Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  *	linux/mm/mlock.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *  (C) Copyright 1995 Linus Torvalds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *  (C) Copyright 2002 Christoph Hellwig
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/capability.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/mman.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/sched/user.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/swap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/swapops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/pagemap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/pagevec.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/mempolicy.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/syscalls.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/page_pinner.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <linux/rmap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include <linux/mmzone.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #include <linux/hugetlb.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #include <linux/memcontrol.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #include <linux/mm_inline.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #include "internal.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) bool can_do_mlock(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 	if (rlimit(RLIMIT_MEMLOCK) != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 	if (capable(CAP_IPC_LOCK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) EXPORT_SYMBOL(can_do_mlock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)  * Mlocked pages are marked with PageMlocked() flag for efficient testing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)  * in vmscan and, possibly, the fault path; and to support semi-accurate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43)  * statistics.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45)  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46)  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47)  * The unevictable list is an LRU sibling list to the [in]active lists.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48)  * PageUnevictable is set to indicate the unevictable state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)  * When lazy mlocking via vmscan, it is important to ensure that the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51)  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52)  * may have mlocked a page that is being munlocked. So lazy mlock must take
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53)  * the mmap_lock for read, and verify that the vma really is locked
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54)  * (see mm/rmap.c).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58)  *  LRU accounting for clear_page_mlock()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) void clear_page_mlock(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	int nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	if (!TestClearPageMlocked(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 	nr_pages = thp_nr_pages(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 	count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	 * The previous TestClearPageMlocked() corresponds to the smp_mb()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	 * in __pagevec_lru_add_fn().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	 * See __pagevec_lru_add_fn for more explanation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	if (!isolate_lru_page(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 		putback_lru_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 		 * We lost the race. the page already moved to evictable list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 		if (PageUnevictable(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 			count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88)  * Mark page as mlocked if not already.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89)  * If page on LRU, isolate and putback to move to unevictable list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) void mlock_vma_page(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	/* Serialize with page migration */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	BUG_ON(!PageLocked(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	VM_BUG_ON_PAGE(PageTail(page), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	if (!TestSetPageMlocked(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 		int nr_pages = thp_nr_pages(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 		mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 		if (!isolate_lru_page(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 			putback_lru_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)  * Isolate a page from LRU with optional get_page() pin.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)  * Assumes lru_lock already held and page already pinned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	if (PageLRU(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 		struct lruvec *lruvec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 		lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 		if (getpage)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 			get_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 		ClearPageLRU(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 		del_page_from_lru_list(page, lruvec, page_lru(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130)  * Finish munlock after successful page isolation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)  * Page must be locked. This is a wrapper for try_to_munlock()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133)  * and putback_lru_page() with munlock accounting.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) static void __munlock_isolated_page(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	 * Optimization: if the page was mapped just once, that's our mapping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	 * and we don't need to check all the other vmas.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	if (page_mapcount(page) > 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 		try_to_munlock(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	/* Did try_to_unlock() succeed or punt? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	if (!PageMlocked(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 		count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	putback_lru_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)  * Accounting for page isolation fail during munlock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154)  * Performs accounting when page isolation fails in munlock. There is nothing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)  * else to do because it means some other task has already removed the page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)  * from the LRU. putback_lru_page() will take care of removing the page from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157)  * the unevictable list, if necessary. vmscan [page_referenced()] will move
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)  * the page back to the unevictable list if some other vma has it mlocked.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) static void __munlock_isolation_failed(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	int nr_pages = thp_nr_pages(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	if (PageUnevictable(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 		__count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 		__count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171)  * munlock_vma_page - munlock a vma page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)  * @page: page to be unlocked, either a normal page or THP page head
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)  * returns the size of the page as a page mask (0 for normal page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175)  *         HPAGE_PMD_NR - 1 for THP head page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)  * called from munlock()/munmap() path with page supposedly on the LRU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178)  * When we munlock a page, because the vma where we found the page is being
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179)  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180)  * page locked so that we can leave it on the unevictable lru list and not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181)  * bother vmscan with it.  However, to walk the page's rmap list in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)  * try_to_munlock() we must isolate the page from the LRU.  If some other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)  * task has removed the page from the LRU, we won't be able to do that.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184)  * So we clear the PageMlocked as we might not get another chance.  If we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)  * can't isolate the page, we leave it for putback_lru_page() and vmscan
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186)  * [page_referenced()/try_to_unmap()] to deal with.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) unsigned int munlock_vma_page(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	int nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	pg_data_t *pgdat = page_pgdat(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	/* For try_to_munlock() and to serialize with page migration */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	BUG_ON(!PageLocked(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	VM_BUG_ON_PAGE(PageTail(page), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	 * Serialize with any parallel __split_huge_page_refcount() which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	 * might otherwise copy PageMlocked to part of the tail pages before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	 * we clear it in the head page. It also stabilizes thp_nr_pages().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	spin_lock_irq(&pgdat->lru_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	if (!TestClearPageMlocked(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 		/* Potentially, PTE-mapped THP: do not skip the rest PTEs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 		nr_pages = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 		goto unlock_out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	nr_pages = thp_nr_pages(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	if (__munlock_isolate_lru_page(page, true)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 		spin_unlock_irq(&pgdat->lru_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 		__munlock_isolated_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	__munlock_isolation_failed(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) unlock_out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	spin_unlock_irq(&pgdat->lru_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	return nr_pages - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229)  * convert get_user_pages() return value to posix mlock() error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) static int __mlock_posix_error_return(long retval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	if (retval == -EFAULT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 		retval = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	else if (retval == -ENOMEM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 		retval = -EAGAIN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	return retval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241)  * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243)  * The fast path is available only for evictable pages with single mapping.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244)  * Then we can bypass the per-cpu pvec and get better performance.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245)  * when mapcount > 1 we need try_to_munlock() which can fail.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246)  * when !page_evictable(), we need the full redo logic of putback_lru_page to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247)  * avoid leaving evictable page in unevictable list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249)  * In case of success, @page is added to @pvec and @pgrescued is incremented
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)  * in case that the page was previously unevictable. @page is also unlocked.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 		int *pgrescued)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	VM_BUG_ON_PAGE(PageLRU(page), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	VM_BUG_ON_PAGE(!PageLocked(page), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	if (page_mapcount(page) <= 1 && page_evictable(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 		pagevec_add(pvec, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 		if (TestClearPageUnevictable(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 			(*pgrescued)++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 		unlock_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270)  * Putback multiple evictable pages to the LRU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)  * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273)  * the pages might have meanwhile become unevictable but that is OK.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 	 *__pagevec_lru_add() calls release_pages() so we don't call
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	 * put_page() explicitly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	__pagevec_lru_add(pvec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287)  * Munlock a batch of pages from the same zone
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289)  * The work is split to two main phases. First phase clears the Mlocked flag
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290)  * and attempts to isolate the pages, all under a single zone lru lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291)  * The second phase finishes the munlock only for pages where isolation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292)  * succeeded.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294)  * Note that the pagevec may be modified during the process.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	int nr = pagevec_count(pvec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	int delta_munlocked = -nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	struct pagevec pvec_putback;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 	int pgrescued = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 	pagevec_init(&pvec_putback);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	/* Phase 1: page isolation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	spin_lock_irq(&zone->zone_pgdat->lru_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	for (i = 0; i < nr; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 		struct page *page = pvec->pages[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 		if (TestClearPageMlocked(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 			 * We already have pin from follow_page_mask()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 			 * so we can spare the get_page() here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 			if (__munlock_isolate_lru_page(page, false))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 				__munlock_isolation_failed(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 			delta_munlocked++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 		 * We won't be munlocking this page in the next phase
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 		 * but we still need to release the follow_page_mask()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 		 * pin. We cannot do it under lru_lock however. If it's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 		 * the last pin, __page_cache_release() would deadlock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 		pagevec_add(&pvec_putback, pvec->pages[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 		pvec->pages[i] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	spin_unlock_irq(&zone->zone_pgdat->lru_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	/* Now we can release pins of pages that we are not munlocking */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	pagevec_release(&pvec_putback);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 	/* Phase 2: page munlock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	for (i = 0; i < nr; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 		struct page *page = pvec->pages[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 		if (page) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 			lock_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 			if (!__putback_lru_fast_prepare(page, &pvec_putback,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 					&pgrescued)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 				/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 				 * Slow path. We don't want to lose the last
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 				 * pin before unlock_page()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 				get_page(page); /* for putback_lru_page() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 				__munlock_isolated_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 				unlock_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 				put_page(page); /* from follow_page_mask() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	 * Phase 3: page putback for pages that qualified for the fast path
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	 * This will also call put_page() to return pin from follow_page_mask()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	if (pagevec_count(&pvec_putback))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 		__putback_lru_fast(&pvec_putback, pgrescued);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368)  * Fill up pagevec for __munlock_pagevec using pte walk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370)  * The function expects that the struct page corresponding to @start address is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371)  * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373)  * The rest of @pvec is filled by subsequent pages within the same pmd and same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374)  * zone, as long as the pte's are present and vm_normal_page() succeeds. These
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375)  * pages also get pinned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377)  * Returns the address of the next page that should be scanned. This equals
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378)  * @start + PAGE_SIZE when no page could be added by the pte walk.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 			struct vm_area_struct *vma, struct zone *zone,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 			unsigned long start, unsigned long end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	pte_t *pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 	spinlock_t *ptl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	 * Initialize pte walk starting at the already pinned page where we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	 * are sure that there is a pte, as it was pinned under the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 	 * mmap_lock write op.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 	/* Make sure we do not cross the page table boundary */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	end = pgd_addr_end(start, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	end = p4d_addr_end(start, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	end = pud_addr_end(start, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 	end = pmd_addr_end(start, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	/* The page next to the pinned page is the first we will try to get */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 	start += PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	while (start < end) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 		struct page *page = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 		pte++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 		if (pte_present(*pte))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 			page = vm_normal_page(vma, start, *pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 		 * Break if page could not be obtained or the page's node+zone does not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 		 * match
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 		if (!page || page_zone(page) != zone)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 		 * Do not use pagevec for PTE-mapped THP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 		 * munlock_vma_pages_range() will handle them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 		if (PageTransCompound(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 		get_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 		 * Increase the address that will be returned *before* the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 		 * eventual break due to pvec becoming full by adding the page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 		start += PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 		if (pagevec_add(pvec, page) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 	pte_unmap_unlock(pte, ptl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 	return start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434)  * munlock_vma_pages_range() - munlock all pages in the vma range.'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435)  * @vma - vma containing range to be munlock()ed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436)  * @start - start address in @vma of the range
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437)  * @end - end of range in @vma.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439)  *  For mremap(), munmap() and exit().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441)  * Called with @vma VM_LOCKED.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443)  * Returns with VM_LOCKED cleared.  Callers must be prepared to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444)  * deal with this.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446)  * We don't save and restore VM_LOCKED here because pages are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447)  * still on lru.  In unmap path, pages might be scanned by reclaim
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448)  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449)  * free them.  This will result in freeing mlocked pages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) void munlock_vma_pages_range(struct vm_area_struct *vma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 			     unsigned long start, unsigned long end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	vm_write_begin(vma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 	WRITE_ONCE(vma->vm_flags, vma->vm_flags & VM_LOCKED_CLEAR_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 	vm_write_end(vma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 	while (start < end) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 		struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 		unsigned int page_mask = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 		unsigned long page_increm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 		struct pagevec pvec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 		struct zone *zone;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 		pagevec_init(&pvec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 		 * Although FOLL_DUMP is intended for get_dump_page(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 		 * it just so happens that its special treatment of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 		 * ZERO_PAGE (returning an error instead of doing get_page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 		 * suits munlock very well (and if somehow an abnormal page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 		 * has sneaked into the range, we won't oops here: great).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 		page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 		if (page && !IS_ERR(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 			 * munlock_vma_pages_range uses follow_page(FOLL_GET)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 			 * so it need to use put_user_page but the munlock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 			 * path is quite complicated to deal with each put
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 			 * sites correctly so just unattribute them to avoid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 			 * false positive at this moment.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 			reset_page_pinner(page, compound_order(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 			if (PageTransTail(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 				VM_BUG_ON_PAGE(PageMlocked(page), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 				put_page(page); /* follow_page_mask() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 			} else if (PageTransHuge(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 				lock_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 				/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 				 * Any THP page found by follow_page_mask() may
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 				 * have gotten split before reaching
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 				 * munlock_vma_page(), so we need to compute
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 				 * the page_mask here instead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 				page_mask = munlock_vma_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 				unlock_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 				put_page(page); /* follow_page_mask() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 				/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 				 * Non-huge pages are handled in batches via
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 				 * pagevec. The pin from follow_page_mask()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 				 * prevents them from collapsing by THP.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 				pagevec_add(&pvec, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 				zone = page_zone(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 				/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 				 * Try to fill the rest of pagevec using fast
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 				 * pte walk. This will also update start to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 				 * the next page to process. Then munlock the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 				 * pagevec.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 				start = __munlock_pagevec_fill(&pvec, vma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 						zone, start, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 				__munlock_pagevec(&pvec, zone);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 				goto next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 		page_increm = 1 + page_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 		start += page_increm * PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) next:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 		cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526)  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528)  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529)  * munlock is a no-op.  However, for some special vmas, we go ahead and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530)  * populate the ptes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532)  * For vmas that pass the filters, merge/split as appropriate.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 	unsigned long start, unsigned long end, vm_flags_t newflags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 	struct mm_struct *mm = vma->vm_mm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 	pgoff_t pgoff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 	int nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 	int lock = !!(newflags & VM_LOCKED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 	vm_flags_t old_flags = vma->vm_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 	    vma_is_dax(vma))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 			  vma->vm_file, pgoff, vma_policy(vma),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 			  vma->vm_userfaultfd_ctx, vma_get_anon_name(vma));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 	if (*prev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 		vma = *prev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 		goto success;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 	if (start != vma->vm_start) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 		ret = split_vma(mm, vma, start, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 	if (end != vma->vm_end) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 		ret = split_vma(mm, vma, end, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) success:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 	 * Keep track of amount of locked VM.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 	nr_pages = (end - start) >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 	if (!lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 		nr_pages = -nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 	else if (old_flags & VM_LOCKED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 		nr_pages = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 	mm->locked_vm += nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 	 * vm_flags is protected by the mmap_lock held in write mode.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 	 * It's okay if try_to_unmap_one unmaps a page just after we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 	 * set VM_LOCKED, populate_vma_page_range will bring it back.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 	if (lock) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 		vm_write_begin(vma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 		WRITE_ONCE(vma->vm_flags, newflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 		vm_write_end(vma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 		munlock_vma_pages_range(vma, start, end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 	*prev = vma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) static int apply_vma_lock_flags(unsigned long start, size_t len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 				vm_flags_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 	unsigned long nstart, end, tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 	struct vm_area_struct * vma, * prev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 	int error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 	VM_BUG_ON(offset_in_page(start));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 	VM_BUG_ON(len != PAGE_ALIGN(len));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 	end = start + len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 	if (end < start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 	if (end == start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 	vma = find_vma(current->mm, start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 	if (!vma || vma->vm_start > start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 	prev = vma->vm_prev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) 	if (start > vma->vm_start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) 		prev = vma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 	for (nstart = start ; ; ) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) 		newflags |= flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) 		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 		tmp = vma->vm_end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) 		if (tmp > end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) 			tmp = end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) 		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) 		if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 		nstart = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 		if (nstart < prev->vm_end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 			nstart = prev->vm_end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 		if (nstart >= end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) 		vma = prev->vm_next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) 		if (!vma || vma->vm_start != nstart) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 			error = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) 	return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649)  * Go through vma areas and sum size of mlocked
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650)  * vma pages, as return value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651)  * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652)  * is also counted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653)  * Return value: previously mlocked page counts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) 		unsigned long start, size_t len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) 	struct vm_area_struct *vma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) 	unsigned long count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) 	if (mm == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) 		mm = current->mm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) 	vma = find_vma(mm, start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) 	if (vma == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) 		vma = mm->mmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) 	for (; vma ; vma = vma->vm_next) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) 		if (start >= vma->vm_end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) 		if (start + len <=  vma->vm_start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 		if (vma->vm_flags & VM_LOCKED) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 			if (start > vma->vm_start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) 				count -= (start - vma->vm_start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) 			if (start + len < vma->vm_end) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) 				count += start + len - vma->vm_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) 			count += vma->vm_end - vma->vm_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) 	return count >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 	unsigned long locked;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) 	unsigned long lock_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 	int error = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) 	start = untagged_addr(start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) 	if (!can_do_mlock())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) 		return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) 	len = PAGE_ALIGN(len + (offset_in_page(start)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) 	start &= PAGE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) 	lock_limit = rlimit(RLIMIT_MEMLOCK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) 	lock_limit >>= PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) 	locked = len >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) 	if (mmap_write_lock_killable(current->mm))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) 		return -EINTR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) 	locked += current->mm->locked_vm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) 	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) 		 * It is possible that the regions requested intersect with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) 		 * previously mlocked areas, that part area in "mm->locked_vm"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) 		 * should not be counted to new mlock increment count. So check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) 		 * and adjust locked count if necessary.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) 		locked -= count_mm_mlocked_page_nr(current->mm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) 				start, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) 	/* check against resource limits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) 	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) 		error = apply_vma_lock_flags(start, len, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) 	mmap_write_unlock(current->mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) 	if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) 		return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) 	error = __mm_populate(start, len, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) 	if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) 		return __mlock_posix_error_return(error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) 	return do_mlock(start, len, VM_LOCKED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) 	vm_flags_t vm_flags = VM_LOCKED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) 	if (flags & ~MLOCK_ONFAULT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) 	if (flags & MLOCK_ONFAULT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) 		vm_flags |= VM_LOCKONFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) 	return do_mlock(start, len, vm_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) 	start = untagged_addr(start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) 	len = PAGE_ALIGN(len + (offset_in_page(start)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) 	start &= PAGE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) 	if (mmap_write_lock_killable(current->mm))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) 		return -EINTR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) 	ret = apply_vma_lock_flags(start, len, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) 	mmap_write_unlock(current->mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770)  * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771)  * and translate into the appropriate modifications to mm->def_flags and/or the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772)  * flags for all current VMAs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774)  * There are a couple of subtleties with this.  If mlockall() is called multiple
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775)  * times with different flags, the values do not necessarily stack.  If mlockall
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776)  * is called once including the MCL_FUTURE flag and then a second time without
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777)  * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) static int apply_mlockall_flags(int flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) 	struct vm_area_struct * vma, * prev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) 	vm_flags_t to_add = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) 	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) 	if (flags & MCL_FUTURE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) 		current->mm->def_flags |= VM_LOCKED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) 		if (flags & MCL_ONFAULT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) 			current->mm->def_flags |= VM_LOCKONFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) 		if (!(flags & MCL_CURRENT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) 	if (flags & MCL_CURRENT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) 		to_add |= VM_LOCKED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) 		if (flags & MCL_ONFAULT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) 			to_add |= VM_LOCKONFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) 	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) 		vm_flags_t newflags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) 		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) 		newflags |= to_add;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) 		/* Ignore errors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) 		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) 		cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) SYSCALL_DEFINE1(mlockall, int, flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) 	unsigned long lock_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) 	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) 	    flags == MCL_ONFAULT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) 	if (!can_do_mlock())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) 		return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) 	lock_limit = rlimit(RLIMIT_MEMLOCK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) 	lock_limit >>= PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) 	if (mmap_write_lock_killable(current->mm))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) 		return -EINTR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) 	ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) 	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) 	    capable(CAP_IPC_LOCK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) 		ret = apply_mlockall_flags(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) 	mmap_write_unlock(current->mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) 	if (!ret && (flags & MCL_CURRENT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) 		mm_populate(0, TASK_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) SYSCALL_DEFINE0(munlockall)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) 	if (mmap_write_lock_killable(current->mm))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) 		return -EINTR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) 	ret = apply_mlockall_flags(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) 	mmap_write_unlock(current->mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856)  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857)  * shm segments) get accounted against the user_struct instead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) static DEFINE_SPINLOCK(shmlock_user_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) int user_shm_lock(size_t size, struct user_struct *user)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) 	unsigned long lock_limit, locked;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) 	int allowed = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) 	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) 	lock_limit = rlimit(RLIMIT_MEMLOCK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) 	if (lock_limit == RLIM_INFINITY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) 		allowed = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) 	lock_limit >>= PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) 	spin_lock(&shmlock_user_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) 	if (!allowed &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) 	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) 	get_uid(user);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) 	user->locked_shm += locked;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) 	allowed = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) 	spin_unlock(&shmlock_user_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) 	return allowed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) void user_shm_unlock(size_t size, struct user_struct *user)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) 	spin_lock(&shmlock_user_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) 	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) 	spin_unlock(&shmlock_user_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) 	free_uid(user);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) }