454)  * line
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455)   */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) static int use_alien_caches __read_mostly = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) static int __init noaliencache_setup(char *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 	use_alien_caches = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) __setup("noaliencache", noaliencache_setup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) static int __init slab_max_order_setup(char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 	get_option(&str, &slab_max_order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 	slab_max_order = slab_max_order < 0 ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 				min(slab_max_order, MAX_ORDER - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 	slab_max_order_set = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) __setup("slab_max_order=", slab_max_order_setup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478)  * Special reaping functions for NUMA systems called from cache_reap().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479)  * These take care of doing round robin flushing of alien caches (containing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480)  * objects freed on different nodes from which they were allocated) and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481)  * flushing of remote pcps by calling drain_node_pages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) static DEFINE_PER_CPU(unsigned long, slab_reap_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) static void init_reap_node(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 						    node_online_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) static void next_reap_node(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 	int node = __this_cpu_read(slab_reap_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 	node = next_node_in(node, node_online_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 	__this_cpu_write(slab_reap_node, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) #define init_reap_node(cpu) do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) #define next_reap_node(void) do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505)  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506)  * via the workqueue/eventd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507)  * Add the CPU number into the expiration time to minimize the possibility of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508)  * the CPUs getting into lockstep and contending for the global cache chain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509)  * lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) static void start_cpu_timer(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 	if (reap_work->work.func == NULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 		init_reap_node(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 		schedule_delayed_work_on(cpu, reap_work,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 					__round_jiffies_relative(HZ, cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) static void init_arraycache(struct array_cache *ac, int limit, int batch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 	if (ac) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 		ac->avail = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 		ac->limit = limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 		ac->batchcount = batch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 		ac->touched = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) static struct array_cache *alloc_arraycache(int node, int entries,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 					    int batchcount, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 	struct array_cache *ac = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 	ac = kmalloc_node(memsize, gfp, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 	 * The array_cache structures contain pointers to free object.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 	 * However, when such objects are allocated or transferred to another
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 	 * cache the pointers are not cleared and they could be counted as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 	 * valid references during a kmemleak scan. Therefore, kmemleak must
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 	 * not scan such objects.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 	kmemleak_no_scan(ac);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 	init_arraycache(ac, entries, batchcount);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 	return ac;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 					struct page *page, void *objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 	int page_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 	LIST_HEAD(list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 	page_node = page_to_nid(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 	n = get_node(cachep, page_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 	spin_lock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 	free_block(cachep, &objp, 1, page_node, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 	spin_unlock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 	slabs_destroy(cachep, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570)  * Transfer objects in one arraycache to another.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571)  * Locking must be handled by the caller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573)  * Return the number of entries transferred.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) static int transfer_objects(struct array_cache *to,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 		struct array_cache *from, unsigned int max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 	/* Figure out how many entries to transfer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 	int nr = min3(from->avail, max, to->limit - to->avail);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 	if (!nr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) 	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 			sizeof(void *) *nr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 	from->avail -= nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 	to->avail += nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 	return nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) /* &alien->lock must be held by alien callers. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) static __always_inline void __free_one(struct array_cache *ac, void *objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 	/* Avoid trivial double-free. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 	if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 	    WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 	ac->entry[ac->avail++] = objp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) #ifndef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) #define drain_alien_cache(cachep, alien) do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) #define reap_alien(cachep, n) do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) static inline struct alien_cache **alloc_alien_cache(int node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 						int limit, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) static inline void free_alien_cache(struct alien_cache **ac_ptr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) static inline void *alternate_node_alloc(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 		gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) static inline void *____cache_alloc_node(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 		 gfp_t flags, int nodeid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) static inline gfp_t gfp_exact_node(gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 	return flags & ~__GFP_NOFAIL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) #else	/* CONFIG_NUMA */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) static struct alien_cache *__alloc_alien_cache(int node, int entries,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 						int batch, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 	struct alien_cache *alc = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 	alc = kmalloc_node(memsize, gfp, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 	if (alc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 		kmemleak_no_scan(alc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 		init_arraycache(&alc->ac, entries, batch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 		spin_lock_init(&alc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 	return alc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 	struct alien_cache **alc_ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 	if (limit > 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 		limit = 12;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 	if (!alc_ptr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 	for_each_node(i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 		if (i == node || !node_online(i))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 		if (!alc_ptr[i]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 			for (i--; i >= 0; i--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 				kfree(alc_ptr[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 			kfree(alc_ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 	return alc_ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) static void free_alien_cache(struct alien_cache **alc_ptr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 	if (!alc_ptr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 	for_each_node(i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 	    kfree(alc_ptr[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 	kfree(alc_ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) static void __drain_alien_cache(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 				struct array_cache *ac, int node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 				struct list_head *list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 	struct kmem_cache_node *n = get_node(cachep, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 	if (ac->avail) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 		spin_lock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 		 * Stuff objects into the remote nodes shared array first.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 		 * That way we could avoid the overhead of putting the objects
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 		 * into the free lists and getting them back later.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 		if (n->shared)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 			transfer_objects(n->shared, ac, ac->limit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 		free_block(cachep, ac->entry, ac->avail, node, list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 		ac->avail = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 		spin_unlock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718)  * Called from cache_reap() to regularly drain alien caches round robin.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 	int node = __this_cpu_read(slab_reap_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 	if (n->alien) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 		struct alien_cache *alc = n->alien[node];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 		struct array_cache *ac;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 		if (alc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 			ac = &alc->ac;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 			if (ac->avail && spin_trylock_irq(&alc->lock)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 				LIST_HEAD(list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 				__drain_alien_cache(cachep, ac, node, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 				spin_unlock_irq(&alc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 				slabs_destroy(cachep, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) static void drain_alien_cache(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 				struct alien_cache **alien)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 	int i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 	struct alien_cache *alc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 	struct array_cache *ac;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 	for_each_online_node(i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 		alc = alien[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 		if (alc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 			LIST_HEAD(list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 			ac = &alc->ac;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 			spin_lock_irqsave(&alc->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 			__drain_alien_cache(cachep, ac, i, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 			spin_unlock_irqrestore(&alc->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 			slabs_destroy(cachep, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 				int node, int page_node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 	struct alien_cache *alien = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 	struct array_cache *ac;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 	LIST_HEAD(list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 	n = get_node(cachep, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 	STATS_INC_NODEFREES(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 	if (n->alien && n->alien[page_node]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 		alien = n->alien[page_node];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 		ac = &alien->ac;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 		spin_lock(&alien->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 		if (unlikely(ac->avail == ac->limit)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 			STATS_INC_ACOVERFLOW(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 			__drain_alien_cache(cachep, ac, page_node, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 		__free_one(ac, objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 		spin_unlock(&alien->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 		slabs_destroy(cachep, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 		n = get_node(cachep, page_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 		spin_lock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 		free_block(cachep, &objp, 1, page_node, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 		spin_unlock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 		slabs_destroy(cachep, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 	int page_node = page_to_nid(virt_to_page(objp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 	int node = numa_mem_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 	 * Make sure we are not freeing a object from another node to the array
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 	 * cache on this cpu.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 	if (likely(node == page_node))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 	return __cache_free_alien(cachep, objp, node, page_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809)  * Construct gfp mask to allocate from a specific node but do not reclaim or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810)  * warn about failures.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) static inline gfp_t gfp_exact_node(gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 	 * Set up the kmem_cache_node for cpu before we can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 	 * begin anything. Make sure some other cpu on this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 	 * node has not already allocated this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 	n = get_node(cachep, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 	if (n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 		spin_lock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 				cachep->num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 		spin_unlock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 	if (!n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 	kmem_cache_node_init(n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 	n->next_reap = jiffies + REAPTIMEOUT_NODE +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 	n->free_limit =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 	 * The kmem_cache_nodes don't come and go as CPUs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 	 * come and go.  slab_mutex is sufficient
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 	 * protection here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 	cachep->node[node] = n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860)  * Allocates and initializes node for a node on each slab cache, used for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861)  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862)  * will be allocated off-node since memory is not yet online for the new node.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863)  * When hotplugging memory or a cpu, existing node are not replaced if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864)  * already in use.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866)  * Must hold slab_mutex.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) static int init_cache_node_node(int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 	struct kmem_cache *cachep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 	list_for_each_entry(cachep, &slab_caches, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 		ret = init_cache_node(cachep, node, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) static int setup_kmem_cache_node(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 				int node, gfp_t gfp, bool force_change)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 	int ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 	struct array_cache *old_shared = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 	struct array_cache *new_shared = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 	struct alien_cache **new_alien = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 	LIST_HEAD(list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 	if (use_alien_caches) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 		if (!new_alien)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 			goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 	if (cachep->shared) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 		new_shared = alloc_arraycache(node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 		if (!new_shared)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 			goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 	ret = init_cache_node(cachep, node, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 	n = get_node(cachep, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 	spin_lock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 	if (n->shared && force_change) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 		free_block(cachep, n->shared->entry,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 				n->shared->avail, node, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 		n->shared->avail = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 	if (!n->shared || force_change) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 		old_shared = n->shared;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 		n->shared = new_shared;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 		new_shared = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 	if (!n->alien) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 		n->alien = new_alien;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 		new_alien = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 	spin_unlock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 	slabs_destroy(cachep, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 	 * To protect lockless access to n->shared during irq disabled context.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 	 * If n->shared isn't NULL in irq disabled context, accessing to it is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 	 * guaranteed to be valid until irq is re-enabled, because it will be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 	 * freed after synchronize_rcu().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 	if (old_shared && force_change)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 		synchronize_rcu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 	kfree(old_shared);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 	kfree(new_shared);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 	free_alien_cache(new_alien);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) static void cpuup_canceled(long cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 	struct kmem_cache *cachep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 	struct kmem_cache_node *n = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 	int node = cpu_to_mem(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 	const struct cpumask *mask = cpumask_of_node(node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 	list_for_each_entry(cachep, &slab_caches, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 		struct array_cache *nc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 		struct array_cache *shared;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 		struct alien_cache **alien;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 		LIST_HEAD(list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 		n = get_node(cachep, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 		if (!n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 		spin_lock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 		/* Free limit for this kmem_cache_node */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 		n->free_limit -= cachep->batchcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 		/* cpu is dead; no one can alloc from it. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 		free_block(cachep, nc->entry, nc->avail, node, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 		nc->avail = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 		if (!cpumask_empty(mask)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 			spin_unlock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 			goto free_slab;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 		shared = n->shared;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 		if (shared) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 			free_block(cachep, shared->entry,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 				   shared->avail, node, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 			n->shared = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 		alien = n->alien;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 		n->alien = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 		spin_unlock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 		kfree(shared);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 		if (alien) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 			drain_alien_cache(cachep, alien);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 			free_alien_cache(alien);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) free_slab:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 		slabs_destroy(cachep, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 	 * In the previous loop, all the objects were freed to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 	 * the respective cache's slabs,  now we can go ahead and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 	 * shrink each nodelist to its limit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 	list_for_each_entry(cachep, &slab_caches, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 		n = get_node(cachep, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 		if (!n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 		drain_freelist(cachep, n, INT_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) static int cpuup_prepare(long cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 	struct kmem_cache *cachep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 	int node = cpu_to_mem(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 	 * We need to do this right in the beginning since
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 	 * alloc_arraycache's are going to use this list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 	 * kmalloc_node allows us to add the slab to the right
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 	 * kmem_cache_node and not this cpu's kmem_cache_node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 	err = init_cache_node_node(node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 		goto bad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 	 * Now we can go ahead with allocating the shared arrays and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 	 * array caches
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 	list_for_each_entry(cachep, &slab_caches, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 		if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 			goto bad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) bad:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 	cpuup_canceled(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 	return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) int slab_prepare_cpu(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 	mutex_lock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 	err = cpuup_prepare(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 	mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060)  * This is called for a failed online attempt and for a successful
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061)  * offline.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063)  * Even if all the cpus of a node are down, we don't free the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064)  * kmem_cache_node of any cache. This to avoid a race between cpu_down, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065)  * a kmalloc allocation from another cpu for memory from the node of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066)  * the cpu going down.  The kmem_cache_node structure is usually allocated from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067)  * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) int slab_dead_cpu(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 	mutex_lock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 	cpuup_canceled(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 	mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) static int slab_online_cpu(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 	start_cpu_timer(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) static int slab_offline_cpu(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 	 * Shutdown cache reaper. Note that the slab_mutex is held so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 	 * that if cache_reap() is invoked it cannot do anything
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 	 * expensive but will only modify reap_work and reschedule the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 	 * timer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 	/* Now the cache_reaper is guaranteed to be not running. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 	per_cpu(slab_reap_work, cpu).work.func = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100)  * Drains freelist for a node on each slab cache, used for memory hot-remove.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101)  * Returns -EBUSY if all objects cannot be drained so that the node is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102)  * removed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104)  * Must hold slab_mutex.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) static int __meminit drain_cache_node_node(int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 	struct kmem_cache *cachep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 	list_for_each_entry(cachep, &slab_caches, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 		struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 		n = get_node(cachep, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 		if (!n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 		drain_freelist(cachep, n, INT_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 		if (!list_empty(&n->slabs_full) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 		    !list_empty(&n->slabs_partial)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 			ret = -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) static int __meminit slab_memory_callback(struct notifier_block *self,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 					unsigned long action, void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 	struct memory_notify *mnb = arg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 	int nid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 	nid = mnb->status_change_nid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 	if (nid < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 	switch (action) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 	case MEM_GOING_ONLINE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 		mutex_lock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 		ret = init_cache_node_node(nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 		mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 	case MEM_GOING_OFFLINE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 		mutex_lock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 		ret = drain_cache_node_node(nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 		mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 	case MEM_ONLINE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 	case MEM_OFFLINE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 	case MEM_CANCEL_ONLINE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 	case MEM_CANCEL_OFFLINE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 	return notifier_from_errno(ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163)  * swap the static kmem_cache_node with kmalloced memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 				int nodeid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 	struct kmem_cache_node *ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 	BUG_ON(!ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 	memcpy(ptr, list, sizeof(struct kmem_cache_node));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 	 * Do not assume that spinlocks can be initialized via memcpy:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 	spin_lock_init(&ptr->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 	MAKE_ALL_LISTS(cachep, ptr, nodeid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 	cachep->node[nodeid] = ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184)  * For setting up all the kmem_cache_node for cache whose buffer_size is same as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185)  * size of kmem_cache_node.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) static void __init set_up_node(struct kmem_cache *cachep, int index)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 	for_each_online_node(node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 		cachep->node[node] = &init_kmem_cache_node[index + node];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 		cachep->node[node]->next_reap = jiffies +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 		    REAPTIMEOUT_NODE +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200)  * Initialisation.  Called after the page allocator have been initialised and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201)  * before smp_init().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) void __init kmem_cache_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 	kmem_cache = &kmem_cache_boot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 		use_alien_caches = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 	for (i = 0; i < NUM_INIT_LISTS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 		kmem_cache_node_init(&init_kmem_cache_node[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 	 * Fragmentation resistance on low memory - only use bigger
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 	 * page orders on machines with more than 32MB of memory if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 	 * not overridden on the command line.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 		slab_max_order = SLAB_MAX_ORDER_HI;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 	/* Bootstrap is tricky, because several objects are allocated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 	 * from caches that do not exist yet:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 	 * 1) initialize the kmem_cache cache: it contains the struct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 	 *    kmem_cache structures of all caches, except kmem_cache itself:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 	 *    kmem_cache is statically allocated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 	 *    Initially an __init data area is used for the head array and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 	 *    array at the end of the bootstrap.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 	 * 2) Create the first kmalloc cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 	 *    The struct kmem_cache for the new cache is allocated normally.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 	 *    An __init data area is used for the head array.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 	 * 3) Create the remaining kmalloc caches, with minimally sized
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 	 *    head arrays.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 	 * 4) Replace the __init data head arrays for kmem_cache and the first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 	 *    kmalloc cache with kmalloc allocated arrays.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) 	 *    the other cache's with kmalloc allocated memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 	/* 1) create the kmem_cache */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) 	create_boot_cache(kmem_cache, "kmem_cache",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 		offsetof(struct kmem_cache, node) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) 				  nr_node_ids * sizeof(struct kmem_cache_node *),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) 				  SLAB_HWCACHE_ALIGN, 0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) 	list_add(&kmem_cache->list, &slab_caches);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 	slab_state = PARTIAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 	 * Initialize the caches that provide memory for the  kmem_cache_node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 	 * structures first.  Without this, further allocations will bug.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 	kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 				kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) 				kmalloc_info[INDEX_NODE].size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 				ARCH_KMALLOC_FLAGS, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) 				kmalloc_info[INDEX_NODE].size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 	slab_state = PARTIAL_NODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 	setup_kmalloc_cache_index_table();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 	slab_early_init = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 	/* 5) Replace the bootstrap kmem_cache_node */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 		int nid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 		for_each_online_node(nid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) void __init kmem_cache_init_late(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 	struct kmem_cache *cachep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 	/* 6) resize the head arrays to their final sizes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) 	mutex_lock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) 	list_for_each_entry(cachep, &slab_caches, list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 		if (enable_cpucache(cachep, GFP_NOWAIT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) 			BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) 	mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) 	/* Done! */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) 	slab_state = FULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) 	 * Register a memory hotplug callback that initializes and frees
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) 	 * node.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) 	 * The reap timers are started later, with a module init call: That part
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) 	 * of the kernel is not yet operational.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) static int __init cpucache_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 	 * Register the timers that return unneeded pages to the page allocator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 				slab_online_cpu, slab_offline_cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 	WARN_ON(ret < 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) __initcall(cpucache_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) static noinline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) #if DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) 				      DEFAULT_RATELIMIT_BURST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 		nodeid, gfpflags, &gfpflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 	pr_warn("  cache: %s, object size: %d, order: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 		cachep->name, cachep->size, cachep->gfporder);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 	for_each_kmem_cache_node(cachep, node, n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 		unsigned long total_slabs, free_slabs, free_objs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 		spin_lock_irqsave(&n->list_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 		total_slabs = n->total_slabs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 		free_slabs = n->free_slabs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 		free_objs = n->free_objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 		spin_unlock_irqrestore(&n->list_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 			node, total_slabs - free_slabs, total_slabs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 			(total_slabs * cachep->num) - free_objs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 			total_slabs * cachep->num);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363)  * Interface to system's page allocator. No need to hold the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364)  * kmem_cache_node ->list_lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366)  * If we requested dmaable memory, we will get it. Even if we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367)  * did not request dmaable memory, we might get it, but that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368)  * would be relatively rare and ignorable.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 								int nodeid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 	flags |= cachep->allocflags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 	page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 	if (!page) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 		slab_out_of_memory(cachep, flags, nodeid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 	account_slab_page(page, cachep->gfporder, cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 	__SetPageSlab(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) 		SetPageSlabPfmemalloc(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 	return page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393)  * Interface to system's page release.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 	int order = cachep->gfporder;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 	BUG_ON(!PageSlab(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 	__ClearPageSlabPfmemalloc(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 	__ClearPageSlab(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 	page_mapcount_reset(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 	page->mapping = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 	if (current->reclaim_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 		current->reclaim_state->reclaimed_slab += 1 << order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 	unaccount_slab_page(page, order, cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 	__free_pages(page, order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) static void kmem_rcu_free(struct rcu_head *head)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) 	struct kmem_cache *cachep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) 	page = container_of(head, struct page, rcu_head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 	cachep = page->slab_cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) 	kmem_freepages(cachep, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) #if DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) 	if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 		(cachep->size % PAGE_SIZE) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) #ifdef CONFIG_DEBUG_PAGEALLOC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) 	if (!is_debug_pagealloc_cache(cachep))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) 	__kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) 				int map) {}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) 	int size = cachep->object_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) 	addr = &((char *)addr)[obj_offset(cachep)];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) 	memset(addr, val, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) 	*(unsigned char *)(addr + size - 1) = POISON_END;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) static void dump_line(char *data, int offset, int limit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) 	unsigned char error = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) 	int bad_count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) 	pr_err("%03x: ", offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) 	for (i = 0; i < limit; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) 		if (data[offset + i] != POISON_FREE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) 			error = data[offset + i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) 			bad_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) 	print_hex_dump(KERN_CONT, "", 0, 16, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) 			&data[offset], limit, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) 	if (bad_count == 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) 		error ^= POISON_FREE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) 		if (!(error & (error - 1))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) 			pr_err("Single bit error detected. Probably bad RAM.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) #ifdef CONFIG_X86
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) 			pr_err("Run memtest86+ or a similar memory test tool.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) 			pr_err("Run a memory test tool.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) #if DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) 	int i, size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) 	char *realobj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) 	if (cachep->flags & SLAB_RED_ZONE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) 		pr_err("Redzone: 0x%llx/0x%llx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) 		       *dbg_redzone1(cachep, objp),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) 		       *dbg_redzone2(cachep, objp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) 	if (cachep->flags & SLAB_STORE_USER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) 		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) 	realobj = (char *)objp + obj_offset(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) 	size = cachep->object_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) 	for (i = 0; i < size && lines; i += 16, lines--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) 		int limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) 		limit = 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) 		if (i + limit > size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) 			limit = size - i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) 		dump_line(realobj, i, limit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) static void check_poison_obj(struct kmem_cache *cachep, void *objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) 	char *realobj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 	int size, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) 	int lines = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) 	if (is_debug_pagealloc_cache(cachep))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) 	realobj = (char *)objp + obj_offset(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) 	size = cachep->object_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) 	for (i = 0; i < size; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) 		char exp = POISON_FREE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) 		if (i == size - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) 			exp = POISON_END;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) 		if (realobj[i] != exp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) 			int limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) 			/* Mismatch ! */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) 			/* Print header */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) 			if (lines == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) 				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) 				       print_tainted(), cachep->name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) 				       realobj, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) 				print_objinfo(cachep, objp, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) 			/* Hexdump the affected line */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) 			i = (i / 16) * 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) 			limit = 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) 			if (i + limit > size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) 				limit = size - i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) 			dump_line(realobj, i, limit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) 			i += 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) 			lines++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) 			/* Limit to 5 lines */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) 			if (lines > 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) 	if (lines != 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) 		/* Print some data about the neighboring objects, if they
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) 		 * exist:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 		struct page *page = virt_to_head_page(objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) 		unsigned int objnr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) 		objnr = obj_to_index(cachep, page, objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) 		if (objnr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) 			objp = index_to_obj(cachep, page, objnr - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) 			realobj = (char *)objp + obj_offset(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) 			print_objinfo(cachep, objp, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) 		if (objnr + 1 < cachep->num) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) 			objp = index_to_obj(cachep, page, objnr + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) 			realobj = (char *)objp + obj_offset(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) 			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) 			print_objinfo(cachep, objp, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) #if DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) static void slab_destroy_debugcheck(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) 						struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) 	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) 		poison_obj(cachep, page->freelist - obj_offset(cachep),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) 			POISON_FREE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) 	for (i = 0; i < cachep->num; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) 		void *objp = index_to_obj(cachep, page, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) 		if (cachep->flags & SLAB_POISON) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) 			check_poison_obj(cachep, objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) 			slab_kernel_map(cachep, objp, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 		if (cachep->flags & SLAB_RED_ZONE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) 				slab_error(cachep, "start of a freed object was overwritten");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) 				slab_error(cachep, "end of a freed object was overwritten");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) static void slab_destroy_debugcheck(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) 						struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609)  * slab_destroy - destroy and release all objects in a slab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610)  * @cachep: cache pointer being destroyed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611)  * @page: page pointer being destroyed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613)  * Destroy all the objs in a slab page, and release the mem back to the system.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614)  * Before calling the slab page must have been unlinked from the cache. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615)  * kmem_cache_node ->list_lock is not held/needed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) static void slab_destroy(struct kmem_cache *cachep, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) 	void *freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) 	freelist = page->freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) 	slab_destroy_debugcheck(cachep, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) 	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) 		call_rcu(&page->rcu_head, kmem_rcu_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) 		kmem_freepages(cachep, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) 	 * From now on, we don't use freelist
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) 	 * although actual page can be freed in rcu context
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) 	if (OFF_SLAB(cachep))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) 		kmem_cache_free(cachep->freelist_cache, freelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637)  * Update the size of the caches before calling slabs_destroy as it may
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638)  * recursively call kfree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) 	struct page *page, *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) 	list_for_each_entry_safe(page, n, list, slab_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) 		list_del(&page->slab_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) 		slab_destroy(cachep, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651)  * calculate_slab_order - calculate size (page order) of slabs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652)  * @cachep: pointer to the cache that is being created
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653)  * @size: size of objects to be created in this cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654)  * @flags: slab allocation flags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656)  * Also calculates the number of objects per slab.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658)  * This could be made much more intelligent.  For now, try to avoid using
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659)  * high order pages for slabs.  When the gfp() functions are more friendly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660)  * towards high-order requests, this should be changed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662)  * Return: number of left-over bytes in a slab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) static size_t calculate_slab_order(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) 				size_t size, slab_flags_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) 	size_t left_over = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) 	int gfporder;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671) 		unsigned int num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) 		size_t remainder;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) 		num = cache_estimate(gfporder, size, flags, &remainder);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) 		if (!num)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) 		if (num > SLAB_OBJ_MAX_NUM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) 		if (flags & CFLGS_OFF_SLAB) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) 			struct kmem_cache *freelist_cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) 			size_t freelist_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) 			freelist_size = num * sizeof(freelist_idx_t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) 			freelist_cache = kmalloc_slab(freelist_size, 0u);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) 			if (!freelist_cache)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) 			 * Needed to avoid possible looping condition
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) 			 * in cache_grow_begin()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) 			if (OFF_SLAB(freelist_cache))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) 			/* check if off slab has enough benefit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) 			if (freelist_cache->size > cachep->size / 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) 		/* Found something acceptable - save it away */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) 		cachep->num = num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) 		cachep->gfporder = gfporder;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) 		left_over = remainder;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) 		 * A VFS-reclaimable slab tends to have most allocations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) 		 * as GFP_NOFS and we really don't want to have to be allocating
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) 		 * higher-order pages when we are unable to shrink dcache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) 		if (flags & SLAB_RECLAIM_ACCOUNT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) 		 * Large number of objects is good, but very large slabs are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) 		 * currently bad for the gfp()s.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720) 		if (gfporder >= slab_max_order)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) 		 * Acceptable internal fragmentation?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) 		if (left_over * 8 <= (PAGE_SIZE << gfporder))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) 	return left_over;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) static struct array_cache __percpu *alloc_kmem_cache_cpus(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) 		struct kmem_cache *cachep, int entries, int batchcount)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) 	size_t size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737) 	struct array_cache __percpu *cpu_cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) 	size = sizeof(void *) * entries + sizeof(struct array_cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) 	cpu_cache = __alloc_percpu(size, sizeof(void *));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) 	if (!cpu_cache)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) 	for_each_possible_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) 		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) 				entries, batchcount);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) 	return cpu_cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) 	if (slab_state >= FULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) 		return enable_cpucache(cachep, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) 	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) 	if (!cachep->cpu_cache)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) 	if (slab_state == DOWN) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) 		/* Creation of first cache (kmem_cache). */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) 		set_up_node(kmem_cache, CACHE_CACHE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) 	} else if (slab_state == PARTIAL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) 		/* For kmem_cache_node */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) 		set_up_node(cachep, SIZE_NODE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) 		int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) 		for_each_online_node(node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) 			cachep->node[node] = kmalloc_node(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) 				sizeof(struct kmem_cache_node), gfp, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774) 			BUG_ON(!cachep->node[node]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) 			kmem_cache_node_init(cachep->node[node]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779) 	cachep->node[numa_mem_id()]->next_reap =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780) 			jiffies + REAPTIMEOUT_NODE +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) 			((unsigned long)cachep) % REAPTIMEOUT_NODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) 	cpu_cache_get(cachep)->avail = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784) 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) 	cpu_cache_get(cachep)->batchcount = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) 	cpu_cache_get(cachep)->touched = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) 	cachep->batchcount = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) 	cachep->limit = BOOT_CPUCACHE_ENTRIES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) slab_flags_t kmem_cache_flags(unsigned int object_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) 	slab_flags_t flags, const char *name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) 	return flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798) struct kmem_cache *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799) __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800) 		   slab_flags_t flags, void (*ctor)(void *))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802) 	struct kmem_cache *cachep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) 	cachep = find_mergeable(size, align, flags, name, ctor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805) 	if (cachep) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) 		cachep->refcount++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809) 		 * Adjust the object sizes so that we clear
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810) 		 * the complete object on kzalloc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) 		cachep->object_size = max_t(int, cachep->object_size, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) 	return cachep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817) static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818) 			size_t size, slab_flags_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) 	size_t left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) 	cachep->num = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825) 	 * If slab auto-initialization on free is enabled, store the freelist
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) 	 * off-slab, so that its contents don't end up in one of the allocated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827) 	 * objects.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) 	if (unlikely(slab_want_init_on_free(cachep)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832) 	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) 	left = calculate_slab_order(cachep, size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836) 			flags | CFLGS_OBJFREELIST_SLAB);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837) 	if (!cachep->num)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840) 	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) 	cachep->colour = left / cachep->colour_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) 	return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) static bool set_off_slab_cache(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849) 			size_t size, slab_flags_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851) 	size_t left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853) 	cachep->num = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) 	 * Always use on-slab management when SLAB_NOLEAKTRACE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857) 	 * to avoid recursive calls into kmemleak.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) 	if (flags & SLAB_NOLEAKTRACE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) 	 * Size is large, assume best to place the slab management obj
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) 	 * off-slab (should allow better packing of objs).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) 	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867) 	if (!cachep->num)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871) 	 * If the slab has been placed off-slab, and we have enough space then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872) 	 * move it on-slab. This is at the expense of any extra colouring.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) 	if (left >= cachep->num * sizeof(freelist_idx_t))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877) 	cachep->colour = left / cachep->colour_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879) 	return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882) static bool set_on_slab_cache(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883) 			size_t size, slab_flags_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885) 	size_t left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887) 	cachep->num = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889) 	left = calculate_slab_order(cachep, size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890) 	if (!cachep->num)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893) 	cachep->colour = left / cachep->colour_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) 	return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899)  * __kmem_cache_create - Create a cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900)  * @cachep: cache management descriptor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901)  * @flags: SLAB flags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903)  * Returns a ptr to the cache on success, NULL on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904)  * Cannot be called within a int, but can be interrupted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905)  * The @ctor is run when new pages are allocated by the cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907)  * The flags are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909)  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910)  * to catch references to uninitialised memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912)  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913)  * for buffer overruns.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915)  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916)  * cacheline.  This can be beneficial if you're counting cycles as closely
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917)  * as davem.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919)  * Return: a pointer to the created cache or %NULL in case of error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921) int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923) 	size_t ralign = BYTES_PER_WORD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) 	gfp_t gfp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926) 	unsigned int size = cachep->size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928) #if DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929) #if FORCED_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931) 	 * Enable redzoning and last user accounting, except for caches with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932) 	 * large objects, if the increased size would increase the object size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) 	 * above the next power of two: caches with object sizes just above a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934) 	 * power of two have a significant amount of internal fragmentation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936) 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) 						2 * sizeof(unsigned long long)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938) 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939) 	if (!(flags & SLAB_TYPESAFE_BY_RCU))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940) 		flags |= SLAB_POISON;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945) 	 * Check that size is in terms of words.  This is needed to avoid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) 	 * unaligned accesses for some archs when redzoning is used, and makes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) 	 * sure any on-slab bufctl's are also correctly aligned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) 	size = ALIGN(size, BYTES_PER_WORD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951) 	if (flags & SLAB_RED_ZONE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) 		ralign = REDZONE_ALIGN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) 		/* If redzoning, ensure that the second redzone is suitably
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954) 		 * aligned, by adjusting the object size accordingly. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) 		size = ALIGN(size, REDZONE_ALIGN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958) 	/* 3) caller mandated alignment */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959) 	if (ralign < cachep->align) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960) 		ralign = cachep->align;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962) 	/* disable debug if necessary */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) 	if (ralign > __alignof__(unsigned long long))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964) 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) 	 * 4) Store it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968) 	cachep->align = ralign;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969) 	cachep->colour_off = cache_line_size();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970) 	/* Offset must be a multiple of the alignment. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) 	if (cachep->colour_off < cachep->align)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) 		cachep->colour_off = cachep->align;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974) 	if (slab_is_available())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) 		gfp = GFP_KERNEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977) 		gfp = GFP_NOWAIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979) #if DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982) 	 * Both debugging options require word-alignment which is calculated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) 	 * into align above.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985) 	if (flags & SLAB_RED_ZONE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986) 		/* add space for red zone words */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987) 		cachep->obj_offset += sizeof(unsigned long long);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988) 		size += 2 * sizeof(unsigned long long);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) 	if (flags & SLAB_STORE_USER) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) 		/* user store requires one word storage behind the end of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992) 		 * the real object. But if the second red zone needs to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993) 		 * aligned to 64 bits, we must allow that much space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) 		if (flags & SLAB_RED_ZONE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) 			size += REDZONE_ALIGN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) 			size += BYTES_PER_WORD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) 	kasan_cache_create(cachep, &size, &flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004) 	size = ALIGN(size, cachep->align);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006) 	 * We should restrict the number of objects in a slab to implement
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007) 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009) 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012) #if DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014) 	 * To activate debug pagealloc, off-slab management is necessary
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015) 	 * requirement. In early phase of initialization, small sized slab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016) 	 * doesn't get initialized so it would not be possible. So, we need
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017) 	 * to check size >= 256. It guarantees that all necessary small
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018) 	 * sized slab is initialized in current slab initialization sequence.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020) 	if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) 		size >= 256 && cachep->object_size > cache_line_size()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) 		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023) 			size_t tmp_size = ALIGN(size, PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) 			if (set_off_slab_cache(cachep, tmp_size, flags)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026) 				flags |= CFLGS_OFF_SLAB;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) 				cachep->obj_offset += tmp_size - size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028) 				size = tmp_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) 				goto done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) 	if (set_objfreelist_slab_cache(cachep, size, flags)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036) 		flags |= CFLGS_OBJFREELIST_SLAB;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) 		goto done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040) 	if (set_off_slab_cache(cachep, size, flags)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) 		flags |= CFLGS_OFF_SLAB;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042) 		goto done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045) 	if (set_on_slab_cache(cachep, size, flags))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) 		goto done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048) 	return -E2BIG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050) done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051) 	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052) 	cachep->flags = flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) 	cachep->allocflags = __GFP_COMP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054) 	if (flags & SLAB_CACHE_DMA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055) 		cachep->allocflags |= GFP_DMA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) 	if (flags & SLAB_CACHE_DMA32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057) 		cachep->allocflags |= GFP_DMA32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058) 	if (flags & SLAB_RECLAIM_ACCOUNT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059) 		cachep->allocflags |= __GFP_RECLAIMABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060) 	cachep->size = size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061) 	cachep->reciprocal_buffer_size = reciprocal_value(size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) #if DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065) 	 * If we're going to use the generic kernel_map_pages()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066) 	 * poisoning, then it's going to smash the contents of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067) 	 * the redzone and userword anyhow, so switch them off.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069) 	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) 		(cachep->flags & SLAB_POISON) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071) 		is_debug_pagealloc_cache(cachep))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) 		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) 	if (OFF_SLAB(cachep)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076) 		cachep->freelist_cache =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077) 			kmalloc_slab(cachep->freelist_size, 0u);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080) 	err = setup_cpu_cache(cachep, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082) 		__kmem_cache_release(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089) #if DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090) static void check_irq_off(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092) 	BUG_ON(!irqs_disabled());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) static void check_irq_on(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) 	BUG_ON(irqs_disabled());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100) static void check_mutex_acquired(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) 	BUG_ON(!mutex_is_locked(&slab_mutex));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) static void check_spinlock_acquired(struct kmem_cache *cachep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108) 	check_irq_off();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109) 	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113) static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116) 	check_irq_off();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117) 	assert_spin_locked(&get_node(cachep, node)->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122) #define check_irq_off()	do { } while(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123) #define check_irq_on()	do { } while(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124) #define check_mutex_acquired()	do { } while(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125) #define check_spinlock_acquired(x) do { } while(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126) #define check_spinlock_acquired_node(x, y) do { } while(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129) static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130) 				int node, bool free_all, struct list_head *list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132) 	int tofree;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134) 	if (!ac || !ac->avail)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137) 	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138) 	if (tofree > ac->avail)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139) 		tofree = (ac->avail + 1) / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141) 	free_block(cachep, ac->entry, tofree, node, list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142) 	ac->avail -= tofree;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143) 	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2144) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2146) static void do_drain(void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2147) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2148) 	struct kmem_cache *cachep = arg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2149) 	struct array_cache *ac;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2150) 	int node = numa_mem_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2151) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2152) 	LIST_HEAD(list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2154) 	check_irq_off();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2155) 	ac = cpu_cache_get(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2156) 	n = get_node(cachep, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2157) 	spin_lock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2158) 	free_block(cachep, ac->entry, ac->avail, node, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2159) 	spin_unlock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2160) 	ac->avail = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2161) 	slabs_destroy(cachep, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2162) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2164) static void drain_cpu_caches(struct kmem_cache *cachep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2165) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2166) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2167) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2168) 	LIST_HEAD(list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2170) 	on_each_cpu(do_drain, cachep, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2171) 	check_irq_on();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2172) 	for_each_kmem_cache_node(cachep, node, n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2173) 		if (n->alien)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2174) 			drain_alien_cache(cachep, n->alien);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2176) 	for_each_kmem_cache_node(cachep, node, n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2177) 		spin_lock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2178) 		drain_array_locked(cachep, n->shared, node, true, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2179) 		spin_unlock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2181) 		slabs_destroy(cachep, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2182) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2183) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2185) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2186)  * Remove slabs from the list of free slabs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2187)  * Specify the number of slabs to drain in tofree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2188)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2189)  * Returns the actual number of slabs released.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2190)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2191) static int drain_freelist(struct kmem_cache *cache,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2192) 			struct kmem_cache_node *n, int tofree)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2193) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2194) 	struct list_head *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2195) 	int nr_freed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2196) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2198) 	nr_freed = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2199) 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2201) 		spin_lock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2202) 		p = n->slabs_free.prev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2203) 		if (p == &n->slabs_free) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2204) 			spin_unlock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2205) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2206) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2208) 		page = list_entry(p, struct page, slab_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2209) 		list_del(&page->slab_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2210) 		n->free_slabs--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2211) 		n->total_slabs--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2212) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2213) 		 * Safe to drop the lock. The slab is no longer linked
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2214) 		 * to the cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2215) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2216) 		n->free_objects -= cache->num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2217) 		spin_unlock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2218) 		slab_destroy(cache, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2219) 		nr_freed++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2220) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2221) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2222) 	return nr_freed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2223) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2225) bool __kmem_cache_empty(struct kmem_cache *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2226) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2227) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2228) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2230) 	for_each_kmem_cache_node(s, node, n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2231) 		if (!list_empty(&n->slabs_full) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2232) 		    !list_empty(&n->slabs_partial))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2233) 			return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2234) 	return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2235) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2237) int __kmem_cache_shrink(struct kmem_cache *cachep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2238) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2239) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2240) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2241) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2243) 	drain_cpu_caches(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2245) 	check_irq_on();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2246) 	for_each_kmem_cache_node(cachep, node, n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2247) 		drain_freelist(cachep, n, INT_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2249) 		ret += !list_empty(&n->slabs_full) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2250) 			!list_empty(&n->slabs_partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2251) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2252) 	return (ret ? 1 : 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2253) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2255) int __kmem_cache_shutdown(struct kmem_cache *cachep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2256) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2257) 	return __kmem_cache_shrink(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2258) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2260) void __kmem_cache_release(struct kmem_cache *cachep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2261) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2262) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2263) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2264) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2265) 	cache_random_seq_destroy(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2267) 	free_percpu(cachep->cpu_cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2269) 	/* NUMA: free the node structures */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2270) 	for_each_kmem_cache_node(cachep, i, n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2271) 		kfree(n->shared);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2272) 		free_alien_cache(n->alien);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2273) 		kfree(n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2274) 		cachep->node[i] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2275) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2276) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2278) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2279)  * Get the memory for a slab management obj.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2280)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2281)  * For a slab cache when the slab descriptor is off-slab, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2282)  * slab descriptor can't come from the same cache which is being created,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2283)  * Because if it is the case, that means we defer the creation of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2284)  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2285)  * And we eventually call down to __kmem_cache_create(), which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2286)  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2287)  * This is a "chicken-and-egg" problem.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2288)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2289)  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2290)  * which are all initialized during kmem_cache_init().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2291)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2292) static void *alloc_slabmgmt(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2293) 				   struct page *page, int colour_off,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2294) 				   gfp_t local_flags, int nodeid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2295) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2296) 	void *freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2297) 	void *addr = page_address(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2299) 	page->s_mem = addr + colour_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2300) 	page->active = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2301) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2302) 	if (OBJFREELIST_SLAB(cachep))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2303) 		freelist = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2304) 	else if (OFF_SLAB(cachep)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2305) 		/* Slab management obj is off-slab. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2306) 		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2307) 					      local_flags, nodeid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2308) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2309) 		/* We will use last bytes at the slab for freelist */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2310) 		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2311) 				cachep->freelist_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2312) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2314) 	return freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2315) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2317) static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2318) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2319) 	return ((freelist_idx_t *)page->freelist)[idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2320) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2322) static inline void set_free_obj(struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2323) 					unsigned int idx, freelist_idx_t val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2324) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2325) 	((freelist_idx_t *)(page->freelist))[idx] = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2326) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2328) static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2329) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2330) #if DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2331) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2332) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2333) 	for (i = 0; i < cachep->num; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2334) 		void *objp = index_to_obj(cachep, page, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2336) 		if (cachep->flags & SLAB_STORE_USER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2337) 			*dbg_userword(cachep, objp) = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2339) 		if (cachep->flags & SLAB_RED_ZONE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2340) 			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2341) 			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2342) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2343) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2344) 		 * Constructors are not allowed to allocate memory from the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2345) 		 * cache which they are a constructor for.  Otherwise, deadlock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2346) 		 * They must also be threaded.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2347) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2348) 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2349) 			kasan_unpoison_object_data(cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2350) 						   objp + obj_offset(cachep));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2351) 			cachep->ctor(objp + obj_offset(cachep));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2352) 			kasan_poison_object_data(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2353) 				cachep, objp + obj_offset(cachep));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2354) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2356) 		if (cachep->flags & SLAB_RED_ZONE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2357) 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2358) 				slab_error(cachep, "constructor overwrote the end of an object");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2359) 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2360) 				slab_error(cachep, "constructor overwrote the start of an object");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2361) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2362) 		/* need to poison the objs? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2363) 		if (cachep->flags & SLAB_POISON) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2364) 			poison_obj(cachep, objp, POISON_FREE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2365) 			slab_kernel_map(cachep, objp, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2366) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2367) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2368) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2369) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2371) #ifdef CONFIG_SLAB_FREELIST_RANDOM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2372) /* Hold information during a freelist initialization */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2373) union freelist_init_state {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2374) 	struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2375) 		unsigned int pos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2376) 		unsigned int *list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2377) 		unsigned int count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2378) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2379) 	struct rnd_state rnd_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2380) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2381) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2382) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2383)  * Initialize the state based on the randomization methode available.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2384)  * return true if the pre-computed list is available, false otherwize.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2385)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2386) static bool freelist_state_initialize(union freelist_init_state *state,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2387) 				struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2388) 				unsigned int count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2389) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2390) 	bool ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2391) 	unsigned int rand;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2393) 	/* Use best entropy available to define a random shift */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2394) 	rand = get_random_int();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2396) 	/* Use a random state if the pre-computed list is not available */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2397) 	if (!cachep->random_seq) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2398) 		prandom_seed_state(&state->rnd_state, rand);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2399) 		ret = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2400) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2401) 		state->list = cachep->random_seq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2402) 		state->count = count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2403) 		state->pos = rand % count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2404) 		ret = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2405) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2406) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2407) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2409) /* Get the next entry on the list and randomize it using a random shift */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2410) static freelist_idx_t next_random_slot(union freelist_init_state *state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2411) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2412) 	if (state->pos >= state->count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2413) 		state->pos = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2414) 	return state->list[state->pos++];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2415) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2417) /* Swap two freelist entries */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2418) static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2419) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2420) 	swap(((freelist_idx_t *)page->freelist)[a],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2421) 		((freelist_idx_t *)page->freelist)[b]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2422) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2424) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2425)  * Shuffle the freelist initialization state based on pre-computed lists.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2426)  * return true if the list was successfully shuffled, false otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2427)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2428) static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2429) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2430) 	unsigned int objfreelist = 0, i, rand, count = cachep->num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2431) 	union freelist_init_state state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2432) 	bool precomputed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2434) 	if (count < 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2435) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2436) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2437) 	precomputed = freelist_state_initialize(&state, cachep, count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2439) 	/* Take a random entry as the objfreelist */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2440) 	if (OBJFREELIST_SLAB(cachep)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2441) 		if (!precomputed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2442) 			objfreelist = count - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2443) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2444) 			objfreelist = next_random_slot(&state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2445) 		page->freelist = index_to_obj(cachep, page, objfreelist) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2446) 						obj_offset(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2447) 		count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2448) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2449) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2450) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2451) 	 * On early boot, generate the list dynamically.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2452) 	 * Later use a pre-computed list for speed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2453) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2454) 	if (!precomputed) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2455) 		for (i = 0; i < count; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2456) 			set_free_obj(page, i, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2458) 		/* Fisher-Yates shuffle */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2459) 		for (i = count - 1; i > 0; i--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2460) 			rand = prandom_u32_state(&state.rnd_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2461) 			rand %= (i + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2462) 			swap_free_obj(page, i, rand);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2463) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2464) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2465) 		for (i = 0; i < count; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2466) 			set_free_obj(page, i, next_random_slot(&state));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2467) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2468) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2469) 	if (OBJFREELIST_SLAB(cachep))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2470) 		set_free_obj(page, cachep->num - 1, objfreelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2472) 	return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2473) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2474) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2475) static inline bool shuffle_freelist(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2476) 				struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2477) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2478) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2479) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2480) #endif /* CONFIG_SLAB_FREELIST_RANDOM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2481) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2482) static void cache_init_objs(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2483) 			    struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2484) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2485) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2486) 	void *objp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2487) 	bool shuffled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2489) 	cache_init_objs_debug(cachep, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2491) 	/* Try to randomize the freelist if enabled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2492) 	shuffled = shuffle_freelist(cachep, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2494) 	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2495) 		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2496) 						obj_offset(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2497) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2499) 	for (i = 0; i < cachep->num; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2500) 		objp = index_to_obj(cachep, page, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2501) 		objp = kasan_init_slab_obj(cachep, objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2502) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2503) 		/* constructor could break poison info */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2504) 		if (DEBUG == 0 && cachep->ctor) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2505) 			kasan_unpoison_object_data(cachep, objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2506) 			cachep->ctor(objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2507) 			kasan_poison_object_data(cachep, objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2508) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2509) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2510) 		if (!shuffled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2511) 			set_free_obj(page, i, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2512) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2513) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2515) static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2516) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2517) 	void *objp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2519) 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2520) 	page->active++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2521) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2522) 	return objp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2523) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2524) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2525) static void slab_put_obj(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2526) 			struct page *page, void *objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2527) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2528) 	unsigned int objnr = obj_to_index(cachep, page, objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2529) #if DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2530) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2531) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2532) 	/* Verify double free bug */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2533) 	for (i = page->active; i < cachep->num; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2534) 		if (get_free_obj(page, i) == objnr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2535) 			pr_err("slab: double free detected in cache '%s', objp %px\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2536) 			       cachep->name, objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2537) 			BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2538) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2539) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2540) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2541) 	page->active--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2542) 	if (!page->freelist)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2543) 		page->freelist = objp + obj_offset(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2545) 	set_free_obj(page, page->active, objnr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2546) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2547) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2548) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2549)  * Map pages beginning at addr to the given cache and slab. This is required
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2550)  * for the slab allocator to be able to lookup the cache and slab of a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2551)  * virtual address for kfree, ksize, and slab debugging.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2552)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2553) static void slab_map_pages(struct kmem_cache *cache, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2554) 			   void *freelist)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2555) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2556) 	page->slab_cache = cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2557) 	page->freelist = freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2558) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2559) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2560) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2561)  * Grow (by 1) the number of slabs within a cache.  This is called by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2562)  * kmem_cache_alloc() when there are no active objs left in a cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2563)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2564) static struct page *cache_grow_begin(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2565) 				gfp_t flags, int nodeid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2566) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2567) 	void *freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2568) 	size_t offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2569) 	gfp_t local_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2570) 	int page_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2571) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2572) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2573) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2574) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2575) 	 * Be lazy and only check for valid flags here,  keeping it out of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2576) 	 * critical path in kmem_cache_alloc().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2577) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2578) 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2579) 		flags = kmalloc_fix_flags(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2581) 	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2582) 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2584) 	check_irq_off();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2585) 	if (gfpflags_allow_blocking(local_flags))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2586) 		local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2587) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2588) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2589) 	 * Get mem for the objs.  Attempt to allocate a physical page from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2590) 	 * 'nodeid'.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2591) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2592) 	page = kmem_getpages(cachep, local_flags, nodeid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2593) 	if (!page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2594) 		goto failed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2595) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2596) 	page_node = page_to_nid(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2597) 	n = get_node(cachep, page_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2598) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2599) 	/* Get colour for the slab, and cal the next value. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2600) 	n->colour_next++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2601) 	if (n->colour_next >= cachep->colour)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2602) 		n->colour_next = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2604) 	offset = n->colour_next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2605) 	if (offset >= cachep->colour)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2606) 		offset = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2607) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2608) 	offset *= cachep->colour_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2610) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2611) 	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2612) 	 * page_address() in the latter returns a non-tagged pointer,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2613) 	 * as it should be for slab pages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2614) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2615) 	kasan_poison_slab(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2616) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2617) 	/* Get slab management. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2618) 	freelist = alloc_slabmgmt(cachep, page, offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2619) 			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2620) 	if (OFF_SLAB(cachep) && !freelist)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2621) 		goto opps1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2622) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2623) 	slab_map_pages(cachep, page, freelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2624) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2625) 	cache_init_objs(cachep, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2626) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2627) 	if (gfpflags_allow_blocking(local_flags))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2628) 		local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2630) 	return page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2631) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2632) opps1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2633) 	kmem_freepages(cachep, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2634) failed:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2635) 	if (gfpflags_allow_blocking(local_flags))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2636) 		local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2637) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2638) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2639) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2640) static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2641) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2642) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2643) 	void *list = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2644) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2645) 	check_irq_off();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2646) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2647) 	if (!page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2648) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2649) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2650) 	INIT_LIST_HEAD(&page->slab_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2651) 	n = get_node(cachep, page_to_nid(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2652) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2653) 	spin_lock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2654) 	n->total_slabs++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2655) 	if (!page->active) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2656) 		list_add_tail(&page->slab_list, &n->slabs_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2657) 		n->free_slabs++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2658) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2659) 		fixup_slab_list(cachep, n, page, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2660) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2661) 	STATS_INC_GROWN(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2662) 	n->free_objects += cachep->num - page->active;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2663) 	spin_unlock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2664) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2665) 	fixup_objfreelist_debug(cachep, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2666) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2667) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2668) #if DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2670) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2671)  * Perform extra freeing checks:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2672)  * - detect bad pointers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2673)  * - POISON/RED_ZONE checking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2674)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2675) static void kfree_debugcheck(const void *objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2676) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2677) 	if (!virt_addr_valid(objp)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2678) 		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2679) 		       (unsigned long)objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2680) 		BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2681) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2682) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2684) static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2685) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2686) 	unsigned long long redzone1, redzone2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2687) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2688) 	redzone1 = *dbg_redzone1(cache, obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2689) 	redzone2 = *dbg_redzone2(cache, obj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2691) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2692) 	 * Redzone is ok.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2693) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2694) 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2695) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2696) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2697) 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2698) 		slab_error(cache, "double free detected");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2699) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2700) 		slab_error(cache, "memory outside object was overwritten");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2701) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2702) 	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2703) 	       obj, redzone1, redzone2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2704) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2705) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2706) static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2707) 				   unsigned long caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2708) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2709) 	unsigned int objnr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2710) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2711) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2712) 	BUG_ON(virt_to_cache(objp) != cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2713) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2714) 	objp -= obj_offset(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2715) 	kfree_debugcheck(objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2716) 	page = virt_to_head_page(objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2717) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2718) 	if (cachep->flags & SLAB_RED_ZONE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2719) 		verify_redzone_free(cachep, objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2720) 		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2721) 		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2722) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2723) 	if (cachep->flags & SLAB_STORE_USER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2724) 		*dbg_userword(cachep, objp) = (void *)caller;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2726) 	objnr = obj_to_index(cachep, page, objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2727) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2728) 	BUG_ON(objnr >= cachep->num);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2729) 	BUG_ON(objp != index_to_obj(cachep, page, objnr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2730) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2731) 	if (cachep->flags & SLAB_POISON) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2732) 		poison_obj(cachep, objp, POISON_FREE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2733) 		slab_kernel_map(cachep, objp, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2734) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2735) 	return objp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2736) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2737) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2738) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2739) #define kfree_debugcheck(x) do { } while(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2740) #define cache_free_debugcheck(x,objp,z) (objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2741) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2742) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2743) static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2744) 						void **list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2745) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2746) #if DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2747) 	void *next = *list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2748) 	void *objp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2749) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2750) 	while (next) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2751) 		objp = next - obj_offset(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2752) 		next = *(void **)next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2753) 		poison_obj(cachep, objp, POISON_FREE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2754) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2755) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2756) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2757) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2758) static inline void fixup_slab_list(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2759) 				struct kmem_cache_node *n, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2760) 				void **list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2761) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2762) 	/* move slabp to correct slabp list: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2763) 	list_del(&page->slab_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2764) 	if (page->active == cachep->num) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2765) 		list_add(&page->slab_list, &n->slabs_full);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2766) 		if (OBJFREELIST_SLAB(cachep)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2767) #if DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2768) 			/* Poisoning will be done without holding the lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2769) 			if (cachep->flags & SLAB_POISON) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2770) 				void **objp = page->freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2771) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2772) 				*objp = *list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2773) 				*list = objp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2774) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2775) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2776) 			page->freelist = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2777) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2778) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2779) 		list_add(&page->slab_list, &n->slabs_partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2780) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2781) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2782) /* Try to find non-pfmemalloc slab if needed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2783) static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2784) 					struct page *page, bool pfmemalloc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2785) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2786) 	if (!page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2787) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2788) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2789) 	if (pfmemalloc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2790) 		return page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2791) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2792) 	if (!PageSlabPfmemalloc(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2793) 		return page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2794) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2795) 	/* No need to keep pfmemalloc slab if we have enough free objects */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2796) 	if (n->free_objects > n->free_limit) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2797) 		ClearPageSlabPfmemalloc(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2798) 		return page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2799) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2800) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2801) 	/* Move pfmemalloc slab to the end of list to speed up next search */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2802) 	list_del(&page->slab_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2803) 	if (!page->active) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2804) 		list_add_tail(&page->slab_list, &n->slabs_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2805) 		n->free_slabs++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2806) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2807) 		list_add_tail(&page->slab_list, &n->slabs_partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2808) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2809) 	list_for_each_entry(page, &n->slabs_partial, slab_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2810) 		if (!PageSlabPfmemalloc(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2811) 			return page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2812) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2813) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2814) 	n->free_touched = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2815) 	list_for_each_entry(page, &n->slabs_free, slab_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2816) 		if (!PageSlabPfmemalloc(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2817) 			n->free_slabs--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2818) 			return page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2819) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2820) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2821) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2822) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2823) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2824) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2825) static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2826) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2827) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2828) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2829) 	assert_spin_locked(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2830) 	page = list_first_entry_or_null(&n->slabs_partial, struct page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2831) 					slab_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2832) 	if (!page) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2833) 		n->free_touched = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2834) 		page = list_first_entry_or_null(&n->slabs_free, struct page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2835) 						slab_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2836) 		if (page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2837) 			n->free_slabs--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2838) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2839) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2840) 	if (sk_memalloc_socks())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2841) 		page = get_valid_first_slab(n, page, pfmemalloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2842) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2843) 	return page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2844) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2845) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2846) static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2847) 				struct kmem_cache_node *n, gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2848) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2849) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2850) 	void *obj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2851) 	void *list = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2852) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2853) 	if (!gfp_pfmemalloc_allowed(flags))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2854) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2855) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2856) 	spin_lock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2857) 	page = get_first_slab(n, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2858) 	if (!page) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2859) 		spin_unlock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2860) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2861) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2862) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2863) 	obj = slab_get_obj(cachep, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2864) 	n->free_objects--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2865) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2866) 	fixup_slab_list(cachep, n, page, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2867) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2868) 	spin_unlock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2869) 	fixup_objfreelist_debug(cachep, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2870) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2871) 	return obj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2872) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2873) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2874) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2875)  * Slab list should be fixed up by fixup_slab_list() for existing slab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2876)  * or cache_grow_end() for new slab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2877)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2878) static __always_inline int alloc_block(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2879) 		struct array_cache *ac, struct page *page, int batchcount)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2880) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2881) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2882) 	 * There must be at least one object available for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2883) 	 * allocation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2884) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2885) 	BUG_ON(page->active >= cachep->num);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2886) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2887) 	while (page->active < cachep->num && batchcount--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2888) 		STATS_INC_ALLOCED(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2889) 		STATS_INC_ACTIVE(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2890) 		STATS_SET_HIGH(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2891) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2892) 		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2893) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2894) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2895) 	return batchcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2896) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2897) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2898) static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2899) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2900) 	int batchcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2901) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2902) 	struct array_cache *ac, *shared;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2903) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2904) 	void *list = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2905) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2906) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2907) 	check_irq_off();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2908) 	node = numa_mem_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2909) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2910) 	ac = cpu_cache_get(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2911) 	batchcount = ac->batchcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2912) 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2913) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2914) 		 * If there was little recent activity on this cache, then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2915) 		 * perform only a partial refill.  Otherwise we could generate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2916) 		 * refill bouncing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2917) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2918) 		batchcount = BATCHREFILL_LIMIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2919) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2920) 	n = get_node(cachep, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2921) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2922) 	BUG_ON(ac->avail > 0 || !n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2923) 	shared = READ_ONCE(n->shared);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2924) 	if (!n->free_objects && (!shared || !shared->avail))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2925) 		goto direct_grow;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2926) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2927) 	spin_lock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2928) 	shared = READ_ONCE(n->shared);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2929) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2930) 	/* See if we can refill from the shared array */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2931) 	if (shared && transfer_objects(ac, shared, batchcount)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2932) 		shared->touched = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2933) 		goto alloc_done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2934) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2935) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2936) 	while (batchcount > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2937) 		/* Get slab alloc is to come from. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2938) 		page = get_first_slab(n, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2939) 		if (!page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2940) 			goto must_grow;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2941) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2942) 		check_spinlock_acquired(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2943) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2944) 		batchcount = alloc_block(cachep, ac, page, batchcount);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2945) 		fixup_slab_list(cachep, n, page, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2946) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2947) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2948) must_grow:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2949) 	n->free_objects -= ac->avail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2950) alloc_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2951) 	spin_unlock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2952) 	fixup_objfreelist_debug(cachep, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2953) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2954) direct_grow:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2955) 	if (unlikely(!ac->avail)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2956) 		/* Check if we can use obj in pfmemalloc slab */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2957) 		if (sk_memalloc_socks()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2958) 			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2959) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2960) 			if (obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2961) 				return obj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2962) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2963) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2964) 		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2965) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2966) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2967) 		 * cache_grow_begin() can reenable interrupts,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2968) 		 * then ac could change.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2969) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2970) 		ac = cpu_cache_get(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2971) 		if (!ac->avail && page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2972) 			alloc_block(cachep, ac, page, batchcount);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2973) 		cache_grow_end(cachep, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2974) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2975) 		if (!ac->avail)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2976) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2977) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2978) 	ac->touched = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2979) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2980) 	return ac->entry[--ac->avail];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2981) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2982) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2983) static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2984) 						gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2985) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2986) 	might_sleep_if(gfpflags_allow_blocking(flags));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2987) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2988) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2989) #if DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2990) static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2991) 				gfp_t flags, void *objp, unsigned long caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2992) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2993) 	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2994) 	if (!objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2995) 		return objp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2996) 	if (cachep->flags & SLAB_POISON) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2997) 		check_poison_obj(cachep, objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2998) 		slab_kernel_map(cachep, objp, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2999) 		poison_obj(cachep, objp, POISON_INUSE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3000) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3001) 	if (cachep->flags & SLAB_STORE_USER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3002) 		*dbg_userword(cachep, objp) = (void *)caller;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3003) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3004) 	if (cachep->flags & SLAB_RED_ZONE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3005) 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3006) 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3007) 			slab_error(cachep, "double free, or memory outside object was overwritten");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3008) 			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3009) 			       objp, *dbg_redzone1(cachep, objp),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3010) 			       *dbg_redzone2(cachep, objp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3011) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3012) 		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3013) 		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3014) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3015) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3016) 	objp += obj_offset(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3017) 	if (cachep->ctor && cachep->flags & SLAB_POISON)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3018) 		cachep->ctor(objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3019) 	if (ARCH_SLAB_MINALIGN &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3020) 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3021) 		pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3022) 		       objp, (int)ARCH_SLAB_MINALIGN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3023) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3024) 	return objp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3025) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3026) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3027) #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3028) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3030) static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3031) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3032) 	void *objp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3033) 	struct array_cache *ac;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3034) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3035) 	check_irq_off();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3036) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3037) 	ac = cpu_cache_get(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3038) 	if (likely(ac->avail)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3039) 		ac->touched = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3040) 		objp = ac->entry[--ac->avail];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3041) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3042) 		STATS_INC_ALLOCHIT(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3043) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3044) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3045) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3046) 	STATS_INC_ALLOCMISS(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3047) 	objp = cache_alloc_refill(cachep, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3048) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3049) 	 * the 'ac' may be updated by cache_alloc_refill(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3050) 	 * and kmemleak_erase() requires its correct value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3051) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3052) 	ac = cpu_cache_get(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3053) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3054) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3055) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3056) 	 * To avoid a false negative, if an object that is in one of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3057) 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3058) 	 * treat the array pointers as a reference to the object.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3059) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3060) 	if (objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3061) 		kmemleak_erase(&ac->entry[ac->avail]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3062) 	return objp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3063) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3064) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3065) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3066) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3067)  * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3068)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3069)  * If we are in_interrupt, then process context, including cpusets and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3070)  * mempolicy, may not apply and should not be used for allocation policy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3071)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3072) static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3073) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3074) 	int nid_alloc, nid_here;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3075) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3076) 	if (in_interrupt() || (flags & __GFP_THISNODE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3077) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3078) 	nid_alloc = nid_here = numa_mem_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3079) 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3080) 		nid_alloc = cpuset_slab_spread_node();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3081) 	else if (current->mempolicy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3082) 		nid_alloc = mempolicy_slab_node();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3083) 	if (nid_alloc != nid_here)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3084) 		return ____cache_alloc_node(cachep, flags, nid_alloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3085) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3086) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3087) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3088) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3089)  * Fallback function if there was no memory available and no objects on a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3090)  * certain node and fall back is permitted. First we scan all the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3091)  * available node for available objects. If that fails then we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3092)  * perform an allocation without specifying a node. This allows the page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3093)  * allocator to do its reclaim / fallback magic. We then insert the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3094)  * slab into the proper nodelist and then allocate from it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3095)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3096) static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3097) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3098) 	struct zonelist *zonelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3099) 	struct zoneref *z;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3100) 	struct zone *zone;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3101) 	enum zone_type highest_zoneidx = gfp_zone(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3102) 	void *obj = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3103) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3104) 	int nid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3105) 	unsigned int cpuset_mems_cookie;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3107) 	if (flags & __GFP_THISNODE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3108) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3110) retry_cpuset:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3111) 	cpuset_mems_cookie = read_mems_allowed_begin();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3112) 	zonelist = node_zonelist(mempolicy_slab_node(), flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3114) retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3115) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3116) 	 * Look through allowed nodes for objects available
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3117) 	 * from existing per node queues.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3118) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3119) 	for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3120) 		nid = zone_to_nid(zone);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3122) 		if (cpuset_zone_allowed(zone, flags) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3123) 			get_node(cache, nid) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3124) 			get_node(cache, nid)->free_objects) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3125) 				obj = ____cache_alloc_node(cache,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3126) 					gfp_exact_node(flags), nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3127) 				if (obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3128) 					break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3129) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3130) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3132) 	if (!obj) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3133) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3134) 		 * This allocation will be performed within the constraints
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3135) 		 * of the current cpuset / memory policy requirements.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3136) 		 * We may trigger various forms of reclaim on the allowed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3137) 		 * set and go into memory reserves if necessary.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3138) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3139) 		page = cache_grow_begin(cache, flags, numa_mem_id());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3140) 		cache_grow_end(cache, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3141) 		if (page) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3142) 			nid = page_to_nid(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3143) 			obj = ____cache_alloc_node(cache,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3144) 				gfp_exact_node(flags), nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3146) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3147) 			 * Another processor may allocate the objects in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3148) 			 * the slab since we are not holding any locks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3149) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3150) 			if (!obj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3151) 				goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3152) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3153) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3155) 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3156) 		goto retry_cpuset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3157) 	return obj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3158) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3160) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3161)  * A interface to enable slab creation on nodeid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3162)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3163) static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3164) 				int nodeid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3165) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3166) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3167) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3168) 	void *obj = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3169) 	void *list = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3171) 	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3172) 	n = get_node(cachep, nodeid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3173) 	BUG_ON(!n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3175) 	check_irq_off();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3176) 	spin_lock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3177) 	page = get_first_slab(n, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3178) 	if (!page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3179) 		goto must_grow;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3181) 	check_spinlock_acquired_node(cachep, nodeid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3183) 	STATS_INC_NODEALLOCS(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3184) 	STATS_INC_ACTIVE(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3185) 	STATS_SET_HIGH(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3187) 	BUG_ON(page->active == cachep->num);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3189) 	obj = slab_get_obj(cachep, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3190) 	n->free_objects--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3192) 	fixup_slab_list(cachep, n, page, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3194) 	spin_unlock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3195) 	fixup_objfreelist_debug(cachep, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3196) 	return obj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3198) must_grow:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3199) 	spin_unlock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3200) 	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3201) 	if (page) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3202) 		/* This slab isn't counted yet so don't update free_objects */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3203) 		obj = slab_get_obj(cachep, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3204) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3205) 	cache_grow_end(cachep, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3207) 	return obj ? obj : fallback_alloc(cachep, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3208) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3210) static __always_inline void *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3211) slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, size_t orig_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3212) 		   unsigned long caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3213) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3214) 	unsigned long save_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3215) 	void *ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3216) 	int slab_node = numa_mem_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3217) 	struct obj_cgroup *objcg = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3218) 	bool init = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3220) 	flags &= gfp_allowed_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3221) 	cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3222) 	if (unlikely(!cachep))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3223) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3225) 	ptr = kfence_alloc(cachep, orig_size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3226) 	if (unlikely(ptr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3227) 		goto out_hooks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3229) 	cache_alloc_debugcheck_before(cachep, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3230) 	local_irq_save(save_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3232) 	if (nodeid == NUMA_NO_NODE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3233) 		nodeid = slab_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3235) 	if (unlikely(!get_node(cachep, nodeid))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3236) 		/* Node not bootstrapped yet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3237) 		ptr = fallback_alloc(cachep, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3238) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3239) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3241) 	if (nodeid == slab_node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3242) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3243) 		 * Use the locally cached objects if possible.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3244) 		 * However ____cache_alloc does not allow fallback
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3245) 		 * to other nodes. It may fail while we still have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3246) 		 * objects on other nodes available.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3247) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3248) 		ptr = ____cache_alloc(cachep, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3249) 		if (ptr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3250) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3251) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3252) 	/* ___cache_alloc_node can fall back to other nodes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3253) 	ptr = ____cache_alloc_node(cachep, flags, nodeid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3254)   out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3255) 	local_irq_restore(save_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3256) 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3257) 	init = slab_want_init_on_alloc(flags, cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3259) out_hooks:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3260) 	slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr, init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3261) 	return ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3262) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3264) static __always_inline void *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3265) __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3266) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3267) 	void *objp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3269) 	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3270) 		objp = alternate_node_alloc(cache, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3271) 		if (objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3272) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3273) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3274) 	objp = ____cache_alloc(cache, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3276) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3277) 	 * We may just have run out of memory on the local node.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3278) 	 * ____cache_alloc_node() knows how to locate memory on other nodes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3279) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3280) 	if (!objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3281) 		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3283)   out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3284) 	return objp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3285) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3286) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3288) static __always_inline void *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3289) __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3290) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3291) 	return ____cache_alloc(cachep, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3292) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3294) #endif /* CONFIG_NUMA */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3295) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3296) static __always_inline void *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3297) slab_alloc(struct kmem_cache *cachep, gfp_t flags, size_t orig_size, unsigned long caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3298) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3299) 	unsigned long save_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3300) 	void *objp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3301) 	struct obj_cgroup *objcg = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3302) 	bool init = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3304) 	flags &= gfp_allowed_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3305) 	cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3306) 	if (unlikely(!cachep))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3307) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3309) 	objp = kfence_alloc(cachep, orig_size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3310) 	if (unlikely(objp))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3311) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3313) 	cache_alloc_debugcheck_before(cachep, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3314) 	local_irq_save(save_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3315) 	objp = __do_cache_alloc(cachep, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3316) 	local_irq_restore(save_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3317) 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3318) 	prefetchw(objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3319) 	init = slab_want_init_on_alloc(flags, cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3320) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3321) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3322) 	slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3323) 	return objp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3324) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3326) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3327)  * Caller needs to acquire correct kmem_cache_node's list_lock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3328)  * @list: List of detached free slabs should be freed by caller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3329)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3330) static void free_block(struct kmem_cache *cachep, void **objpp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3331) 			int nr_objects, int node, struct list_head *list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3332) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3333) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3334) 	struct kmem_cache_node *n = get_node(cachep, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3335) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3337) 	n->free_objects += nr_objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3339) 	for (i = 0; i < nr_objects; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3340) 		void *objp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3341) 		struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3343) 		objp = objpp[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3344) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3345) 		page = virt_to_head_page(objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3346) 		list_del(&page->slab_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3347) 		check_spinlock_acquired_node(cachep, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3348) 		slab_put_obj(cachep, page, objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3349) 		STATS_DEC_ACTIVE(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3351) 		/* fixup slab chains */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3352) 		if (page->active == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3353) 			list_add(&page->slab_list, &n->slabs_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3354) 			n->free_slabs++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3355) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3356) 			/* Unconditionally move a slab to the end of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3357) 			 * partial list on free - maximum time for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3358) 			 * other objects to be freed, too.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3359) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3360) 			list_add_tail(&page->slab_list, &n->slabs_partial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3361) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3362) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3364) 	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3365) 		n->free_objects -= cachep->num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3367) 		page = list_last_entry(&n->slabs_free, struct page, slab_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3368) 		list_move(&page->slab_list, list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3369) 		n->free_slabs--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3370) 		n->total_slabs--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3371) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3372) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3373) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3374) static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3375) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3376) 	int batchcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3377) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3378) 	int node = numa_mem_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3379) 	LIST_HEAD(list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3381) 	batchcount = ac->batchcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3382) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3383) 	check_irq_off();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3384) 	n = get_node(cachep, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3385) 	spin_lock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3386) 	if (n->shared) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3387) 		struct array_cache *shared_array = n->shared;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3388) 		int max = shared_array->limit - shared_array->avail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3389) 		if (max) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3390) 			if (batchcount > max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3391) 				batchcount = max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3392) 			memcpy(&(shared_array->entry[shared_array->avail]),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3393) 			       ac->entry, sizeof(void *) * batchcount);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3394) 			shared_array->avail += batchcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3395) 			goto free_done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3396) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3397) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3399) 	free_block(cachep, ac->entry, batchcount, node, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3400) free_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3401) #if STATS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3402) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3403) 		int i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3404) 		struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3406) 		list_for_each_entry(page, &n->slabs_free, slab_list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3407) 			BUG_ON(page->active);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3409) 			i++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3410) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3411) 		STATS_SET_FREEABLE(cachep, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3412) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3413) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3414) 	spin_unlock(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3415) 	ac->avail -= batchcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3416) 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3417) 	slabs_destroy(cachep, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3418) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3419) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3420) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3421)  * Release an obj back to its cache. If the obj has a constructed state, it must
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3422)  * be in this state _before_ it is released.  Called with disabled ints.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3423)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3424) static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3425) 					 unsigned long caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3426) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3427) 	bool init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3429) 	if (is_kfence_address(objp)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3430) 		kmemleak_free_recursive(objp, cachep->flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3431) 		__kfence_free(objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3432) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3433) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3434) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3435) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3436) 	 * As memory initialization might be integrated into KASAN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3437) 	 * kasan_slab_free and initialization memset must be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3438) 	 * kept together to avoid discrepancies in behavior.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3439) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3440) 	init = slab_want_init_on_free(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3441) 	if (init && !kasan_has_integrated_init())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3442) 		memset(objp, 0, cachep->object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3443) 	/* KASAN might put objp into memory quarantine, delaying its reuse. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3444) 	if (kasan_slab_free(cachep, objp, init))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3445) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3446) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3447) 	/* Use KCSAN to help debug racy use-after-free. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3448) 	if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3449) 		__kcsan_check_access(objp, cachep->object_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3450) 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3452) 	___cache_free(cachep, objp, caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3453) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3454) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3455) void ___cache_free(struct kmem_cache *cachep, void *objp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3456) 		unsigned long caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3457) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3458) 	struct array_cache *ac = cpu_cache_get(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3459) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3460) 	check_irq_off();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3461) 	kmemleak_free_recursive(objp, cachep->flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3462) 	objp = cache_free_debugcheck(cachep, objp, caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3463) 	memcg_slab_free_hook(cachep, &objp, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3464) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3465) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3466) 	 * Skip calling cache_free_alien() when the platform is not numa.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3467) 	 * This will avoid cache misses that happen while accessing slabp (which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3468) 	 * is per page memory  reference) to get nodeid. Instead use a global
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3469) 	 * variable to skip the call, which is mostly likely to be present in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3470) 	 * the cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3471) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3472) 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3473) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3474) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3475) 	if (ac->avail < ac->limit) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3476) 		STATS_INC_FREEHIT(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3477) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3478) 		STATS_INC_FREEMISS(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3479) 		cache_flusharray(cachep, ac);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3480) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3481) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3482) 	if (sk_memalloc_socks()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3483) 		struct page *page = virt_to_head_page(objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3485) 		if (unlikely(PageSlabPfmemalloc(page))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3486) 			cache_free_pfmemalloc(cachep, page, objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3487) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3488) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3489) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3491) 	__free_one(ac, objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3492) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3494) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3495)  * kmem_cache_alloc - Allocate an object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3496)  * @cachep: The cache to allocate from.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3497)  * @flags: See kmalloc().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3498)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3499)  * Allocate an object from this cache.  The flags are only relevant
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3500)  * if the cache has no available objects.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3501)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3502)  * Return: pointer to the new object or %NULL in case of error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3503)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3504) void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3505) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3506) 	void *ret = slab_alloc(cachep, flags, cachep->object_size, _RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3508) 	trace_kmem_cache_alloc(_RET_IP_, ret,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3509) 			       cachep->object_size, cachep->size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3511) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3512) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3513) EXPORT_SYMBOL(kmem_cache_alloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3515) static __always_inline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3516) cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3517) 				  size_t size, void **p, unsigned long caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3518) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3519) 	size_t i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3520) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3521) 	for (i = 0; i < size; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3522) 		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3523) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3524) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3525) int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3526) 			  void **p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3527) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3528) 	size_t i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3529) 	struct obj_cgroup *objcg = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3530) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3531) 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3532) 	if (!s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3533) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3535) 	cache_alloc_debugcheck_before(s, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3536) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3537) 	local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3538) 	for (i = 0; i < size; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3539) 		void *objp = kfence_alloc(s, s->object_size, flags) ?: __do_cache_alloc(s, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3540) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3541) 		if (unlikely(!objp))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3542) 			goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3543) 		p[i] = objp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3544) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3545) 	local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3546) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3547) 	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3549) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3550) 	 * memcg and kmem_cache debug support and memory initialization.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3551) 	 * Done outside of the IRQ disabled section.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3552) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3553) 	slab_post_alloc_hook(s, objcg, flags, size, p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3554) 				slab_want_init_on_alloc(flags, s));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3555) 	/* FIXME: Trace call missing. Christoph would like a bulk variant */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3556) 	return size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3557) error:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3558) 	local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3559) 	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3560) 	slab_post_alloc_hook(s, objcg, flags, i, p, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3561) 	__kmem_cache_free_bulk(s, i, p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3562) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3563) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3564) EXPORT_SYMBOL(kmem_cache_alloc_bulk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3566) #ifdef CONFIG_TRACING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3567) void *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3568) kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3569) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3570) 	void *ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3571) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3572) 	ret = slab_alloc(cachep, flags, size, _RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3573) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3574) 	ret = kasan_kmalloc(cachep, ret, size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3575) 	trace_kmalloc(_RET_IP_, ret,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3576) 		      size, cachep->size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3577) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3578) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3579) EXPORT_SYMBOL(kmem_cache_alloc_trace);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3580) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3581) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3582) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3583) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3584)  * kmem_cache_alloc_node - Allocate an object on the specified node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3585)  * @cachep: The cache to allocate from.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3586)  * @flags: See kmalloc().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3587)  * @nodeid: node number of the target node.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3588)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3589)  * Identical to kmem_cache_alloc but it will allocate memory on the given
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3590)  * node, which can improve the performance for cpu bound structures.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3591)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3592)  * Fallback to other node is possible if __GFP_THISNODE is not set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3593)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3594)  * Return: pointer to the new object or %NULL in case of error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3595)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3596) void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3597) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3598) 	void *ret = slab_alloc_node(cachep, flags, nodeid, cachep->object_size, _RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3599) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3600) 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3601) 				    cachep->object_size, cachep->size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3602) 				    flags, nodeid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3604) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3605) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3606) EXPORT_SYMBOL(kmem_cache_alloc_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3607) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3608) #ifdef CONFIG_TRACING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3609) void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3610) 				  gfp_t flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3611) 				  int nodeid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3612) 				  size_t size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3613) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3614) 	void *ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3615) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3616) 	ret = slab_alloc_node(cachep, flags, nodeid, size, _RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3617) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3618) 	ret = kasan_kmalloc(cachep, ret, size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3619) 	trace_kmalloc_node(_RET_IP_, ret,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3620) 			   size, cachep->size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3621) 			   flags, nodeid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3622) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3623) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3624) EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3625) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3626) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3627) static __always_inline void *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3628) __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3629) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3630) 	struct kmem_cache *cachep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3631) 	void *ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3632) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3633) 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3634) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3635) 	cachep = kmalloc_slab(size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3636) 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3637) 		return cachep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3638) 	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3639) 	ret = kasan_kmalloc(cachep, ret, size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3640) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3641) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3642) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3643) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3644) void *__kmalloc_node(size_t size, gfp_t flags, int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3645) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3646) 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3647) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3648) EXPORT_SYMBOL(__kmalloc_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3649) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3650) void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3651) 		int node, unsigned long caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3652) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3653) 	return __do_kmalloc_node(size, flags, node, caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3654) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3655) EXPORT_SYMBOL(__kmalloc_node_track_caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3656) #endif /* CONFIG_NUMA */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3658) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3659)  * __do_kmalloc - allocate memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3660)  * @size: how many bytes of memory are required.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3661)  * @flags: the type of memory to allocate (see kmalloc).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3662)  * @caller: function caller for debug tracking of the caller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3663)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3664)  * Return: pointer to the allocated memory or %NULL in case of error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3665)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3666) static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3667) 					  unsigned long caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3668) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3669) 	struct kmem_cache *cachep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3670) 	void *ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3671) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3672) 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3673) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3674) 	cachep = kmalloc_slab(size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3675) 	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3676) 		return cachep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3677) 	ret = slab_alloc(cachep, flags, size, caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3678) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3679) 	ret = kasan_kmalloc(cachep, ret, size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3680) 	trace_kmalloc(caller, ret,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3681) 		      size, cachep->size, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3682) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3683) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3684) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3685) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3686) void *__kmalloc(size_t size, gfp_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3687) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3688) 	return __do_kmalloc(size, flags, _RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3689) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3690) EXPORT_SYMBOL(__kmalloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3691) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3692) void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3693) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3694) 	return __do_kmalloc(size, flags, caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3695) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3696) EXPORT_SYMBOL(__kmalloc_track_caller);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3697) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3698) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3699)  * kmem_cache_free - Deallocate an object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3700)  * @cachep: The cache the allocation was from.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3701)  * @objp: The previously allocated object.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3702)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3703)  * Free an object which was previously allocated from this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3704)  * cache.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3705)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3706) void kmem_cache_free(struct kmem_cache *cachep, void *objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3707) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3708) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3709) 	cachep = cache_from_obj(cachep, objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3710) 	if (!cachep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3711) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3712) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3713) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3714) 	debug_check_no_locks_freed(objp, cachep->object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3715) 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3716) 		debug_check_no_obj_freed(objp, cachep->object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3717) 	__cache_free(cachep, objp, _RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3718) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3719) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3720) 	trace_kmem_cache_free(_RET_IP_, objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3721) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3722) EXPORT_SYMBOL(kmem_cache_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3723) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3724) void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3725) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3726) 	struct kmem_cache *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3727) 	size_t i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3728) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3729) 	local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3730) 	for (i = 0; i < size; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3731) 		void *objp = p[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3732) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3733) 		if (!orig_s) /* called via kfree_bulk */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3734) 			s = virt_to_cache(objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3735) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3736) 			s = cache_from_obj(orig_s, objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3737) 		if (!s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3738) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3739) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3740) 		debug_check_no_locks_freed(objp, s->object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3741) 		if (!(s->flags & SLAB_DEBUG_OBJECTS))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3742) 			debug_check_no_obj_freed(objp, s->object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3743) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3744) 		__cache_free(s, objp, _RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3745) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3746) 	local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3747) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3748) 	/* FIXME: add tracing */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3749) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3750) EXPORT_SYMBOL(kmem_cache_free_bulk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3751) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3752) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3753)  * kfree - free previously allocated memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3754)  * @objp: pointer returned by kmalloc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3755)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3756)  * If @objp is NULL, no operation is performed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3757)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3758)  * Don't free memory not originally allocated by kmalloc()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3759)  * or you will run into trouble.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3760)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3761) void kfree(const void *objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3762) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3763) 	struct kmem_cache *c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3764) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3765) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3766) 	trace_kfree(_RET_IP_, objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3767) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3768) 	if (unlikely(ZERO_OR_NULL_PTR(objp)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3769) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3770) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3771) 	kfree_debugcheck(objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3772) 	c = virt_to_cache(objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3773) 	if (!c) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3774) 		local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3775) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3776) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3777) 	debug_check_no_locks_freed(objp, c->object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3778) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3779) 	debug_check_no_obj_freed(objp, c->object_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3780) 	__cache_free(c, (void *)objp, _RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3781) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3782) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3783) EXPORT_SYMBOL(kfree);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3784) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3785) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3786)  * This initializes kmem_cache_node or resizes various caches for all nodes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3787)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3788) static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3789) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3790) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3791) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3792) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3793) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3794) 	for_each_online_node(node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3795) 		ret = setup_kmem_cache_node(cachep, node, gfp, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3796) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3797) 			goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3798) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3799) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3800) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3801) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3802) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3803) fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3804) 	if (!cachep->list.next) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3805) 		/* Cache is not active yet. Roll back what we did */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3806) 		node--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3807) 		while (node >= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3808) 			n = get_node(cachep, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3809) 			if (n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3810) 				kfree(n->shared);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3811) 				free_alien_cache(n->alien);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3812) 				kfree(n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3813) 				cachep->node[node] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3814) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3815) 			node--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3816) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3817) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3818) 	return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3819) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3820) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3821) /* Always called with the slab_mutex held */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3822) static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3823) 			    int batchcount, int shared, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3824) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3825) 	struct array_cache __percpu *cpu_cache, *prev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3826) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3827) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3828) 	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3829) 	if (!cpu_cache)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3830) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3831) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3832) 	prev = cachep->cpu_cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3833) 	cachep->cpu_cache = cpu_cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3834) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3835) 	 * Without a previous cpu_cache there's no need to synchronize remote
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3836) 	 * cpus, so skip the IPIs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3837) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3838) 	if (prev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3839) 		kick_all_cpus_sync();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3841) 	check_irq_on();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3842) 	cachep->batchcount = batchcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3843) 	cachep->limit = limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3844) 	cachep->shared = shared;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3845) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3846) 	if (!prev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3847) 		goto setup_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3848) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3849) 	for_each_online_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3850) 		LIST_HEAD(list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3851) 		int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3852) 		struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3853) 		struct array_cache *ac = per_cpu_ptr(prev, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3854) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3855) 		node = cpu_to_mem(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3856) 		n = get_node(cachep, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3857) 		spin_lock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3858) 		free_block(cachep, ac->entry, ac->avail, node, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3859) 		spin_unlock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3860) 		slabs_destroy(cachep, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3861) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3862) 	free_percpu(prev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3863) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3864) setup_node:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3865) 	return setup_kmem_cache_nodes(cachep, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3866) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3867) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3868) /* Called with slab_mutex held always */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3869) static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3870) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3871) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3872) 	int limit = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3873) 	int shared = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3874) 	int batchcount = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3875) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3876) 	err = cache_random_seq_create(cachep, cachep->num, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3877) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3878) 		goto end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3879) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3880) 	if (limit && shared && batchcount)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3881) 		goto skip_setup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3882) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3883) 	 * The head array serves three purposes:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3884) 	 * - create a LIFO ordering, i.e. return objects that are cache-warm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3885) 	 * - reduce the number of spinlock operations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3886) 	 * - reduce the number of linked list operations on the slab and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3887) 	 *   bufctl chains: array operations are cheaper.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3888) 	 * The numbers are guessed, we should auto-tune as described by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3889) 	 * Bonwick.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3890) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3891) 	if (cachep->size > 131072)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3892) 		limit = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3893) 	else if (cachep->size > PAGE_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3894) 		limit = 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3895) 	else if (cachep->size > 1024)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3896) 		limit = 24;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3897) 	else if (cachep->size > 256)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3898) 		limit = 54;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3899) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3900) 		limit = 120;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3901) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3902) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3903) 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3904) 	 * allocation behaviour: Most allocs on one cpu, most free operations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3905) 	 * on another cpu. For these cases, an efficient object passing between
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3906) 	 * cpus is necessary. This is provided by a shared array. The array
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3907) 	 * replaces Bonwick's magazine layer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3908) 	 * On uniprocessor, it's functionally equivalent (but less efficient)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3909) 	 * to a larger limit. Thus disabled by default.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3910) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3911) 	shared = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3912) 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3913) 		shared = 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3914) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3915) #if DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3916) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3917) 	 * With debugging enabled, large batchcount lead to excessively long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3918) 	 * periods with disabled local interrupts. Limit the batchcount
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3919) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3920) 	if (limit > 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3921) 		limit = 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3922) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3923) 	batchcount = (limit + 1) / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3924) skip_setup:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3925) 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3926) end:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3927) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3928) 		pr_err("enable_cpucache failed for %s, error %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3929) 		       cachep->name, -err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3930) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3931) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3932) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3933) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3934)  * Drain an array if it contains any elements taking the node lock only if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3935)  * necessary. Note that the node listlock also protects the array_cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3936)  * if drain_array() is used on the shared array.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3937)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3938) static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3939) 			 struct array_cache *ac, int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3940) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3941) 	LIST_HEAD(list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3942) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3943) 	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3944) 	check_mutex_acquired();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3945) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3946) 	if (!ac || !ac->avail)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3947) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3948) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3949) 	if (ac->touched) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3950) 		ac->touched = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3951) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3952) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3953) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3954) 	spin_lock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3955) 	drain_array_locked(cachep, ac, node, false, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3956) 	spin_unlock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3957) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3958) 	slabs_destroy(cachep, &list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3959) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3960) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3961) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3962)  * cache_reap - Reclaim memory from caches.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3963)  * @w: work descriptor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3964)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3965)  * Called from workqueue/eventd every few seconds.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3966)  * Purpose:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3967)  * - clear the per-cpu caches for this CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3968)  * - return freeable pages to the main free memory pool.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3969)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3970)  * If we cannot acquire the cache chain mutex then just give up - we'll try
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3971)  * again on the next iteration.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3972)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3973) static void cache_reap(struct work_struct *w)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3974) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3975) 	struct kmem_cache *searchp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3976) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3977) 	int node = numa_mem_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3978) 	struct delayed_work *work = to_delayed_work(w);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3979) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3980) 	if (!mutex_trylock(&slab_mutex))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3981) 		/* Give up. Setup the next iteration. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3982) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3983) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3984) 	list_for_each_entry(searchp, &slab_caches, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3985) 		check_irq_on();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3986) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3987) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3988) 		 * We only take the node lock if absolutely necessary and we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3989) 		 * have established with reasonable certainty that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3990) 		 * we can do some work if the lock was obtained.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3991) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3992) 		n = get_node(searchp, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3993) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3994) 		reap_alien(searchp, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3995) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3996) 		drain_array(searchp, n, cpu_cache_get(searchp), node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3997) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3998) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3999) 		 * These are racy checks but it does not matter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4000) 		 * if we skip one check or scan twice.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4001) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4002) 		if (time_after(n->next_reap, jiffies))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4003) 			goto next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4004) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4005) 		n->next_reap = jiffies + REAPTIMEOUT_NODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4006) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4007) 		drain_array(searchp, n, n->shared, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4008) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4009) 		if (n->free_touched)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4010) 			n->free_touched = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4011) 		else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4012) 			int freed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4013) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4014) 			freed = drain_freelist(searchp, n, (n->free_limit +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4015) 				5 * searchp->num - 1) / (5 * searchp->num));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4016) 			STATS_ADD_REAPED(searchp, freed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4017) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4018) next:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4019) 		cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4020) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4021) 	check_irq_on();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4022) 	mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4023) 	next_reap_node();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4024) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4025) 	/* Set up the next iteration */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4026) 	schedule_delayed_work_on(smp_processor_id(), work,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4027) 				round_jiffies_relative(REAPTIMEOUT_AC));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4028) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4030) void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4031) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4032) 	unsigned long active_objs, num_objs, active_slabs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4033) 	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4034) 	unsigned long free_slabs = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4035) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4036) 	struct kmem_cache_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4037) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4038) 	for_each_kmem_cache_node(cachep, node, n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4039) 		check_irq_on();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4040) 		spin_lock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4041) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4042) 		total_slabs += n->total_slabs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4043) 		free_slabs += n->free_slabs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4044) 		free_objs += n->free_objects;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4045) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4046) 		if (n->shared)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4047) 			shared_avail += n->shared->avail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4048) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4049) 		spin_unlock_irq(&n->list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4050) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4051) 	num_objs = total_slabs * cachep->num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4052) 	active_slabs = total_slabs - free_slabs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4053) 	active_objs = num_objs - free_objs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4054) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4055) 	sinfo->active_objs = active_objs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4056) 	sinfo->num_objs = num_objs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4057) 	sinfo->active_slabs = active_slabs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4058) 	sinfo->num_slabs = total_slabs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4059) 	sinfo->shared_avail = shared_avail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4060) 	sinfo->limit = cachep->limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4061) 	sinfo->batchcount = cachep->batchcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4062) 	sinfo->shared = cachep->shared;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4063) 	sinfo->objects_per_slab = cachep->num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4064) 	sinfo->cache_order = cachep->gfporder;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4065) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4066) EXPORT_SYMBOL_GPL(get_slabinfo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4067) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4068) void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4069) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4070) #if STATS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4071) 	{			/* node stats */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4072) 		unsigned long high = cachep->high_mark;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4073) 		unsigned long allocs = cachep->num_allocations;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4074) 		unsigned long grown = cachep->grown;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4075) 		unsigned long reaped = cachep->reaped;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4076) 		unsigned long errors = cachep->errors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4077) 		unsigned long max_freeable = cachep->max_freeable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4078) 		unsigned long node_allocs = cachep->node_allocs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4079) 		unsigned long node_frees = cachep->node_frees;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4080) 		unsigned long overflows = cachep->node_overflow;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4081) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4082) 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4083) 			   allocs, high, grown,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4084) 			   reaped, errors, max_freeable, node_allocs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4085) 			   node_frees, overflows);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4086) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4087) 	/* cpu stats */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4088) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4089) 		unsigned long allochit = atomic_read(&cachep->allochit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4090) 		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4091) 		unsigned long freehit = atomic_read(&cachep->freehit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4092) 		unsigned long freemiss = atomic_read(&cachep->freemiss);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4093) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4094) 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4095) 			   allochit, allocmiss, freehit, freemiss);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4096) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4097) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4098) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4099) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4100) #define MAX_SLABINFO_WRITE 128
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4101) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4102)  * slabinfo_write - Tuning for the slab allocator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4103)  * @file: unused
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4104)  * @buffer: user buffer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4105)  * @count: data length
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4106)  * @ppos: unused
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4107)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4108)  * Return: %0 on success, negative error code otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4109)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4110) ssize_t slabinfo_write(struct file *file, const char __user *buffer,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4111) 		       size_t count, loff_t *ppos)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4112) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4113) 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4114) 	int limit, batchcount, shared, res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4115) 	struct kmem_cache *cachep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4117) 	if (count > MAX_SLABINFO_WRITE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4118) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4119) 	if (copy_from_user(&kbuf, buffer, count))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4120) 		return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4121) 	kbuf[MAX_SLABINFO_WRITE] = '\0';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4123) 	tmp = strchr(kbuf, ' ');
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4124) 	if (!tmp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4125) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4126) 	*tmp = '\0';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4127) 	tmp++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4128) 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4129) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4131) 	/* Find the cache in the chain of caches. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4132) 	mutex_lock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4133) 	res = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4134) 	list_for_each_entry(cachep, &slab_caches, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4135) 		if (!strcmp(cachep->name, kbuf)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4136) 			if (limit < 1 || batchcount < 1 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4137) 					batchcount > limit || shared < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4138) 				res = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4139) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4140) 				res = do_tune_cpucache(cachep, limit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4141) 						       batchcount, shared,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4142) 						       GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4143) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4144) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4145) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4146) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4147) 	mutex_unlock(&slab_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4148) 	if (res >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4149) 		res = count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4150) 	return res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4151) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4153) #ifdef CONFIG_HARDENED_USERCOPY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4154) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4155)  * Rejects incorrectly sized objects and objects that are to be copied
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4156)  * to/from userspace but do not fall entirely within the containing slab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4157)  * cache's usercopy region.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4158)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4159)  * Returns NULL if check passes, otherwise const char * to name of cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4160)  * to indicate an error.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4161)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4162) void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4163) 			 bool to_user)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4164) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4165) 	struct kmem_cache *cachep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4166) 	unsigned int objnr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4167) 	unsigned long offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4169) 	ptr = kasan_reset_tag(ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4171) 	/* Find and validate object. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4172) 	cachep = page->slab_cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4173) 	objnr = obj_to_index(cachep, page, (void *)ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4174) 	BUG_ON(objnr >= cachep->num);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4176) 	/* Find offset within object. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4177) 	if (is_kfence_address(ptr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4178) 		offset = ptr - kfence_object_start(ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4179) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4180) 		offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4182) 	/* Allow address range falling entirely within usercopy region. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4183) 	if (offset >= cachep->useroffset &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4184) 	    offset - cachep->useroffset <= cachep->usersize &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4185) 	    n <= cachep->useroffset - offset + cachep->usersize)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4186) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4188) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4189) 	 * If the copy is still within the allocated object, produce
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4190) 	 * a warning instead of rejecting the copy. This is intended
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4191) 	 * to be a temporary method to find any missing usercopy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4192) 	 * whitelists.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4193) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4194) 	if (usercopy_fallback &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4195) 	    offset <= cachep->object_size &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4196) 	    n <= cachep->object_size - offset) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4197) 		usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4198) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4199) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4201) 	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4202) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4203) #endif /* CONFIG_HARDENED_USERCOPY */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4205) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4206)  * __ksize -- Uninstrumented ksize.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4207)  * @objp: pointer to the object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4208)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4209)  * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4210)  * safety checks as ksize() with KASAN instrumentation enabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4211)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4212)  * Return: size of the actual memory used by @objp in bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4213)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4214) size_t __ksize(const void *objp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4215) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4216) 	struct kmem_cache *c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4217) 	size_t size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4219) 	BUG_ON(!objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4220) 	if (unlikely(objp == ZERO_SIZE_PTR))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4221) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4223) 	c = virt_to_cache(objp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4224) 	size = c ? c->object_size : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4226) 	return size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4227) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4228) EXPORT_SYMBOL(__ksize);