Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * mm/percpu.c - percpu memory allocator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * Copyright (C) 2009		SUSE Linux Products GmbH
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  * Copyright (C) 2017		Facebook Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  * Copyright (C) 2017		Dennis Zhou <dennis@kernel.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11)  * The percpu allocator handles both static and dynamic areas.  Percpu
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12)  * areas are allocated in chunks which are divided into units.  There is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13)  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14)  * based on NUMA properties of the machine.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16)  *  c0                           c1                         c2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17)  *  -------------------          -------------------        ------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18)  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19)  *  -------------------  ......  -------------------  ....  ------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21)  * Allocation is done by offsets into a unit's address space.  Ie., an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22)  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23)  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24)  * and even sparse.  Access is handled by configuring percpu base
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25)  * registers according to the cpu to unit mappings and offsetting the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26)  * base address using pcpu_unit_size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28)  * There is special consideration for the first chunk which must handle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29)  * the static percpu variables in the kernel image as allocation services
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30)  * are not online yet.  In short, the first chunk is structured like so:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32)  *                  <Static | [Reserved] | Dynamic>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34)  * The static data is copied from the original section managed by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35)  * linker.  The reserved section, if non-zero, primarily manages static
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36)  * percpu variables from kernel modules.  Finally, the dynamic section
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37)  * takes care of normal allocations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39)  * The allocator organizes chunks into lists according to free size and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40)  * memcg-awareness.  To make a percpu allocation memcg-aware the __GFP_ACCOUNT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41)  * flag should be passed.  All memcg-aware allocations are sharing one set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42)  * of chunks and all unaccounted allocations and allocations performed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43)  * by processes belonging to the root memory cgroup are using the second set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45)  * The allocator tries to allocate from the fullest chunk first. Each chunk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46)  * is managed by a bitmap with metadata blocks.  The allocation map is updated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47)  * on every allocation and free to reflect the current state while the boundary
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48)  * map is only updated on allocation.  Each metadata block contains
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49)  * information to help mitigate the need to iterate over large portions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50)  * of the bitmap.  The reverse mapping from page to chunk is stored in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51)  * the page's index.  Lastly, units are lazily backed and grow in unison.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53)  * There is a unique conversion that goes on here between bytes and bits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54)  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55)  * tracks the number of pages it is responsible for in nr_pages.  Helper
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56)  * functions are used to convert from between the bytes, bits, and blocks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57)  * All hints are managed in bits unless explicitly stated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59)  * To use this allocator, arch code should do the following:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61)  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62)  *   regular address to percpu pointer and back if they need to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63)  *   different from the default
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65)  * - use pcpu_setup_first_chunk() during percpu area initialization to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66)  *   setup the first chunk containing the kernel static percpu area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) #include <linux/bitmap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) #include <linux/memblock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) #include <linux/lcm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) #include <linux/list.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) #include <linux/log2.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) #include <linux/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) #include <linux/percpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) #include <linux/pfn.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) #include <linux/spinlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) #include <linux/vmalloc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) #include <linux/workqueue.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) #include <linux/kmemleak.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) #include <linux/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) #include <linux/sched/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) #include <linux/memcontrol.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) #include <asm/cacheflush.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) #include <asm/sections.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) #include <asm/tlbflush.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) #include <asm/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) #define CREATE_TRACE_POINTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) #include <trace/events/percpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) #include "percpu-internal.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) #define PCPU_SLOT_BASE_SHIFT		5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) /* chunks in slots below this are subject to being sidelined on failed alloc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) #define PCPU_SLOT_FAIL_THRESHOLD	3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) #define PCPU_EMPTY_POP_PAGES_LOW	2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) #define PCPU_EMPTY_POP_PAGES_HIGH	4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) #ifndef __addr_to_pcpu_ptr
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) #define __addr_to_pcpu_ptr(addr)					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 	(void __percpu *)((unsigned long)(addr) -			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) 			  (unsigned long)pcpu_base_addr	+		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 			  (unsigned long)__per_cpu_start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) #ifndef __pcpu_ptr_to_addr
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) #define __pcpu_ptr_to_addr(ptr)						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) 	(void __force *)((unsigned long)(ptr) +				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 			 (unsigned long)pcpu_base_addr -		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) 			 (unsigned long)__per_cpu_start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) #else	/* CONFIG_SMP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) /* on UP, it's always identity mapped */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) #endif	/* CONFIG_SMP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) static int pcpu_unit_pages __ro_after_init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) static int pcpu_unit_size __ro_after_init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) static int pcpu_nr_units __ro_after_init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) static int pcpu_atom_size __ro_after_init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) int pcpu_nr_slots __ro_after_init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) static size_t pcpu_chunk_struct_size __ro_after_init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) /* cpus with the lowest and highest unit addresses */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) static unsigned int pcpu_low_unit_cpu __ro_after_init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) static unsigned int pcpu_high_unit_cpu __ro_after_init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) /* the address of the first chunk which starts with the kernel static area */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) void *pcpu_base_addr __ro_after_init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) EXPORT_SYMBOL_GPL(pcpu_base_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) /* group information, used for vm allocation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) static int pcpu_nr_groups __ro_after_init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) static const unsigned long *pcpu_group_offsets __ro_after_init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) static const size_t *pcpu_group_sizes __ro_after_init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153)  * The first chunk which always exists.  Note that unlike other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154)  * chunks, this one can be allocated and mapped in several different
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155)  * ways and thus often doesn't live in the vmalloc area.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160)  * Optional reserved chunk.  This chunk reserves part of the first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161)  * chunk and serves it for reserved allocations.  When the reserved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162)  * region doesn't exist, the following variable is NULL.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) /* chunks which need their map areas extended, protected by pcpu_lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) static LIST_HEAD(pcpu_map_extend_chunks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175)  * The number of empty populated pages by chunk type, protected by pcpu_lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176)  * The reserved chunk doesn't contribute to the count.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) int pcpu_nr_empty_pop_pages[PCPU_NR_CHUNK_TYPES];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181)  * The number of populated pages in use by the allocator, protected by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182)  * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183)  * allocated/deallocated, it is allocated/deallocated in all units of a chunk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184)  * and increments/decrements this count by 1).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) static unsigned long pcpu_nr_populated;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189)  * Balance work is used to populate or destroy chunks asynchronously.  We
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190)  * try to keep the number of populated free pages between
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191)  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192)  * empty chunk.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) static void pcpu_balance_workfn(struct work_struct *work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) static bool pcpu_async_enabled __read_mostly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) static bool pcpu_atomic_alloc_failed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) static void pcpu_schedule_balance_work(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 	if (pcpu_async_enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 		schedule_work(&pcpu_balance_work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206)  * pcpu_addr_in_chunk - check if the address is served from this chunk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207)  * @chunk: chunk of interest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208)  * @addr: percpu address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211)  * True if the address is served from this chunk.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 	void *start_addr, *end_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 	if (!chunk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 	start_addr = chunk->base_addr + chunk->start_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) 	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 		   chunk->end_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 	return addr >= start_addr && addr < end_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) static int __pcpu_size_to_slot(int size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 	int highbit = fls(size);	/* size is in bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) static int pcpu_size_to_slot(int size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 	if (size == pcpu_unit_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 		return pcpu_nr_slots - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) 	return __pcpu_size_to_slot(size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 	const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 	    chunk_md->contig_hint == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 	return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) /* set the pointer to a chunk in a page struct */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 	page->index = (unsigned long)pcpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) /* obtain pointer to a chunk from a page struct */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 	return (struct pcpu_chunk *)page->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 				     unsigned int cpu, int page_idx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 	return (unsigned long)chunk->base_addr +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 	       pcpu_unit_page_offset(cpu, page_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281)  * The following are helper functions to help access bitmaps and convert
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282)  * between bitmap offsets to address offsets.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 	return chunk->alloc_map +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) static unsigned long pcpu_off_to_block_index(int off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 	return off / PCPU_BITMAP_BLOCK_BITS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) static unsigned long pcpu_off_to_block_off(int off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) static unsigned long pcpu_block_off_to_off(int index, int off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 	return index * PCPU_BITMAP_BLOCK_BITS + off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306)  * pcpu_next_hint - determine which hint to use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307)  * @block: block of interest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308)  * @alloc_bits: size of allocation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310)  * This determines if we should scan based on the scan_hint or first_free.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311)  * In general, we want to scan from first_free to fulfill allocations by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312)  * first fit.  However, if we know a scan_hint at position scan_hint_start
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313)  * cannot fulfill an allocation, we can begin scanning from there knowing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314)  * the contig_hint will be our fallback.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 	 * The three conditions below determine if we can skip past the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 	 * scan_hint.  First, does the scan hint exist.  Second, is the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 	 * contig_hint after the scan_hint (possibly not true iff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 	 * contig_hint == scan_hint).  Third, is the allocation request
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 	 * larger than the scan_hint.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 	if (block->scan_hint &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 	    block->contig_hint_start > block->scan_hint_start &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 	    alloc_bits > block->scan_hint)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 		return block->scan_hint_start + block->scan_hint;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 	return block->first_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334)  * pcpu_next_md_free_region - finds the next hint free area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335)  * @chunk: chunk of interest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336)  * @bit_off: chunk offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337)  * @bits: size of free area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339)  * Helper function for pcpu_for_each_md_free_region.  It checks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340)  * block->contig_hint and performs aggregation across blocks to find the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341)  * next hint.  It modifies bit_off and bits in-place to be consumed in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342)  * loop.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 				     int *bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 	int i = pcpu_off_to_block_index(*bit_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 	int block_off = pcpu_off_to_block_off(*bit_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 	struct pcpu_block_md *block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 	*bits = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 	     block++, i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 		/* handles contig area across blocks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 		if (*bits) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 			*bits += block->left_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 		 * This checks three things.  First is there a contig_hint to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 		 * check.  Second, have we checked this hint before by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 		 * comparing the block_off.  Third, is this the same as the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 		 * right contig hint.  In the last case, it spills over into
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 		 * the next block and should be handled by the contig area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 		 * across blocks code.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 		*bits = block->contig_hint;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 		if (*bits && block->contig_hint_start >= block_off &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 			*bit_off = pcpu_block_off_to_off(i,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 					block->contig_hint_start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 		/* reset to satisfy the second predicate above */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 		block_off = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 		*bits = block->right_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386)  * pcpu_next_fit_region - finds fit areas for a given allocation request
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387)  * @chunk: chunk of interest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388)  * @alloc_bits: size of allocation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389)  * @align: alignment of area (max PAGE_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390)  * @bit_off: chunk offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391)  * @bits: size of free area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393)  * Finds the next free region that is viable for use with a given size and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394)  * alignment.  This only returns if there is a valid area to be used for this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395)  * allocation.  block->first_free is returned if the allocation request fits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396)  * within the block to see if the request can be fulfilled prior to the contig
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397)  * hint.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 				 int align, int *bit_off, int *bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 	int i = pcpu_off_to_block_index(*bit_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 	int block_off = pcpu_off_to_block_off(*bit_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 	struct pcpu_block_md *block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 	*bits = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 	     block++, i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 		/* handles contig area across blocks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 		if (*bits) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 			*bits += block->left_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 			if (*bits >= alloc_bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 				return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 		/* check block->contig_hint */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 		*bits = ALIGN(block->contig_hint_start, align) -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 			block->contig_hint_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 		 * This uses the block offset to determine if this has been
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 		 * checked in the prior iteration.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 		if (block->contig_hint &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 		    block->contig_hint_start >= block_off &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 		    block->contig_hint >= *bits + alloc_bits) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 			int start = pcpu_next_hint(block, alloc_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 			*bits += alloc_bits + block->contig_hint_start -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 				 start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 			*bit_off = pcpu_block_off_to_off(i, start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 		/* reset to satisfy the second predicate above */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 		block_off = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 				 align);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 		*bit_off = pcpu_block_off_to_off(i, *bit_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 		if (*bits >= alloc_bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 	/* no valid offsets were found - fail condition */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 	*bit_off = pcpu_chunk_map_bits(chunk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451)  * Metadata free area iterators.  These perform aggregation of free areas
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452)  * based on the metadata blocks and return the offset @bit_off and size in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453)  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454)  * a fit is found for the allocation request.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) #define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 	     (bit_off) += (bits) + 1,					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 				  &(bits));				      \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 	     (bit_off) += (bits),					      \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 				  &(bits)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471)  * pcpu_mem_zalloc - allocate memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472)  * @size: bytes to allocate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473)  * @gfp: allocation flags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475)  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476)  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477)  * This is to facilitate passing through whitelisted flags.  The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478)  * returned memory is always zeroed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481)  * Pointer to the allocated area on success, NULL on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 	if (WARN_ON_ONCE(!slab_is_available()))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 	if (size <= PAGE_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 		return kzalloc(size, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 		return __vmalloc(size, gfp | __GFP_ZERO);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495)  * pcpu_mem_free - free memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496)  * @ptr: memory to free
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498)  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) static void pcpu_mem_free(void *ptr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 	kvfree(ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 			      bool move_front)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 	if (chunk != pcpu_reserved_chunk) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 		struct list_head *pcpu_slot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 		pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 		if (move_front)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 			list_move(&chunk->list, &pcpu_slot[slot]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 			list_move_tail(&chunk->list, &pcpu_slot[slot]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 	__pcpu_chunk_move(chunk, slot, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525)  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526)  * @chunk: chunk of interest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527)  * @oslot: the previous slot it was on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529)  * This function is called after an allocation or free changed @chunk.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530)  * New slot according to the changed state is determined and @chunk is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531)  * moved to the slot.  Note that the reserved chunk is never put on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532)  * chunk slots.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534)  * CONTEXT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535)  * pcpu_lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 	int nslot = pcpu_chunk_slot(chunk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 	if (oslot != nslot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 		__pcpu_chunk_move(chunk, nslot, oslot < nslot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546)  * pcpu_update_empty_pages - update empty page counters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547)  * @chunk: chunk of interest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548)  * @nr: nr of empty pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550)  * This is used to keep track of the empty pages now based on the premise
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551)  * a md_block covers a page.  The hint update functions recognize if a block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552)  * is made full or broken to calculate deltas for keeping track of free pages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 	chunk->nr_empty_pop_pages += nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 	if (chunk != pcpu_reserved_chunk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 		pcpu_nr_empty_pop_pages[pcpu_chunk_type(chunk)] += nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562)  * pcpu_region_overlap - determines if two regions overlap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563)  * @a: start of first region, inclusive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564)  * @b: end of first region, exclusive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565)  * @x: start of second region, inclusive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566)  * @y: end of second region, exclusive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568)  * This is used to determine if the hint region [a, b) overlaps with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569)  * allocated region [x, y).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) static inline bool pcpu_region_overlap(int a, int b, int x, int y)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 	return (a < y) && (x < b);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577)  * pcpu_block_update - updates a block given a free area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578)  * @block: block of interest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579)  * @start: start offset in block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580)  * @end: end offset in block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582)  * Updates a block given a known free area.  The region [start, end) is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583)  * expected to be the entirety of the free area within a block.  Chooses
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584)  * the best starting offset if the contig hints are equal.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 	int contig = end - start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) 	block->first_free = min(block->first_free, start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 	if (start == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 		block->left_free = contig;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 	if (end == block->nr_bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 		block->right_free = contig;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 	if (contig > block->contig_hint) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 		/* promote the old contig_hint to be the new scan_hint */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 		if (start > block->contig_hint_start) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 			if (block->contig_hint > block->scan_hint) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 				block->scan_hint_start =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 					block->contig_hint_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 				block->scan_hint = block->contig_hint;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 			} else if (start < block->scan_hint_start) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 				/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 				 * The old contig_hint == scan_hint.  But, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 				 * new contig is larger so hold the invariant
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 				 * scan_hint_start < contig_hint_start.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 				block->scan_hint = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 			block->scan_hint = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 		block->contig_hint_start = start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 		block->contig_hint = contig;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 	} else if (contig == block->contig_hint) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 		if (block->contig_hint_start &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 		    (!start ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 		     __ffs(start) > __ffs(block->contig_hint_start))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 			/* start has a better alignment so use it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 			block->contig_hint_start = start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 			if (start < block->scan_hint_start &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 			    block->contig_hint > block->scan_hint)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 				block->scan_hint = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 		} else if (start > block->scan_hint_start ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 			   block->contig_hint > block->scan_hint) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 			 * Knowing contig == contig_hint, update the scan_hint
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 			 * if it is farther than or larger than the current
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 			 * scan_hint.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 			block->scan_hint_start = start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 			block->scan_hint = contig;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 		 * The region is smaller than the contig_hint.  So only update
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 		 * the scan_hint if it is larger than or equal and farther than
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 		 * the current scan_hint.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 		if ((start < block->contig_hint_start &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 		     (contig > block->scan_hint ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 		      (contig == block->scan_hint &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 		       start > block->scan_hint_start)))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) 			block->scan_hint_start = start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 			block->scan_hint = contig;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653)  * pcpu_block_update_scan - update a block given a free area from a scan
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654)  * @chunk: chunk of interest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655)  * @bit_off: chunk offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656)  * @bits: size of free area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658)  * Finding the final allocation spot first goes through pcpu_find_block_fit()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659)  * to find a block that can hold the allocation and then pcpu_alloc_area()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660)  * where a scan is used.  When allocations require specific alignments,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661)  * we can inadvertently create holes which will not be seen in the alloc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662)  * or free paths.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664)  * This takes a given free area hole and updates a block as it may change the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665)  * scan_hint.  We need to scan backwards to ensure we don't miss free bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666)  * from alignment.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 				   int bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 	int s_off = pcpu_off_to_block_off(bit_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 	int e_off = s_off + bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 	int s_index, l_bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 	struct pcpu_block_md *block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 	if (e_off > PCPU_BITMAP_BLOCK_BITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 	s_index = pcpu_off_to_block_index(bit_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 	block = chunk->md_blocks + s_index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 	/* scan backwards in case of alignment skipping free bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 	l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 	s_off = (s_off == l_bit) ? 0 : l_bit + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 	pcpu_block_update(block, s_off, e_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690)  * pcpu_chunk_refresh_hint - updates metadata about a chunk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691)  * @chunk: chunk of interest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692)  * @full_scan: if we should scan from the beginning
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694)  * Iterates over the metadata blocks to find the largest contig area.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695)  * A full scan can be avoided on the allocation path as this is triggered
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696)  * if we broke the contig_hint.  In doing so, the scan_hint will be before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697)  * the contig_hint or after if the scan_hint == contig_hint.  This cannot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698)  * be prevented on freeing as we want to find the largest area possibly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699)  * spanning blocks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 	int bit_off, bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 	/* promote scan_hint to contig_hint */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 	if (!full_scan && chunk_md->scan_hint) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 		bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 		chunk_md->contig_hint_start = chunk_md->scan_hint_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 		chunk_md->contig_hint = chunk_md->scan_hint;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 		chunk_md->scan_hint = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 		bit_off = chunk_md->first_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 		chunk_md->contig_hint = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 	bits = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 	pcpu_for_each_md_free_region(chunk, bit_off, bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 		pcpu_block_update(chunk_md, bit_off, bit_off + bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723)  * pcpu_block_refresh_hint
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724)  * @chunk: chunk of interest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725)  * @index: index of the metadata block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727)  * Scans over the block beginning at first_free and updates the block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728)  * metadata accordingly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 	struct pcpu_block_md *block = chunk->md_blocks + index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 	unsigned int rs, re, start;	/* region start, region end */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 	/* promote scan_hint to contig_hint */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 	if (block->scan_hint) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 		start = block->scan_hint_start + block->scan_hint;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 		block->contig_hint_start = block->scan_hint_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 		block->contig_hint = block->scan_hint;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 		block->scan_hint = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 		start = block->first_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 		block->contig_hint = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 	block->right_free = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 	/* iterate over free areas and update the contig hints */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 	bitmap_for_each_clear_region(alloc_map, rs, re, start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 				     PCPU_BITMAP_BLOCK_BITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 		pcpu_block_update(block, rs, re);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756)  * pcpu_block_update_hint_alloc - update hint on allocation path
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757)  * @chunk: chunk of interest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758)  * @bit_off: chunk offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759)  * @bits: size of request
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761)  * Updates metadata for the allocation path.  The metadata only has to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762)  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763)  * scans are required if the block's contig hint is broken.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 					 int bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 	int nr_empty_pages = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 	struct pcpu_block_md *s_block, *e_block, *block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 	int s_index, e_index;	/* block indexes of the freed allocation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 	int s_off, e_off;	/* block offsets of the freed allocation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 	 * Calculate per block offsets.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 	 * The calculation uses an inclusive range, but the resulting offsets
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 	 * are [start, end).  e_index always points to the last block in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 	 * range.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 	s_index = pcpu_off_to_block_index(bit_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 	s_off = pcpu_off_to_block_off(bit_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 	s_block = chunk->md_blocks + s_index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 	e_block = chunk->md_blocks + e_index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 	 * Update s_block.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 	 * block->first_free must be updated if the allocation takes its place.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	 * If the allocation breaks the contig_hint, a scan is required to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 	 * restore this hint.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 	if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 		nr_empty_pages++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 	if (s_off == s_block->first_free)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 		s_block->first_free = find_next_zero_bit(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 					pcpu_index_alloc_map(chunk, s_index),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 					PCPU_BITMAP_BLOCK_BITS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 					s_off + bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 	if (pcpu_region_overlap(s_block->scan_hint_start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 				s_block->scan_hint_start + s_block->scan_hint,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 				s_off,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 				s_off + bits))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 		s_block->scan_hint = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 	if (pcpu_region_overlap(s_block->contig_hint_start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 				s_block->contig_hint_start +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 				s_block->contig_hint,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 				s_off,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 				s_off + bits)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 		/* block contig hint is broken - scan to fix it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 		if (!s_off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 			s_block->left_free = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 		pcpu_block_refresh_hint(chunk, s_index);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 		/* update left and right contig manually */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 		s_block->left_free = min(s_block->left_free, s_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 		if (s_index == e_index)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 			s_block->right_free = min_t(int, s_block->right_free,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 					PCPU_BITMAP_BLOCK_BITS - e_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 			s_block->right_free = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 	 * Update e_block.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 	if (s_index != e_index) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 		if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 			nr_empty_pages++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 		 * When the allocation is across blocks, the end is along
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 		 * the left part of the e_block.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 		e_block->first_free = find_next_zero_bit(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 				pcpu_index_alloc_map(chunk, e_index),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 				PCPU_BITMAP_BLOCK_BITS, e_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 			/* reset the block */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 			e_block++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 			if (e_off > e_block->scan_hint_start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 				e_block->scan_hint = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 			e_block->left_free = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 			if (e_off > e_block->contig_hint_start) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 				/* contig hint is broken - scan to fix it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 				pcpu_block_refresh_hint(chunk, e_index);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 				e_block->right_free =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 					min_t(int, e_block->right_free,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 					      PCPU_BITMAP_BLOCK_BITS - e_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 		/* update in-between md_blocks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 		nr_empty_pages += (e_index - s_index - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 		for (block = s_block + 1; block < e_block; block++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 			block->scan_hint = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 			block->contig_hint = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 			block->left_free = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 			block->right_free = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 	if (nr_empty_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 		pcpu_update_empty_pages(chunk, -nr_empty_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 	if (pcpu_region_overlap(chunk_md->scan_hint_start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 				chunk_md->scan_hint_start +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 				chunk_md->scan_hint,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 				bit_off,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 				bit_off + bits))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 		chunk_md->scan_hint = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 	 * The only time a full chunk scan is required is if the chunk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 	 * contig hint is broken.  Otherwise, it means a smaller space
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 	 * was used and therefore the chunk contig hint is still correct.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 	if (pcpu_region_overlap(chunk_md->contig_hint_start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 				chunk_md->contig_hint_start +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 				chunk_md->contig_hint,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 				bit_off,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 				bit_off + bits))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 		pcpu_chunk_refresh_hint(chunk, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895)  * pcpu_block_update_hint_free - updates the block hints on the free path
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896)  * @chunk: chunk of interest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897)  * @bit_off: chunk offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898)  * @bits: size of request
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900)  * Updates metadata for the allocation path.  This avoids a blind block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901)  * refresh by making use of the block contig hints.  If this fails, it scans
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902)  * forward and backward to determine the extent of the free area.  This is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903)  * capped at the boundary of blocks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905)  * A chunk update is triggered if a page becomes free, a block becomes free,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906)  * or the free spans across blocks.  This tradeoff is to minimize iterating
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907)  * over the block metadata to update chunk_md->contig_hint.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908)  * chunk_md->contig_hint may be off by up to a page, but it will never be more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909)  * than the available space.  If the contig hint is contained in one block, it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910)  * will be accurate.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 					int bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 	int nr_empty_pages = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 	struct pcpu_block_md *s_block, *e_block, *block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 	int s_index, e_index;	/* block indexes of the freed allocation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 	int s_off, e_off;	/* block offsets of the freed allocation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 	int start, end;		/* start and end of the whole free area */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 	 * Calculate per block offsets.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 	 * The calculation uses an inclusive range, but the resulting offsets
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 	 * are [start, end).  e_index always points to the last block in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 	 * range.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 	s_index = pcpu_off_to_block_index(bit_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 	s_off = pcpu_off_to_block_off(bit_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 	s_block = chunk->md_blocks + s_index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 	e_block = chunk->md_blocks + e_index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 	 * Check if the freed area aligns with the block->contig_hint.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 	 * If it does, then the scan to find the beginning/end of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 	 * larger free area can be avoided.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 	 * start and end refer to beginning and end of the free area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 	 * within each their respective blocks.  This is not necessarily
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 	 * the entire free area as it may span blocks past the beginning
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 	 * or end of the block.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 	start = s_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 		start = s_block->contig_hint_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 		 * Scan backwards to find the extent of the free area.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 		 * find_last_bit returns the starting bit, so if the start bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 		 * is returned, that means there was no last bit and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 		 * remainder of the chunk is free.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 					  start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 		start = (start == l_bit) ? 0 : l_bit + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 	end = e_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 	if (e_off == e_block->contig_hint_start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 		end = e_block->contig_hint_start + e_block->contig_hint;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 				    PCPU_BITMAP_BLOCK_BITS, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 	/* update s_block */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 	if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 		nr_empty_pages++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 	pcpu_block_update(s_block, start, e_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 	/* freeing in the same block */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 	if (s_index != e_index) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 		/* update e_block */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 		if (end == PCPU_BITMAP_BLOCK_BITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 			nr_empty_pages++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 		pcpu_block_update(e_block, 0, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 		/* reset md_blocks in the middle */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 		nr_empty_pages += (e_index - s_index - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 		for (block = s_block + 1; block < e_block; block++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 			block->first_free = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 			block->scan_hint = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 			block->contig_hint_start = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 			block->left_free = PCPU_BITMAP_BLOCK_BITS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 			block->right_free = PCPU_BITMAP_BLOCK_BITS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 	if (nr_empty_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 		pcpu_update_empty_pages(chunk, nr_empty_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 	 * Refresh chunk metadata when the free makes a block free or spans
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 	 * across blocks.  The contig_hint may be off by up to a page, but if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 	 * the contig_hint is contained in a block, it will be accurate with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 	 * the else condition below.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 	if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 		pcpu_chunk_refresh_hint(chunk, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 		pcpu_block_update(&chunk->chunk_md,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 				  pcpu_block_off_to_off(s_index, start),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 				  end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010)  * pcpu_is_populated - determines if the region is populated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011)  * @chunk: chunk of interest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012)  * @bit_off: chunk offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013)  * @bits: size of area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014)  * @next_off: return value for the next offset to start searching
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016)  * For atomic allocations, check if the backing pages are populated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019)  * Bool if the backing pages are populated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020)  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 			      int *next_off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 	unsigned int page_start, page_end, rs, re;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 	rs = page_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 	bitmap_next_clear_region(chunk->populated, &rs, &re, page_end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 	if (rs >= page_end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040)  * pcpu_find_block_fit - finds the block index to start searching
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041)  * @chunk: chunk of interest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042)  * @alloc_bits: size of request in allocation units
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043)  * @align: alignment of area (max PAGE_SIZE bytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044)  * @pop_only: use populated regions only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046)  * Given a chunk and an allocation spec, find the offset to begin searching
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047)  * for a free region.  This iterates over the bitmap metadata blocks to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048)  * find an offset that will be guaranteed to fit the requirements.  It is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049)  * not quite first fit as if the allocation does not fit in the contig hint
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050)  * of a block or chunk, it is skipped.  This errs on the side of caution
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051)  * to prevent excess iteration.  Poor alignment can cause the allocator to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052)  * skip over blocks and chunks that have valid free areas.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055)  * The offset in the bitmap to begin searching.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056)  * -1 if no offset is found.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 			       size_t align, bool pop_only)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 	int bit_off, bits, next_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 	 * Check to see if the allocation can fit in the chunk's contig hint.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 	 * This is an optimization to prevent scanning by assuming if it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 	 * cannot fit in the global hint, there is memory pressure and creating
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 	 * a new chunk would happen soon.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 	bit_off = ALIGN(chunk_md->contig_hint_start, align) -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 		  chunk_md->contig_hint_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 	if (bit_off + alloc_bits > chunk_md->contig_hint)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 	bit_off = pcpu_next_hint(chunk_md, alloc_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 	bits = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 						   &next_off))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 		bit_off = next_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 		bits = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 	if (bit_off == pcpu_chunk_map_bits(chunk))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 	return bit_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093)  * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094)  * @map: the address to base the search on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095)  * @size: the bitmap size in bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096)  * @start: the bitnumber to start searching at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097)  * @nr: the number of zeroed bits we're looking for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098)  * @align_mask: alignment mask for zero area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099)  * @largest_off: offset of the largest area skipped
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100)  * @largest_bits: size of the largest area skipped
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102)  * The @align_mask should be one less than a power of 2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104)  * This is a modified version of bitmap_find_next_zero_area_off() to remember
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105)  * the largest area that was skipped.  This is imperfect, but in general is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106)  * good enough.  The largest remembered region is the largest failed region
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107)  * seen.  This does not include anything we possibly skipped due to alignment.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108)  * pcpu_block_update_scan() does scan backwards to try and recover what was
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109)  * lost to alignment.  While this can cause scanning to miss earlier possible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110)  * free areas, smaller allocations will eventually fill those holes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) static unsigned long pcpu_find_zero_area(unsigned long *map,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 					 unsigned long size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 					 unsigned long start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 					 unsigned long nr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 					 unsigned long align_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 					 unsigned long *largest_off,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 					 unsigned long *largest_bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 	unsigned long index, end, i, area_off, area_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) again:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 	index = find_next_zero_bit(map, size, start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 	/* Align allocation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 	index = __ALIGN_MASK(index, align_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 	area_off = index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 	end = index + nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 	if (end > size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 		return end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 	i = find_next_bit(map, end, index);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 	if (i < end) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 		area_bits = i - area_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 		/* remember largest unused area with best alignment */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 		if (area_bits > *largest_bits ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 		    (area_bits == *largest_bits && *largest_off &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 		     (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 			*largest_off = area_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 			*largest_bits = area_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 		start = i + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 		goto again;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 	return index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149)  * pcpu_alloc_area - allocates an area from a pcpu_chunk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150)  * @chunk: chunk of interest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151)  * @alloc_bits: size of request in allocation units
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152)  * @align: alignment of area (max PAGE_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153)  * @start: bit_off to start searching
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155)  * This function takes in a @start offset to begin searching to fit an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156)  * allocation of @alloc_bits with alignment @align.  It needs to scan
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157)  * the allocation map because if it fits within the block's contig hint,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158)  * @start will be block->first_free. This is an attempt to fill the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159)  * allocation prior to breaking the contig hint.  The allocation and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160)  * boundary maps are updated accordingly if it confirms a valid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161)  * free area.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164)  * Allocated addr offset in @chunk on success.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165)  * -1 if no matching area is found.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 			   size_t align, int start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 	size_t align_mask = (align) ? (align - 1) : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 	unsigned long area_off = 0, area_bits = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 	int bit_off, end, oslot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 	lockdep_assert_held(&pcpu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 	oslot = pcpu_chunk_slot(chunk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 	 * Search to find a fit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 	end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 		    pcpu_chunk_map_bits(chunk));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 	bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 				      align_mask, &area_off, &area_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 	if (bit_off >= end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 	if (area_bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 		pcpu_block_update_scan(chunk, area_off, area_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 	/* update alloc map */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 	/* update boundary map */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 	set_bit(bit_off, chunk->bound_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 	set_bit(bit_off + alloc_bits, chunk->bound_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 	/* update first free bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 	if (bit_off == chunk_md->first_free)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 		chunk_md->first_free = find_next_zero_bit(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 					chunk->alloc_map,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 					pcpu_chunk_map_bits(chunk),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 					bit_off + alloc_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 	pcpu_chunk_relocate(chunk, oslot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 	return bit_off * PCPU_MIN_ALLOC_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217)  * pcpu_free_area - frees the corresponding offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218)  * @chunk: chunk of interest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219)  * @off: addr offset into chunk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221)  * This function determines the size of an allocation to free using
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222)  * the boundary bitmap and clears the allocation map.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225)  * Number of freed bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 	int bit_off, bits, end, oslot, freed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 	lockdep_assert_held(&pcpu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 	pcpu_stats_area_dealloc(chunk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 	oslot = pcpu_chunk_slot(chunk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 	bit_off = off / PCPU_MIN_ALLOC_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) 	/* find end index */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) 	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 			    bit_off + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) 	bits = end - bit_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 	bitmap_clear(chunk->alloc_map, bit_off, bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 	freed = bits * PCPU_MIN_ALLOC_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) 	/* update metadata */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) 	chunk->free_bytes += freed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) 	/* update first free bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) 	chunk_md->first_free = min(chunk_md->first_free, bit_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 	pcpu_block_update_hint_free(chunk, bit_off, bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) 	pcpu_chunk_relocate(chunk, oslot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 	return freed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 	block->scan_hint = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) 	block->contig_hint = nr_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 	block->left_free = nr_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 	block->right_free = nr_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 	block->first_free = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 	block->nr_bits = nr_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 	struct pcpu_block_md *md_block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 	/* init the chunk's block */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 	pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 	for (md_block = chunk->md_blocks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) 	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 	     md_block++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 		pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284)  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285)  * @tmp_addr: the start of the region served
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286)  * @map_size: size of the region served
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288)  * This is responsible for creating the chunks that serve the first chunk.  The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289)  * base_addr is page aligned down of @tmp_addr while the region end is page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290)  * aligned up.  Offsets are kept track of to determine the region served. All
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291)  * this is done to appease the bitmap allocator in avoiding partial blocks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294)  * Chunk serving the region at @tmp_addr of @map_size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) 							 int map_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) 	struct pcpu_chunk *chunk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) 	unsigned long aligned_addr, lcm_align;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) 	int start_offset, offset_bits, region_size, region_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) 	size_t alloc_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) 	/* region calculations */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) 	aligned_addr = tmp_addr & PAGE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) 	start_offset = tmp_addr - aligned_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) 	 * Align the end of the region with the LCM of PAGE_SIZE and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 	 * the other.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 	region_size = ALIGN(start_offset + map_size, lcm_align);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 	/* allocate chunk */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 	alloc_size = struct_size(chunk, populated,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 				 BITS_TO_LONGS(region_size >> PAGE_SHIFT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 	chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 	if (!chunk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 		panic("%s: Failed to allocate %zu bytes\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 		      alloc_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 	INIT_LIST_HEAD(&chunk->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 	chunk->base_addr = (void *)aligned_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 	chunk->start_offset = start_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 	chunk->end_offset = region_size - chunk->start_offset - map_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 	chunk->nr_pages = region_size >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 	region_bits = pcpu_chunk_map_bits(chunk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 	alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) 	chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 	if (!chunk->alloc_map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 		panic("%s: Failed to allocate %zu bytes\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 		      alloc_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 	alloc_size =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 		BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 	chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 	if (!chunk->bound_map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 		panic("%s: Failed to allocate %zu bytes\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 		      alloc_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 	alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 	chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 	if (!chunk->md_blocks)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 		panic("%s: Failed to allocate %zu bytes\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 		      alloc_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) #ifdef CONFIG_MEMCG_KMEM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 	/* first chunk isn't memcg-aware */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 	chunk->obj_cgroups = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 	pcpu_init_md_blocks(chunk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 	/* manage populated page bitmap */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 	chunk->immutable = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 	bitmap_fill(chunk->populated, chunk->nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 	chunk->nr_populated = chunk->nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 	chunk->nr_empty_pop_pages = chunk->nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 	chunk->free_bytes = map_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) 	if (chunk->start_offset) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 		/* hide the beginning of the bitmap */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 		bitmap_set(chunk->alloc_map, 0, offset_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 		set_bit(0, chunk->bound_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 		set_bit(offset_bits, chunk->bound_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 		chunk->chunk_md.first_free = offset_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) 		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 	if (chunk->end_offset) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 		/* hide the end of the bitmap */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 		bitmap_set(chunk->alloc_map,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 			   pcpu_chunk_map_bits(chunk) - offset_bits,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 			   offset_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 			chunk->bound_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) 		set_bit(region_bits, chunk->bound_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) 					     - offset_bits, offset_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 	return chunk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) static struct pcpu_chunk *pcpu_alloc_chunk(enum pcpu_chunk_type type, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 	struct pcpu_chunk *chunk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 	int region_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 	if (!chunk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 	INIT_LIST_HEAD(&chunk->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 	chunk->nr_pages = pcpu_unit_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 	region_bits = pcpu_chunk_map_bits(chunk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) 	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) 					   sizeof(chunk->alloc_map[0]), gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) 	if (!chunk->alloc_map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) 		goto alloc_map_fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) 	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) 					   sizeof(chunk->bound_map[0]), gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) 	if (!chunk->bound_map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 		goto bound_map_fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) 	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) 					   sizeof(chunk->md_blocks[0]), gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) 	if (!chunk->md_blocks)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) 		goto md_blocks_fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) #ifdef CONFIG_MEMCG_KMEM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) 	if (pcpu_is_memcg_chunk(type)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 		chunk->obj_cgroups =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 			pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 					sizeof(struct obj_cgroup *), gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 		if (!chunk->obj_cgroups)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 			goto objcg_fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) 	pcpu_init_md_blocks(chunk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) 	/* init metadata */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) 	return chunk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) #ifdef CONFIG_MEMCG_KMEM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) objcg_fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) 	pcpu_mem_free(chunk->md_blocks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) md_blocks_fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) 	pcpu_mem_free(chunk->bound_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) bound_map_fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) 	pcpu_mem_free(chunk->alloc_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) alloc_map_fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) 	pcpu_mem_free(chunk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) static void pcpu_free_chunk(struct pcpu_chunk *chunk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) 	if (!chunk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) #ifdef CONFIG_MEMCG_KMEM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) 	pcpu_mem_free(chunk->obj_cgroups);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) 	pcpu_mem_free(chunk->md_blocks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) 	pcpu_mem_free(chunk->bound_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) 	pcpu_mem_free(chunk->alloc_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) 	pcpu_mem_free(chunk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469)  * pcpu_chunk_populated - post-population bookkeeping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470)  * @chunk: pcpu_chunk which got populated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471)  * @page_start: the start page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472)  * @page_end: the end page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474)  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475)  * the bookkeeping information accordingly.  Must be called after each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476)  * successful population.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478)  * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479)  * is to serve an allocation in that area.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) 				 int page_end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) 	int nr = page_end - page_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) 	lockdep_assert_held(&pcpu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) 	bitmap_set(chunk->populated, page_start, nr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) 	chunk->nr_populated += nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) 	pcpu_nr_populated += nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) 	pcpu_update_empty_pages(chunk, nr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496)  * pcpu_chunk_depopulated - post-depopulation bookkeeping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497)  * @chunk: pcpu_chunk which got depopulated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498)  * @page_start: the start page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499)  * @page_end: the end page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501)  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502)  * Update the bookkeeping information accordingly.  Must be called after
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503)  * each successful depopulation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) 				   int page_start, int page_end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) 	int nr = page_end - page_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) 	lockdep_assert_held(&pcpu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) 	bitmap_clear(chunk->populated, page_start, nr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) 	chunk->nr_populated -= nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) 	pcpu_nr_populated -= nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) 	pcpu_update_empty_pages(chunk, -nr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520)  * Chunk management implementation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522)  * To allow different implementations, chunk alloc/free and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523)  * [de]population are implemented in a separate file which is pulled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524)  * into this file and compiled together.  The following functions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525)  * should be implemented.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527)  * pcpu_populate_chunk		- populate the specified range of a chunk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528)  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529)  * pcpu_create_chunk		- create a new chunk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530)  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531)  * pcpu_addr_to_page		- translate address to physical address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532)  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) 			       int page_start, int page_end, gfp_t gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) 				  int page_start, int page_end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) static struct pcpu_chunk *pcpu_create_chunk(enum pcpu_chunk_type type,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) 					    gfp_t gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) static struct page *pcpu_addr_to_page(void *addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) #ifdef CONFIG_NEED_PER_CPU_KM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) #include "percpu-km.c"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) #include "percpu-vm.c"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551)  * pcpu_chunk_addr_search - determine chunk containing specified address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552)  * @addr: address for which the chunk needs to be determined.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554)  * This is an internal function that handles all but static allocations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555)  * Static percpu address values should never be passed into the allocator.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558)  * The address of the found chunk.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 	/* is it in the dynamic region (first chunk)? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) 	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) 		return pcpu_first_chunk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) 	/* is it in the reserved region? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) 	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) 		return pcpu_reserved_chunk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) 	 * The address is relative to unit0 which might be unused and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) 	 * thus unmapped.  Offset the address to the unit space of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) 	 * current processor before looking it up in the vmalloc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) 	 * space.  Note that any possible cpu id can be used here, so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) 	 * there's no need to worry about preemption or cpu hotplug.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) #ifdef CONFIG_MEMCG_KMEM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) static enum pcpu_chunk_type pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) 						     struct obj_cgroup **objcgp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) 	struct obj_cgroup *objcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) 	if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) 		return PCPU_CHUNK_ROOT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) 	objcg = get_obj_cgroup_from_current();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) 	if (!objcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) 		return PCPU_CHUNK_ROOT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) 	if (obj_cgroup_charge(objcg, gfp, size * num_possible_cpus())) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) 		obj_cgroup_put(objcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) 		return PCPU_FAIL_ALLOC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) 	*objcgp = objcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) 	return PCPU_CHUNK_MEMCG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) 				       struct pcpu_chunk *chunk, int off,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) 				       size_t size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) 	if (!objcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) 	if (chunk) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) 		chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) 		rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) 		mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) 				size * num_possible_cpus());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) 		rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) 		obj_cgroup_uncharge(objcg, size * num_possible_cpus());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) 		obj_cgroup_put(objcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) 	struct obj_cgroup *objcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) 	if (!pcpu_is_memcg_chunk(pcpu_chunk_type(chunk)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) 	objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) 	chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) 	obj_cgroup_uncharge(objcg, size * num_possible_cpus());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) 	mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) 			-(size * num_possible_cpus()));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) 	obj_cgroup_put(objcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) #else /* CONFIG_MEMCG_KMEM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) static enum pcpu_chunk_type
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) 	return PCPU_CHUNK_ROOT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) 				       struct pcpu_chunk *chunk, int off,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) 				       size_t size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) #endif /* CONFIG_MEMCG_KMEM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662)  * pcpu_alloc - the percpu allocator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663)  * @size: size of area to allocate in bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664)  * @align: alignment of area (max PAGE_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665)  * @reserved: allocate from the reserved chunk if available
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666)  * @gfp: allocation flags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668)  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669)  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670)  * then no warning will be triggered on invalid or failed allocation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671)  * requests.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674)  * Percpu pointer to the allocated area on success, NULL on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) 				 gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) 	gfp_t pcpu_gfp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) 	bool is_atomic;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) 	bool do_warn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) 	enum pcpu_chunk_type type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) 	struct list_head *pcpu_slot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) 	struct obj_cgroup *objcg = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) 	static int warn_limit = 10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) 	struct pcpu_chunk *chunk, *next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) 	const char *err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) 	int slot, off, cpu, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) 	void __percpu *ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) 	size_t bits, bit_align;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) 	gfp = current_gfp_context(gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) 	/* whitelisted flags that can be passed to the backing allocators */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) 	pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) 	is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) 	do_warn = !(gfp & __GFP_NOWARN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) 	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) 	 * therefore alignment must be a minimum of that many bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) 	 * An allocation may have internal fragmentation from rounding up
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) 	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) 	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) 		align = PCPU_MIN_ALLOC_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) 	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) 	bits = size >> PCPU_MIN_ALLOC_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) 	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) 		     !is_power_of_2(align))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) 		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) 		     size, align);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719) 	type = pcpu_memcg_pre_alloc_hook(size, gfp, &objcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720) 	if (unlikely(type == PCPU_FAIL_ALLOC))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722) 	pcpu_slot = pcpu_chunk_list(type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) 	if (!is_atomic) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) 		 * pcpu_balance_workfn() allocates memory under this mutex,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) 		 * and it may wait for memory reclaim. Allow current task
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) 		 * to become OOM victim, in case of memory pressure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) 		if (gfp & __GFP_NOFAIL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) 			mutex_lock(&pcpu_alloc_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) 		} else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) 			pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) 	spin_lock_irqsave(&pcpu_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) 	/* serve reserved allocations from the reserved chunk if available */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) 	if (reserved && pcpu_reserved_chunk) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) 		chunk = pcpu_reserved_chunk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) 		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) 		if (off < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) 			err = "alloc from reserved chunk failed";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) 			goto fail_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) 		off = pcpu_alloc_area(chunk, bits, bit_align, off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751) 		if (off >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) 			goto area_found;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) 		err = "alloc from reserved chunk failed";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) 		goto fail_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) restart:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) 	/* search through normal chunks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) 		list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) 			off = pcpu_find_block_fit(chunk, bits, bit_align,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) 						  is_atomic);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) 			if (off < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) 				if (slot < PCPU_SLOT_FAIL_THRESHOLD)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) 					pcpu_chunk_move(chunk, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) 			off = pcpu_alloc_area(chunk, bits, bit_align, off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) 			if (off >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) 				goto area_found;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) 	spin_unlock_irqrestore(&pcpu_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780) 	 * No space left.  Create a new chunk.  We don't want multiple
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) 	 * tasks to create chunks simultaneously.  Serialize and create iff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) 	 * there's still no empty chunk after grabbing the mutex.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784) 	if (is_atomic) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) 		err = "atomic alloc failed, no space left";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790) 		chunk = pcpu_create_chunk(type, pcpu_gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791) 		if (!chunk) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) 			err = "failed to allocate new chunk";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) 			goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) 		spin_lock_irqsave(&pcpu_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) 		pcpu_chunk_relocate(chunk, -1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799) 		spin_lock_irqsave(&pcpu_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802) 	goto restart;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) area_found:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805) 	pcpu_stats_area_alloc(chunk, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) 	spin_unlock_irqrestore(&pcpu_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) 	/* populate if not all pages are already there */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809) 	if (!is_atomic) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810) 		unsigned int page_start, page_end, rs, re;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) 		page_start = PFN_DOWN(off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) 		page_end = PFN_UP(off + size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815) 		bitmap_for_each_clear_region(chunk->populated, rs, re,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816) 					     page_start, page_end) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817) 			WARN_ON(chunk->immutable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819) 			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) 			spin_lock_irqsave(&pcpu_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) 			if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) 				pcpu_free_area(chunk, off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) 				err = "failed to populate";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825) 				goto fail_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827) 			pcpu_chunk_populated(chunk, rs, re);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) 			spin_unlock_irqrestore(&pcpu_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) 		mutex_unlock(&pcpu_alloc_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834) 	if (pcpu_nr_empty_pop_pages[type] < PCPU_EMPTY_POP_PAGES_LOW)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) 		pcpu_schedule_balance_work();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837) 	/* clear the areas and return address relative to base address */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838) 	for_each_possible_cpu(cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839) 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841) 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842) 	kmemleak_alloc_percpu(ptr, size, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844) 	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) 			chunk->base_addr, off, ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) 	pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849) 	return ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851) fail_unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) 	spin_unlock_irqrestore(&pcpu_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853) fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) 	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) 	if (!is_atomic && do_warn && warn_limit) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857) 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) 			size, align, is_atomic, err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) 		dump_stack();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) 		if (!--warn_limit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) 			pr_info("limit reached, disable warning\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) 	if (is_atomic) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) 		/* see the flag handling in pcpu_blance_workfn() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) 		pcpu_atomic_alloc_failed = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) 		pcpu_schedule_balance_work();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) 		mutex_unlock(&pcpu_alloc_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871) 	pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877)  * __alloc_percpu_gfp - allocate dynamic percpu area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878)  * @size: size of area to allocate in bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879)  * @align: alignment of area (max PAGE_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880)  * @gfp: allocation flags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882)  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883)  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884)  * be called from any context but is a lot more likely to fail. If @gfp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885)  * has __GFP_NOWARN then no warning will be triggered on invalid or failed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886)  * allocation requests.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889)  * Percpu pointer to the allocated area on success, NULL on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893) 	return pcpu_alloc(size, align, false, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898)  * __alloc_percpu - allocate dynamic percpu area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899)  * @size: size of area to allocate in bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900)  * @align: alignment of area (max PAGE_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902)  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904) void __percpu *__alloc_percpu(size_t size, size_t align)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906) 	return pcpu_alloc(size, align, false, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908) EXPORT_SYMBOL_GPL(__alloc_percpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911)  * __alloc_reserved_percpu - allocate reserved percpu area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912)  * @size: size of area to allocate in bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913)  * @align: alignment of area (max PAGE_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915)  * Allocate zero-filled percpu area of @size bytes aligned at @align
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916)  * from reserved percpu area if arch has set it up; otherwise,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917)  * allocation is served from the same dynamic area.  Might sleep.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918)  * Might trigger writeouts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920)  * CONTEXT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921)  * Does GFP_KERNEL allocation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924)  * Percpu pointer to the allocated area on success, NULL on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926) void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928) 	return pcpu_alloc(size, align, true, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932)  * __pcpu_balance_workfn - manage the amount of free chunks and populated pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933)  * @type: chunk type
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935)  * Reclaim all fully free chunks except for the first one.  This is also
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936)  * responsible for maintaining the pool of empty populated pages.  However,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937)  * it is possible that this is called when physical memory is scarce causing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938)  * OOM killer to be triggered.  We should avoid doing so until an actual
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939)  * allocation causes the failure as it is possible that requests can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940)  * serviced from already backed regions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942) static void __pcpu_balance_workfn(enum pcpu_chunk_type type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) 	/* gfp flags passed to underlying allocators */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945) 	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) 	LIST_HEAD(to_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) 	struct list_head *pcpu_slot = pcpu_chunk_list(type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948) 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) 	struct pcpu_chunk *chunk, *next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) 	int slot, nr_to_pop, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) 	 * There's no reason to keep around multiple unused chunks and VM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954) 	 * areas can be scarce.  Destroy all free chunks except for one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956) 	mutex_lock(&pcpu_alloc_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) 	spin_lock_irq(&pcpu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959) 	list_for_each_entry_safe(chunk, next, free_head, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960) 		WARN_ON(chunk->immutable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962) 		/* spare the first one */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) 		list_move(&chunk->list, &to_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969) 	spin_unlock_irq(&pcpu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) 	list_for_each_entry_safe(chunk, next, &to_free, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) 		unsigned int rs, re;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974) 		bitmap_for_each_set_region(chunk->populated, rs, re, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) 					   chunk->nr_pages) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) 			pcpu_depopulate_chunk(chunk, rs, re);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977) 			spin_lock_irq(&pcpu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) 			pcpu_chunk_depopulated(chunk, rs, re);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979) 			spin_unlock_irq(&pcpu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) 		pcpu_destroy_chunk(chunk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982) 		cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986) 	 * Ensure there are certain number of free populated pages for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987) 	 * atomic allocs.  Fill up from the most packed so that atomic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988) 	 * allocs don't increase fragmentation.  If atomic allocation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) 	 * failed previously, always populate the maximum amount.  This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) 	 * failing indefinitely; however, large atomic allocs are not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992) 	 * something we support properly and can be highly unreliable and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993) 	 * inefficient.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) retry_pop:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) 	if (pcpu_atomic_alloc_failed) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) 		/* best effort anyway, don't worry about synchronization */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) 		pcpu_atomic_alloc_failed = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001) 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) 				  pcpu_nr_empty_pop_pages[type],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003) 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006) 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007) 		unsigned int nr_unpop = 0, rs, re;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009) 		if (!nr_to_pop)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012) 		spin_lock_irq(&pcpu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013) 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014) 			nr_unpop = chunk->nr_pages - chunk->nr_populated;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015) 			if (nr_unpop)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018) 		spin_unlock_irq(&pcpu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020) 		if (!nr_unpop)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023) 		/* @chunk can't go away while pcpu_alloc_mutex is held */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) 		bitmap_for_each_clear_region(chunk->populated, rs, re, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) 					     chunk->nr_pages) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026) 			int nr = min_t(int, re - rs, nr_to_pop);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028) 			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) 			if (!ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) 				nr_to_pop -= nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031) 				spin_lock_irq(&pcpu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) 				pcpu_chunk_populated(chunk, rs, rs + nr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033) 				spin_unlock_irq(&pcpu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) 				nr_to_pop = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) 			if (!nr_to_pop)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) 	if (nr_to_pop) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) 		/* ran out of chunks to populate, create a new one and retry */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045) 		chunk = pcpu_create_chunk(type, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) 		if (chunk) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) 			spin_lock_irq(&pcpu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048) 			pcpu_chunk_relocate(chunk, -1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049) 			spin_unlock_irq(&pcpu_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050) 			goto retry_pop;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054) 	mutex_unlock(&pcpu_alloc_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058)  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059)  * @work: unused
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061)  * Call __pcpu_balance_workfn() for each chunk type.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) static void pcpu_balance_workfn(struct work_struct *work)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065) 	enum pcpu_chunk_type type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067) 	for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068) 		__pcpu_balance_workfn(type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072)  * free_percpu - free percpu area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073)  * @ptr: pointer to area to free
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075)  * Free percpu area @ptr.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077)  * CONTEXT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078)  * Can be called from atomic context.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080) void free_percpu(void __percpu *ptr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082) 	void *addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083) 	struct pcpu_chunk *chunk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085) 	int size, off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086) 	bool need_balance = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087) 	struct list_head *pcpu_slot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089) 	if (!ptr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092) 	kmemleak_free_percpu(ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094) 	addr = __pcpu_ptr_to_addr(ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096) 	spin_lock_irqsave(&pcpu_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098) 	chunk = pcpu_chunk_addr_search(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) 	off = addr - chunk->base_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101) 	size = pcpu_free_area(chunk, off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) 	pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) 	pcpu_memcg_free_hook(chunk, off, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107) 	/* if there are more than one fully free chunks, wake up grim reaper */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108) 	if (chunk->free_bytes == pcpu_unit_size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109) 		struct pcpu_chunk *pos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111) 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112) 			if (pos != chunk) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113) 				need_balance = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118) 	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120) 	spin_unlock_irqrestore(&pcpu_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122) 	if (need_balance)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123) 		pcpu_schedule_balance_work();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125) EXPORT_SYMBOL_GPL(free_percpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127) bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130) 	const size_t static_size = __per_cpu_end - __per_cpu_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132) 	unsigned int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134) 	for_each_possible_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135) 		void *start = per_cpu_ptr(base, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136) 		void *va = (void *)addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138) 		if (va >= start && va < start + static_size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139) 			if (can_addr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140) 				*can_addr = (unsigned long) (va - start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141) 				*can_addr += (unsigned long)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142) 					per_cpu_ptr(base, get_boot_cpu_id());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2144) 			return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2145) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2146) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2147) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2148) 	/* on UP, can't distinguish from other static vars, always false */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2149) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2150) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2152) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2153)  * is_kernel_percpu_address - test whether address is from static percpu area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2154)  * @addr: address to test
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2155)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2156)  * Test whether @addr belongs to in-kernel static percpu area.  Module
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2157)  * static percpu areas are not considered.  For those, use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2158)  * is_module_percpu_address().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2159)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2160)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2161)  * %true if @addr is from in-kernel static percpu area, %false otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2162)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2163) bool is_kernel_percpu_address(unsigned long addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2164) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2165) 	return __is_kernel_percpu_address(addr, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2166) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2168) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2169)  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2170)  * @addr: the address to be converted to physical address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2171)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2172)  * Given @addr which is dereferenceable address obtained via one of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2173)  * percpu access macros, this function translates it into its physical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2174)  * address.  The caller is responsible for ensuring @addr stays valid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2175)  * until this function finishes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2176)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2177)  * percpu allocator has special setup for the first chunk, which currently
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2178)  * supports either embedding in linear address space or vmalloc mapping,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2179)  * and, from the second one, the backing allocator (currently either vm or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2180)  * km) provides translation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2181)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2182)  * The addr can be translated simply without checking if it falls into the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2183)  * first chunk. But the current code reflects better how percpu allocator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2184)  * actually works, and the verification can discover both bugs in percpu
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2185)  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2186)  * code.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2187)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2188)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2189)  * The physical address for @addr.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2190)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2191) phys_addr_t per_cpu_ptr_to_phys(void *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2192) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2193) 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2194) 	bool in_first_chunk = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2195) 	unsigned long first_low, first_high;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2196) 	unsigned int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2198) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2199) 	 * The following test on unit_low/high isn't strictly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2200) 	 * necessary but will speed up lookups of addresses which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2201) 	 * aren't in the first chunk.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2202) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2203) 	 * The address check is against full chunk sizes.  pcpu_base_addr
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2204) 	 * points to the beginning of the first chunk including the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2205) 	 * static region.  Assumes good intent as the first chunk may
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2206) 	 * not be full (ie. < pcpu_unit_pages in size).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2207) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2208) 	first_low = (unsigned long)pcpu_base_addr +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2209) 		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2210) 	first_high = (unsigned long)pcpu_base_addr +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2211) 		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2212) 	if ((unsigned long)addr >= first_low &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2213) 	    (unsigned long)addr < first_high) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2214) 		for_each_possible_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2215) 			void *start = per_cpu_ptr(base, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2217) 			if (addr >= start && addr < start + pcpu_unit_size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2218) 				in_first_chunk = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2219) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2220) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2221) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2222) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2224) 	if (in_first_chunk) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2225) 		if (!is_vmalloc_addr(addr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2226) 			return __pa(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2227) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2228) 			return page_to_phys(vmalloc_to_page(addr)) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2229) 			       offset_in_page(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2230) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2231) 		return page_to_phys(pcpu_addr_to_page(addr)) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2232) 		       offset_in_page(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2233) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2234) EXPORT_SYMBOL_GPL(per_cpu_ptr_to_phys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2235) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2236) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2237)  * pcpu_alloc_alloc_info - allocate percpu allocation info
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2238)  * @nr_groups: the number of groups
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2239)  * @nr_units: the number of units
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2240)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2241)  * Allocate ai which is large enough for @nr_groups groups containing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2242)  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2243)  * cpu_map array which is long enough for @nr_units and filled with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2244)  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2245)  * pointer of other groups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2246)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2247)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2248)  * Pointer to the allocated pcpu_alloc_info on success, NULL on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2249)  * failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2250)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2251) struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2252) 						      int nr_units)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2253) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2254) 	struct pcpu_alloc_info *ai;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2255) 	size_t base_size, ai_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2256) 	void *ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2257) 	int unit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2259) 	base_size = ALIGN(struct_size(ai, groups, nr_groups),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2260) 			  __alignof__(ai->groups[0].cpu_map[0]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2261) 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2263) 	ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2264) 	if (!ptr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2265) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2266) 	ai = ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2267) 	ptr += base_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2269) 	ai->groups[0].cpu_map = ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2271) 	for (unit = 0; unit < nr_units; unit++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2272) 		ai->groups[0].cpu_map[unit] = NR_CPUS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2273) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2274) 	ai->nr_groups = nr_groups;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2275) 	ai->__ai_size = PFN_ALIGN(ai_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2277) 	return ai;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2278) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2280) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2281)  * pcpu_free_alloc_info - free percpu allocation info
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2282)  * @ai: pcpu_alloc_info to free
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2283)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2284)  * Free @ai which was allocated by pcpu_alloc_alloc_info().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2285)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2286) void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2287) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2288) 	memblock_free_early(__pa(ai), ai->__ai_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2289) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2291) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2292)  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2293)  * @lvl: loglevel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2294)  * @ai: allocation info to dump
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2295)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2296)  * Print out information about @ai using loglevel @lvl.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2297)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2298) static void pcpu_dump_alloc_info(const char *lvl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2299) 				 const struct pcpu_alloc_info *ai)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2300) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2301) 	int group_width = 1, cpu_width = 1, width;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2302) 	char empty_str[] = "--------";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2303) 	int alloc = 0, alloc_end = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2304) 	int group, v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2305) 	int upa, apl;	/* units per alloc, allocs per line */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2307) 	v = ai->nr_groups;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2308) 	while (v /= 10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2309) 		group_width++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2311) 	v = num_possible_cpus();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2312) 	while (v /= 10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2313) 		cpu_width++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2314) 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2316) 	upa = ai->alloc_size / ai->unit_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2317) 	width = upa * (cpu_width + 1) + group_width + 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2318) 	apl = rounddown_pow_of_two(max(60 / width, 1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2320) 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2321) 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2322) 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2324) 	for (group = 0; group < ai->nr_groups; group++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2325) 		const struct pcpu_group_info *gi = &ai->groups[group];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2326) 		int unit = 0, unit_end = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2328) 		BUG_ON(gi->nr_units % upa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2329) 		for (alloc_end += gi->nr_units / upa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2330) 		     alloc < alloc_end; alloc++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2331) 			if (!(alloc % apl)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2332) 				pr_cont("\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2333) 				printk("%spcpu-alloc: ", lvl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2334) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2335) 			pr_cont("[%0*d] ", group_width, group);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2337) 			for (unit_end += upa; unit < unit_end; unit++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2338) 				if (gi->cpu_map[unit] != NR_CPUS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2339) 					pr_cont("%0*d ",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2340) 						cpu_width, gi->cpu_map[unit]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2341) 				else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2342) 					pr_cont("%s ", empty_str);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2343) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2344) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2345) 	pr_cont("\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2346) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2348) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2349)  * pcpu_setup_first_chunk - initialize the first percpu chunk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2350)  * @ai: pcpu_alloc_info describing how to percpu area is shaped
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2351)  * @base_addr: mapped address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2352)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2353)  * Initialize the first percpu chunk which contains the kernel static
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2354)  * percpu area.  This function is to be called from arch percpu area
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2355)  * setup path.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2356)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2357)  * @ai contains all information necessary to initialize the first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2358)  * chunk and prime the dynamic percpu allocator.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2359)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2360)  * @ai->static_size is the size of static percpu area.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2361)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2362)  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2363)  * reserve after the static area in the first chunk.  This reserves
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2364)  * the first chunk such that it's available only through reserved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2365)  * percpu allocation.  This is primarily used to serve module percpu
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2366)  * static areas on architectures where the addressing model has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2367)  * limited offset range for symbol relocations to guarantee module
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2368)  * percpu symbols fall inside the relocatable range.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2369)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2370)  * @ai->dyn_size determines the number of bytes available for dynamic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2371)  * allocation in the first chunk.  The area between @ai->static_size +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2372)  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2373)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2374)  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2375)  * and equal to or larger than @ai->static_size + @ai->reserved_size +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2376)  * @ai->dyn_size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2377)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2378)  * @ai->atom_size is the allocation atom size and used as alignment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2379)  * for vm areas.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2380)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2381)  * @ai->alloc_size is the allocation size and always multiple of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2382)  * @ai->atom_size.  This is larger than @ai->atom_size if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2383)  * @ai->unit_size is larger than @ai->atom_size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2384)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2385)  * @ai->nr_groups and @ai->groups describe virtual memory layout of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2386)  * percpu areas.  Units which should be colocated are put into the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2387)  * same group.  Dynamic VM areas will be allocated according to these
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2388)  * groupings.  If @ai->nr_groups is zero, a single group containing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2389)  * all units is assumed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2390)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2391)  * The caller should have mapped the first chunk at @base_addr and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2392)  * copied static data to each unit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2393)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2394)  * The first chunk will always contain a static and a dynamic region.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2395)  * However, the static region is not managed by any chunk.  If the first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2396)  * chunk also contains a reserved region, it is served by two chunks -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2397)  * one for the reserved region and one for the dynamic region.  They
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2398)  * share the same vm, but use offset regions in the area allocation map.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2399)  * The chunk serving the dynamic region is circulated in the chunk slots
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2400)  * and available for dynamic allocation like any other chunk.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2401)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2402) void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2403) 				   void *base_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2404) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2405) 	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2406) 	size_t static_size, dyn_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2407) 	struct pcpu_chunk *chunk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2408) 	unsigned long *group_offsets;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2409) 	size_t *group_sizes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2410) 	unsigned long *unit_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2411) 	unsigned int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2412) 	int *unit_map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2413) 	int group, unit, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2414) 	int map_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2415) 	unsigned long tmp_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2416) 	size_t alloc_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2417) 	enum pcpu_chunk_type type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2418) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2419) #define PCPU_SETUP_BUG_ON(cond)	do {					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2420) 	if (unlikely(cond)) {						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2421) 		pr_emerg("failed to initialize, %s\n", #cond);		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2422) 		pr_emerg("cpu_possible_mask=%*pb\n",			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2423) 			 cpumask_pr_args(cpu_possible_mask));		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2424) 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2425) 		BUG();							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2426) 	}								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2427) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2429) 	/* sanity checks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2430) 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2431) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2432) 	PCPU_SETUP_BUG_ON(!ai->static_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2433) 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2434) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2435) 	PCPU_SETUP_BUG_ON(!base_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2436) 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2437) 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2438) 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2439) 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2440) 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2441) 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2442) 	PCPU_SETUP_BUG_ON(!ai->dyn_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2443) 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2444) 	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2445) 			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2446) 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2448) 	/* process group information and build config tables accordingly */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2449) 	alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2450) 	group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2451) 	if (!group_offsets)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2452) 		panic("%s: Failed to allocate %zu bytes\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2453) 		      alloc_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2454) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2455) 	alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2456) 	group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2457) 	if (!group_sizes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2458) 		panic("%s: Failed to allocate %zu bytes\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2459) 		      alloc_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2460) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2461) 	alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2462) 	unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2463) 	if (!unit_map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2464) 		panic("%s: Failed to allocate %zu bytes\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2465) 		      alloc_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2467) 	alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2468) 	unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2469) 	if (!unit_off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2470) 		panic("%s: Failed to allocate %zu bytes\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2471) 		      alloc_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2472) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2473) 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2474) 		unit_map[cpu] = UINT_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2475) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2476) 	pcpu_low_unit_cpu = NR_CPUS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2477) 	pcpu_high_unit_cpu = NR_CPUS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2478) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2479) 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2480) 		const struct pcpu_group_info *gi = &ai->groups[group];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2481) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2482) 		group_offsets[group] = gi->base_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2483) 		group_sizes[group] = gi->nr_units * ai->unit_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2485) 		for (i = 0; i < gi->nr_units; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2486) 			cpu = gi->cpu_map[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2487) 			if (cpu == NR_CPUS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2488) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2489) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2490) 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2491) 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2492) 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2494) 			unit_map[cpu] = unit + i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2495) 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2497) 			/* determine low/high unit_cpu */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2498) 			if (pcpu_low_unit_cpu == NR_CPUS ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2499) 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2500) 				pcpu_low_unit_cpu = cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2501) 			if (pcpu_high_unit_cpu == NR_CPUS ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2502) 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2503) 				pcpu_high_unit_cpu = cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2504) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2505) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2506) 	pcpu_nr_units = unit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2508) 	for_each_possible_cpu(cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2509) 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2511) 	/* we're done parsing the input, undefine BUG macro and dump config */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2512) #undef PCPU_SETUP_BUG_ON
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2513) 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2515) 	pcpu_nr_groups = ai->nr_groups;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2516) 	pcpu_group_offsets = group_offsets;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2517) 	pcpu_group_sizes = group_sizes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2518) 	pcpu_unit_map = unit_map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2519) 	pcpu_unit_offsets = unit_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2520) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2521) 	/* determine basic parameters */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2522) 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2523) 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2524) 	pcpu_atom_size = ai->atom_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2525) 	pcpu_chunk_struct_size = struct_size(chunk, populated,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2526) 					     BITS_TO_LONGS(pcpu_unit_pages));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2527) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2528) 	pcpu_stats_save_ai(ai);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2529) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2530) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2531) 	 * Allocate chunk slots.  The additional last slot is for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2532) 	 * empty chunks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2533) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2534) 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2535) 	pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2536) 					  sizeof(pcpu_chunk_lists[0]) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2537) 					  PCPU_NR_CHUNK_TYPES,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2538) 					  SMP_CACHE_BYTES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2539) 	if (!pcpu_chunk_lists)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2540) 		panic("%s: Failed to allocate %zu bytes\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2541) 		      pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2542) 		      PCPU_NR_CHUNK_TYPES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2544) 	for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2545) 		for (i = 0; i < pcpu_nr_slots; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2546) 			INIT_LIST_HEAD(&pcpu_chunk_list(type)[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2547) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2548) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2549) 	 * The end of the static region needs to be aligned with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2550) 	 * minimum allocation size as this offsets the reserved and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2551) 	 * dynamic region.  The first chunk ends page aligned by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2552) 	 * expanding the dynamic region, therefore the dynamic region
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2553) 	 * can be shrunk to compensate while still staying above the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2554) 	 * configured sizes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2555) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2556) 	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2557) 	dyn_size = ai->dyn_size - (static_size - ai->static_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2559) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2560) 	 * Initialize first chunk.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2561) 	 * If the reserved_size is non-zero, this initializes the reserved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2562) 	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2563) 	 * and the dynamic region is initialized here.  The first chunk,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2564) 	 * pcpu_first_chunk, will always point to the chunk that serves
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2565) 	 * the dynamic region.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2566) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2567) 	tmp_addr = (unsigned long)base_addr + static_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2568) 	map_size = ai->reserved_size ?: dyn_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2569) 	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2571) 	/* init dynamic chunk if necessary */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2572) 	if (ai->reserved_size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2573) 		pcpu_reserved_chunk = chunk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2575) 		tmp_addr = (unsigned long)base_addr + static_size +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2576) 			   ai->reserved_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2577) 		map_size = dyn_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2578) 		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2579) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2581) 	/* link the first chunk in */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2582) 	pcpu_first_chunk = chunk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2583) 	pcpu_nr_empty_pop_pages[PCPU_CHUNK_ROOT] = pcpu_first_chunk->nr_empty_pop_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2584) 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2586) 	/* include all regions of the first chunk */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2587) 	pcpu_nr_populated += PFN_DOWN(size_sum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2588) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2589) 	pcpu_stats_chunk_alloc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2590) 	trace_percpu_create_chunk(base_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2591) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2592) 	/* we're done */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2593) 	pcpu_base_addr = base_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2594) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2595) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2596) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2598) const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2599) 	[PCPU_FC_AUTO]	= "auto",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2600) 	[PCPU_FC_EMBED]	= "embed",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2601) 	[PCPU_FC_PAGE]	= "page",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2602) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2604) enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2605) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2606) static int __init percpu_alloc_setup(char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2607) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2608) 	if (!str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2609) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2610) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2611) 	if (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2612) 		/* nada */;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2613) #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2614) 	else if (!strcmp(str, "embed"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2615) 		pcpu_chosen_fc = PCPU_FC_EMBED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2616) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2617) #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2618) 	else if (!strcmp(str, "page"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2619) 		pcpu_chosen_fc = PCPU_FC_PAGE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2620) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2621) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2622) 		pr_warn("unknown allocator %s specified\n", str);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2623) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2624) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2625) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2626) early_param("percpu_alloc", percpu_alloc_setup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2627) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2628) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2629)  * pcpu_embed_first_chunk() is used by the generic percpu setup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2630)  * Build it if needed by the arch config or the generic setup is going
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2631)  * to be used.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2632)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2633) #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2634) 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2635) #define BUILD_EMBED_FIRST_CHUNK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2636) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2637) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2638) /* build pcpu_page_first_chunk() iff needed by the arch config */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2639) #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2640) #define BUILD_PAGE_FIRST_CHUNK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2641) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2642) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2643) /* pcpu_build_alloc_info() is used by both embed and page first chunk */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2644) #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2645) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2646)  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2647)  * @reserved_size: the size of reserved percpu area in bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2648)  * @dyn_size: minimum free size for dynamic allocation in bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2649)  * @atom_size: allocation atom size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2650)  * @cpu_distance_fn: callback to determine distance between cpus, optional
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2651)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2652)  * This function determines grouping of units, their mappings to cpus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2653)  * and other parameters considering needed percpu size, allocation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2654)  * atom size and distances between CPUs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2655)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2656)  * Groups are always multiples of atom size and CPUs which are of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2657)  * LOCAL_DISTANCE both ways are grouped together and share space for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2658)  * units in the same group.  The returned configuration is guaranteed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2659)  * to have CPUs on different nodes on different groups and >=75% usage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2660)  * of allocated virtual address space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2661)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2662)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2663)  * On success, pointer to the new allocation_info is returned.  On
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2664)  * failure, ERR_PTR value is returned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2665)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2666) static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2667) 				size_t reserved_size, size_t dyn_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2668) 				size_t atom_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2669) 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2670) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2671) 	static int group_map[NR_CPUS] __initdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2672) 	static int group_cnt[NR_CPUS] __initdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2673) 	const size_t static_size = __per_cpu_end - __per_cpu_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2674) 	int nr_groups = 1, nr_units = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2675) 	size_t size_sum, min_unit_size, alloc_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2676) 	int upa, max_upa, best_upa;	/* units_per_alloc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2677) 	int last_allocs, group, unit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2678) 	unsigned int cpu, tcpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2679) 	struct pcpu_alloc_info *ai;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2680) 	unsigned int *cpu_map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2681) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2682) 	/* this function may be called multiple times */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2683) 	memset(group_map, 0, sizeof(group_map));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2684) 	memset(group_cnt, 0, sizeof(group_cnt));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2685) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2686) 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2687) 	size_sum = PFN_ALIGN(static_size + reserved_size +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2688) 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2689) 	dyn_size = size_sum - static_size - reserved_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2691) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2692) 	 * Determine min_unit_size, alloc_size and max_upa such that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2693) 	 * alloc_size is multiple of atom_size and is the smallest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2694) 	 * which can accommodate 4k aligned segments which are equal to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2695) 	 * or larger than min_unit_size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2696) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2697) 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2698) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2699) 	/* determine the maximum # of units that can fit in an allocation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2700) 	alloc_size = roundup(min_unit_size, atom_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2701) 	upa = alloc_size / min_unit_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2702) 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2703) 		upa--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2704) 	max_upa = upa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2705) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2706) 	/* group cpus according to their proximity */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2707) 	for_each_possible_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2708) 		group = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2709) 	next_group:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2710) 		for_each_possible_cpu(tcpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2711) 			if (cpu == tcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2712) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2713) 			if (group_map[tcpu] == group && cpu_distance_fn &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2714) 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2715) 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2716) 				group++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2717) 				nr_groups = max(nr_groups, group + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2718) 				goto next_group;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2719) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2720) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2721) 		group_map[cpu] = group;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2722) 		group_cnt[group]++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2723) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2724) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2725) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2726) 	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2727) 	 * Expand the unit_size until we use >= 75% of the units allocated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2728) 	 * Related to atom_size, which could be much larger than the unit_size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2729) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2730) 	last_allocs = INT_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2731) 	for (upa = max_upa; upa; upa--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2732) 		int allocs = 0, wasted = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2734) 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2735) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2736) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2737) 		for (group = 0; group < nr_groups; group++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2738) 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2739) 			allocs += this_allocs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2740) 			wasted += this_allocs * upa - group_cnt[group];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2741) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2742) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2743) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2744) 		 * Don't accept if wastage is over 1/3.  The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2745) 		 * greater-than comparison ensures upa==1 always
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2746) 		 * passes the following check.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2747) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2748) 		if (wasted > num_possible_cpus() / 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2749) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2750) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2751) 		/* and then don't consume more memory */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2752) 		if (allocs > last_allocs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2753) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2754) 		last_allocs = allocs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2755) 		best_upa = upa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2756) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2757) 	upa = best_upa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2758) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2759) 	/* allocate and fill alloc_info */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2760) 	for (group = 0; group < nr_groups; group++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2761) 		nr_units += roundup(group_cnt[group], upa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2762) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2763) 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2764) 	if (!ai)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2765) 		return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2766) 	cpu_map = ai->groups[0].cpu_map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2767) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2768) 	for (group = 0; group < nr_groups; group++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2769) 		ai->groups[group].cpu_map = cpu_map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2770) 		cpu_map += roundup(group_cnt[group], upa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2771) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2772) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2773) 	ai->static_size = static_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2774) 	ai->reserved_size = reserved_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2775) 	ai->dyn_size = dyn_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2776) 	ai->unit_size = alloc_size / upa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2777) 	ai->atom_size = atom_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2778) 	ai->alloc_size = alloc_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2779) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2780) 	for (group = 0, unit = 0; group < nr_groups; group++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2781) 		struct pcpu_group_info *gi = &ai->groups[group];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2782) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2783) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2784) 		 * Initialize base_offset as if all groups are located
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2785) 		 * back-to-back.  The caller should update this to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2786) 		 * reflect actual allocation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2787) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2788) 		gi->base_offset = unit * ai->unit_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2789) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2790) 		for_each_possible_cpu(cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2791) 			if (group_map[cpu] == group)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2792) 				gi->cpu_map[gi->nr_units++] = cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2793) 		gi->nr_units = roundup(gi->nr_units, upa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2794) 		unit += gi->nr_units;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2795) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2796) 	BUG_ON(unit != nr_units);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2797) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2798) 	return ai;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2799) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2800) #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2801) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2802) #if defined(BUILD_EMBED_FIRST_CHUNK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2803) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2804)  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2805)  * @reserved_size: the size of reserved percpu area in bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2806)  * @dyn_size: minimum free size for dynamic allocation in bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2807)  * @atom_size: allocation atom size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2808)  * @cpu_distance_fn: callback to determine distance between cpus, optional
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2809)  * @alloc_fn: function to allocate percpu page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2810)  * @free_fn: function to free percpu page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2811)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2812)  * This is a helper to ease setting up embedded first percpu chunk and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2813)  * can be called where pcpu_setup_first_chunk() is expected.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2814)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2815)  * If this function is used to setup the first chunk, it is allocated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2816)  * by calling @alloc_fn and used as-is without being mapped into
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2817)  * vmalloc area.  Allocations are always whole multiples of @atom_size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2818)  * aligned to @atom_size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2819)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2820)  * This enables the first chunk to piggy back on the linear physical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2821)  * mapping which often uses larger page size.  Please note that this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2822)  * can result in very sparse cpu->unit mapping on NUMA machines thus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2823)  * requiring large vmalloc address space.  Don't use this allocator if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2824)  * vmalloc space is not orders of magnitude larger than distances
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2825)  * between node memory addresses (ie. 32bit NUMA machines).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2826)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2827)  * @dyn_size specifies the minimum dynamic area size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2828)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2829)  * If the needed size is smaller than the minimum or specified unit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2830)  * size, the leftover is returned using @free_fn.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2831)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2832)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2833)  * 0 on success, -errno on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2834)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2835) int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2836) 				  size_t atom_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2837) 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2838) 				  pcpu_fc_alloc_fn_t alloc_fn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2839) 				  pcpu_fc_free_fn_t free_fn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2840) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2841) 	void *base = (void *)ULONG_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2842) 	void **areas = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2843) 	struct pcpu_alloc_info *ai;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2844) 	size_t size_sum, areas_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2845) 	unsigned long max_distance;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2846) 	int group, i, highest_group, rc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2847) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2848) 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2849) 				   cpu_distance_fn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2850) 	if (IS_ERR(ai))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2851) 		return PTR_ERR(ai);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2852) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2853) 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2854) 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2855) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2856) 	areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2857) 	if (!areas) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2858) 		rc = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2859) 		goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2860) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2861) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2862) 	/* allocate, copy and determine base address & max_distance */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2863) 	highest_group = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2864) 	for (group = 0; group < ai->nr_groups; group++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2865) 		struct pcpu_group_info *gi = &ai->groups[group];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2866) 		unsigned int cpu = NR_CPUS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2867) 		void *ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2868) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2869) 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2870) 			cpu = gi->cpu_map[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2871) 		BUG_ON(cpu == NR_CPUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2872) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2873) 		/* allocate space for the whole group */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2874) 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2875) 		if (!ptr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2876) 			rc = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2877) 			goto out_free_areas;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2878) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2879) 		/* kmemleak tracks the percpu allocations separately */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2880) 		kmemleak_free(ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2881) 		areas[group] = ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2882) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2883) 		base = min(ptr, base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2884) 		if (ptr > areas[highest_group])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2885) 			highest_group = group;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2886) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2887) 	max_distance = areas[highest_group] - base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2888) 	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2889) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2890) 	/* warn if maximum distance is further than 75% of vmalloc space */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2891) 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2892) 		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2893) 				max_distance, VMALLOC_TOTAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2894) #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2895) 		/* and fail if we have fallback */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2896) 		rc = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2897) 		goto out_free_areas;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2898) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2899) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2900) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2901) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2902) 	 * Copy data and free unused parts.  This should happen after all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2903) 	 * allocations are complete; otherwise, we may end up with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2904) 	 * overlapping groups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2905) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2906) 	for (group = 0; group < ai->nr_groups; group++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2907) 		struct pcpu_group_info *gi = &ai->groups[group];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2908) 		void *ptr = areas[group];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2909) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2910) 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2911) 			if (gi->cpu_map[i] == NR_CPUS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2912) 				/* unused unit, free whole */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2913) 				free_fn(ptr, ai->unit_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2914) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2915) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2916) 			/* copy and return the unused part */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2917) 			memcpy(ptr, __per_cpu_load, ai->static_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2918) 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2919) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2920) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2921) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2922) 	/* base address is now known, determine group base offsets */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2923) 	for (group = 0; group < ai->nr_groups; group++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2924) 		ai->groups[group].base_offset = areas[group] - base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2925) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2926) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2927) 	pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2928) 		PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2929) 		ai->dyn_size, ai->unit_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2930) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2931) 	pcpu_setup_first_chunk(ai, base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2932) 	goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2933) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2934) out_free_areas:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2935) 	for (group = 0; group < ai->nr_groups; group++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2936) 		if (areas[group])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2937) 			free_fn(areas[group],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2938) 				ai->groups[group].nr_units * ai->unit_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2939) out_free:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2940) 	pcpu_free_alloc_info(ai);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2941) 	if (areas)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2942) 		memblock_free_early(__pa(areas), areas_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2943) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2944) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2945) #endif /* BUILD_EMBED_FIRST_CHUNK */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2946) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2947) #ifdef BUILD_PAGE_FIRST_CHUNK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2948) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2949)  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2950)  * @reserved_size: the size of reserved percpu area in bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2951)  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2952)  * @free_fn: function to free percpu page, always called with PAGE_SIZE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2953)  * @populate_pte_fn: function to populate pte
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2954)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2955)  * This is a helper to ease setting up page-remapped first percpu
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2956)  * chunk and can be called where pcpu_setup_first_chunk() is expected.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2957)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2958)  * This is the basic allocator.  Static percpu area is allocated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2959)  * page-by-page into vmalloc area.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2960)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2961)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2962)  * 0 on success, -errno on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2963)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2964) int __init pcpu_page_first_chunk(size_t reserved_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2965) 				 pcpu_fc_alloc_fn_t alloc_fn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2966) 				 pcpu_fc_free_fn_t free_fn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2967) 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2968) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2969) 	static struct vm_struct vm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2970) 	struct pcpu_alloc_info *ai;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2971) 	char psize_str[16];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2972) 	int unit_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2973) 	size_t pages_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2974) 	struct page **pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2975) 	int unit, i, j, rc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2976) 	int upa;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2977) 	int nr_g0_units;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2978) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2979) 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2980) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2981) 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2982) 	if (IS_ERR(ai))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2983) 		return PTR_ERR(ai);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2984) 	BUG_ON(ai->nr_groups != 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2985) 	upa = ai->alloc_size/ai->unit_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2986) 	nr_g0_units = roundup(num_possible_cpus(), upa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2987) 	if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2988) 		pcpu_free_alloc_info(ai);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2989) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2990) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2991) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2992) 	unit_pages = ai->unit_size >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2993) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2994) 	/* unaligned allocations can't be freed, round up to page size */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2995) 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2996) 			       sizeof(pages[0]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2997) 	pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2998) 	if (!pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2999) 		panic("%s: Failed to allocate %zu bytes\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3000) 		      pages_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3001) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3002) 	/* allocate pages */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3003) 	j = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3004) 	for (unit = 0; unit < num_possible_cpus(); unit++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3005) 		unsigned int cpu = ai->groups[0].cpu_map[unit];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3006) 		for (i = 0; i < unit_pages; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3007) 			void *ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3008) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3009) 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3010) 			if (!ptr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3011) 				pr_warn("failed to allocate %s page for cpu%u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3012) 						psize_str, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3013) 				goto enomem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3014) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3015) 			/* kmemleak tracks the percpu allocations separately */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3016) 			kmemleak_free(ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3017) 			pages[j++] = virt_to_page(ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3018) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3019) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3020) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3021) 	/* allocate vm area, map the pages and copy static data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3022) 	vm.flags = VM_ALLOC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3023) 	vm.size = num_possible_cpus() * ai->unit_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3024) 	vm_area_register_early(&vm, PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3025) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3026) 	for (unit = 0; unit < num_possible_cpus(); unit++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3027) 		unsigned long unit_addr =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3028) 			(unsigned long)vm.addr + unit * ai->unit_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3030) 		for (i = 0; i < unit_pages; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3031) 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3032) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3033) 		/* pte already populated, the following shouldn't fail */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3034) 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3035) 				      unit_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3036) 		if (rc < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3037) 			panic("failed to map percpu area, err=%d\n", rc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3038) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3039) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3040) 		 * FIXME: Archs with virtual cache should flush local
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3041) 		 * cache for the linear mapping here - something
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3042) 		 * equivalent to flush_cache_vmap() on the local cpu.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3043) 		 * flush_cache_vmap() can't be used as most supporting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3044) 		 * data structures are not set up yet.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3045) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3046) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3047) 		/* copy static data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3048) 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3049) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3050) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3051) 	/* we're ready, commit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3052) 	pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3053) 		unit_pages, psize_str, ai->static_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3054) 		ai->reserved_size, ai->dyn_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3055) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3056) 	pcpu_setup_first_chunk(ai, vm.addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3057) 	goto out_free_ar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3058) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3059) enomem:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3060) 	while (--j >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3061) 		free_fn(page_address(pages[j]), PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3062) 	rc = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3063) out_free_ar:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3064) 	memblock_free_early(__pa(pages), pages_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3065) 	pcpu_free_alloc_info(ai);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3066) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3067) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3068) #endif /* BUILD_PAGE_FIRST_CHUNK */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3069) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3070) #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3071) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3072)  * Generic SMP percpu area setup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3073)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3074)  * The embedding helper is used because its behavior closely resembles
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3075)  * the original non-dynamic generic percpu area setup.  This is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3076)  * important because many archs have addressing restrictions and might
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3077)  * fail if the percpu area is located far away from the previous
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3078)  * location.  As an added bonus, in non-NUMA cases, embedding is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3079)  * generally a good idea TLB-wise because percpu area can piggy back
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3080)  * on the physical linear memory mapping which uses large page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3081)  * mappings on applicable archs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3082)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3083) unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3084) EXPORT_SYMBOL(__per_cpu_offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3085) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3086) static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3087) 				       size_t align)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3088) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3089) 	return  memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3090) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3091) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3092) static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3093) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3094) 	memblock_free_early(__pa(ptr), size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3095) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3096) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3097) void __init setup_per_cpu_areas(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3098) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3099) 	unsigned long delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3100) 	unsigned int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3101) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3103) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3104) 	 * Always reserve area for module percpu variables.  That's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3105) 	 * what the legacy allocator did.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3106) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3107) 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3108) 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3109) 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3110) 	if (rc < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3111) 		panic("Failed to initialize percpu areas.");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3112) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3113) 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3114) 	for_each_possible_cpu(cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3115) 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3116) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3117) #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3119) #else	/* CONFIG_SMP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3121) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3122)  * UP percpu area setup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3123)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3124)  * UP always uses km-based percpu allocator with identity mapping.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3125)  * Static percpu variables are indistinguishable from the usual static
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3126)  * variables and don't require any special preparation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3127)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3128) void __init setup_per_cpu_areas(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3129) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3130) 	const size_t unit_size =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3131) 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3132) 					 PERCPU_DYNAMIC_RESERVE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3133) 	struct pcpu_alloc_info *ai;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3134) 	void *fc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3136) 	ai = pcpu_alloc_alloc_info(1, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3137) 	fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3138) 	if (!ai || !fc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3139) 		panic("Failed to allocate memory for percpu areas.");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3140) 	/* kmemleak tracks the percpu allocations separately */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3141) 	kmemleak_free(fc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3143) 	ai->dyn_size = unit_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3144) 	ai->unit_size = unit_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3145) 	ai->atom_size = unit_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3146) 	ai->alloc_size = unit_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3147) 	ai->groups[0].nr_units = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3148) 	ai->groups[0].cpu_map[0] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3150) 	pcpu_setup_first_chunk(ai, fc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3151) 	pcpu_free_alloc_info(ai);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3152) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3154) #endif	/* CONFIG_SMP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3156) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3157)  * pcpu_nr_pages - calculate total number of populated backing pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3158)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3159)  * This reflects the number of pages populated to back chunks.  Metadata is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3160)  * excluded in the number exposed in meminfo as the number of backing pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3161)  * scales with the number of cpus and can quickly outweigh the memory used for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3162)  * metadata.  It also keeps this calculation nice and simple.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3163)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3164)  * RETURNS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3165)  * Total number of populated backing pages in use by the allocator.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3166)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3167) unsigned long pcpu_nr_pages(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3168) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3169) 	return pcpu_nr_populated * pcpu_nr_units;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3170) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3171) EXPORT_SYMBOL_GPL(pcpu_nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3173) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3174)  * Percpu allocator is initialized early during boot when neither slab or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3175)  * workqueue is available.  Plug async management until everything is up
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3176)  * and running.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3177)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3178) static int __init percpu_enable_async(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3179) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3180) 	pcpu_async_enabled = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3181) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3182) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3183) subsys_initcall(percpu_enable_async);