Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /* memcontrol.c - Memory Controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  * Copyright IBM Corporation, 2007
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  * Copyright 2007 OpenVZ SWsoft Inc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  * Author: Pavel Emelianov <xemul@openvz.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  * Memory thresholds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11)  * Copyright (C) 2009 Nokia Corporation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12)  * Author: Kirill A. Shutemov
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14)  * Kernel Memory Controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15)  * Copyright (C) 2012 Parallels Inc. and Google Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16)  * Authors: Glauber Costa and Suleiman Souhlal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18)  * Native page reclaim
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19)  * Charge lifetime sanitation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20)  * Lockless page tracking & accounting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21)  * Unified hierarchy configuration model
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22)  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #include <linux/page_counter.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) #include <linux/memcontrol.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) #include <linux/cgroup.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) #include <linux/pagewalk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) #include <linux/sched/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) #include <linux/shmem_fs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) #include <linux/hugetlb.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) #include <linux/pagemap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) #include <linux/vm_event_item.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) #include <linux/smp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) #include <linux/page-flags.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) #include <linux/backing-dev.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) #include <linux/bit_spinlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) #include <linux/rcupdate.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) #include <linux/limits.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) #include <linux/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) #include <linux/rbtree.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) #include <linux/swap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) #include <linux/swapops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) #include <linux/spinlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) #include <linux/eventfd.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) #include <linux/poll.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) #include <linux/sort.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) #include <linux/fs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) #include <linux/seq_file.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) #include <linux/vmpressure.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) #include <linux/mm_inline.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) #include <linux/swap_cgroup.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) #include <linux/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) #include <linux/oom.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) #include <linux/lockdep.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) #include <linux/file.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) #include <linux/tracehook.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) #include <linux/psi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) #include <linux/seq_buf.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) #include "internal.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) #include <net/sock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) #include <net/ip.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) #include "slab.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) #include <linux/uaccess.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) #include <trace/events/vmscan.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) #include <trace/hooks/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) struct cgroup_subsys memory_cgrp_subsys __read_mostly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) EXPORT_SYMBOL(memory_cgrp_subsys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) struct mem_cgroup *root_mem_cgroup __read_mostly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) /* Active memory cgroup to use from an interrupt context */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) /* Socket memory accounting disabled? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) static bool cgroup_memory_nosocket;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) /* Kernel memory accounting disabled? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) static bool cgroup_memory_nokmem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) /* Whether the swap controller is active */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) #ifdef CONFIG_MEMCG_SWAP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) bool cgroup_memory_noswap __read_mostly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) #define cgroup_memory_noswap		1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) #ifdef CONFIG_CGROUP_WRITEBACK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) /* Whether legacy memory+swap accounting is active */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) static bool do_memsw_account(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) #define THRESHOLDS_EVENTS_TARGET 128
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) #define SOFTLIMIT_EVENTS_TARGET 1024
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107)  * Cgroups above their limits are maintained in a RB-Tree, independent of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108)  * their hierarchy representation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) struct mem_cgroup_tree_per_node {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) 	struct rb_root rb_root;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 	struct rb_node *rb_rightmost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) 	spinlock_t lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) struct mem_cgroup_tree {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) static struct mem_cgroup_tree soft_limit_tree __read_mostly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) /* for OOM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) struct mem_cgroup_eventfd_list {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) 	struct list_head list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 	struct eventfd_ctx *eventfd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130)  * cgroup_event represents events which userspace want to receive.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) struct mem_cgroup_event {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 	 * memcg which the event belongs to.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) 	 * eventfd to signal userspace about the event.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 	struct eventfd_ctx *eventfd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) 	 * Each of these stored in a list by the cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) 	struct list_head list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) 	 * register_event() callback will be used to add new userspace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) 	 * waiter for changes related to this event.  Use eventfd_signal()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) 	 * on eventfd to send notification to userspace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 	int (*register_event)(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 			      struct eventfd_ctx *eventfd, const char *args);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) 	 * unregister_event() callback will be called when userspace closes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) 	 * the eventfd or on cgroup removing.  This callback must be set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) 	 * if you want provide notification functionality.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 	void (*unregister_event)(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 				 struct eventfd_ctx *eventfd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 	 * All fields below needed to unregister event when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 	 * userspace closes eventfd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) 	poll_table pt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 	wait_queue_head_t *wqh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 	wait_queue_entry_t wait;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 	struct work_struct remove;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) static void mem_cgroup_threshold(struct mem_cgroup *memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) /* Stuffs for move charges at task migration. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174)  * Types of charges to be moved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) #define MOVE_ANON	0x1U
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) #define MOVE_FILE	0x2U
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) /* "mc" and its members are protected by cgroup_mutex */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) static struct move_charge_struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 	spinlock_t	  lock; /* for from, to */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) 	struct mm_struct  *mm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 	struct mem_cgroup *from;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) 	struct mem_cgroup *to;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 	unsigned long precharge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 	unsigned long moved_charge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 	unsigned long moved_swap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 	struct task_struct *moving_task;	/* a task moving charges */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 	wait_queue_head_t waitq;		/* a waitq for other context */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) } mc = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198)  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199)  * limit reclaim to prevent infinite loops, if they ever occur.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) /* for encoding cft->private value on file */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) enum res_type {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 	_MEM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 	_MEMSWAP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 	_OOM_TYPE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 	_KMEM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 	_TCP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) #define MEMFILE_ATTR(val)	((val) & 0xffff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) /* Used for OOM nofiier */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) #define OOM_CONTROL		(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220)  * Iteration constructs for visiting all cgroups (under a tree).  If
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221)  * loops are exited prematurely (break), mem_cgroup_iter_break() must
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222)  * be used for reference counting.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) #define for_each_mem_cgroup_tree(iter, root)		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 	     iter != NULL;				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) 	     iter = mem_cgroup_iter(root, iter, NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) #define for_each_mem_cgroup(iter)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 	     iter != NULL;				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 	     iter = mem_cgroup_iter(NULL, iter, NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) static inline bool task_is_dying(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) 		(current->flags & PF_EXITING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) /* Some nice accessors for the vmpressure. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 	if (!memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 		memcg = root_mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 	return &memcg->vmpressure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) #ifdef CONFIG_MEMCG_KMEM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) static DEFINE_SPINLOCK(objcg_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) static void obj_cgroup_release(struct percpu_ref *ref)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 	unsigned int nr_bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 	unsigned int nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 	 * At this point all allocated objects are freed, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) 	 * The following sequence can lead to it:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 	 * 1) CPU0: objcg == stock->cached_objcg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 	 *          PAGE_SIZE bytes are charged
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 	 * 3) CPU1: a process from another memcg is allocating something,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 	 *          the stock if flushed,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 	 * 5) CPU0: we do release this object,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 	 *          92 bytes are added to stock->nr_bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 	 * 6) CPU0: stock is flushed,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 	 *          92 bytes are added to objcg->nr_charged_bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 	 * In the result, nr_charged_bytes == PAGE_SIZE.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 	 * This page will be uncharged in obj_cgroup_release().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 	nr_pages = nr_bytes >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 	spin_lock_irqsave(&objcg_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 	memcg = obj_cgroup_memcg(objcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) 	if (nr_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 		__memcg_kmem_uncharge(memcg, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 	list_del(&objcg->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 	mem_cgroup_put(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 	spin_unlock_irqrestore(&objcg_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 	percpu_ref_exit(ref);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 	kfree_rcu(objcg, rcu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) static struct obj_cgroup *obj_cgroup_alloc(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 	struct obj_cgroup *objcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 	if (!objcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 			      GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 		kfree(objcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 	INIT_LIST_HEAD(&objcg->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 	return objcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 				  struct mem_cgroup *parent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 	struct obj_cgroup *objcg, *iter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 	spin_lock_irq(&objcg_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 	/* Move active objcg to the parent's list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 	xchg(&objcg->memcg, parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 	css_get(&parent->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 	list_add(&objcg->list, &parent->objcg_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 	/* Move already reparented objcgs to the parent's list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 	list_for_each_entry(iter, &memcg->objcg_list, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 		css_get(&parent->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 		xchg(&iter->memcg, parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 		css_put(&memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 	list_splice(&memcg->objcg_list, &parent->objcg_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 	spin_unlock_irq(&objcg_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 	percpu_ref_kill(&objcg->refcnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347)  * This will be used as a shrinker list's index.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348)  * The main reason for not using cgroup id for this:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349)  *  this works better in sparse environments, where we have a lot of memcgs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350)  *  but only a few kmem-limited. Or also, if we have, for instance, 200
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351)  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352)  *  200 entry array for that.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354)  * The current size of the caches array is stored in memcg_nr_cache_ids. It
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355)  * will double each time we have to increase it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) static DEFINE_IDA(memcg_cache_ida);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) int memcg_nr_cache_ids;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) /* Protects memcg_nr_cache_ids */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) static DECLARE_RWSEM(memcg_cache_ids_sem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) void memcg_get_cache_ids(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 	down_read(&memcg_cache_ids_sem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) void memcg_put_cache_ids(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 	up_read(&memcg_cache_ids_sem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374)  * MIN_SIZE is different than 1, because we would like to avoid going through
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375)  * the alloc/free process all the time. In a small machine, 4 kmem-limited
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376)  * cgroups is a reasonable guess. In the future, it could be a parameter or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377)  * tunable, but that is strictly not necessary.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379)  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380)  * this constant directly from cgroup, but it is understandable that this is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381)  * better kept as an internal representation in cgroup.c. In any case, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382)  * cgrp_id space is not getting any smaller, and we don't have to necessarily
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383)  * increase ours as well if it increases.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) #define MEMCG_CACHES_MIN_SIZE 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389)  * A lot of the calls to the cache allocation functions are expected to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390)  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391)  * conditional to this static branch, we'll have to allow modules that does
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392)  * kmem_cache_alloc and the such to see this symbol as well
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) EXPORT_SYMBOL(memcg_kmem_enabled_key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) static int memcg_shrinker_map_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) static DEFINE_MUTEX(memcg_shrinker_map_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 					 int size, int old_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 	struct memcg_shrinker_map *new, *old;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 	int nid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 	lockdep_assert_held(&memcg_shrinker_map_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 	for_each_node(nid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 		old = rcu_dereference_protected(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 		/* Not yet online memcg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 		if (!old)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 		if (!new)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 		/* Set all old bits, clear all new bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 		memset(new->map, (int)0xff, old_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 		memset((void *)new->map + old_size, 0, size - old_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 	struct mem_cgroup_per_node *pn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 	struct memcg_shrinker_map *map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 	int nid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 	if (mem_cgroup_is_root(memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 	for_each_node(nid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 		pn = mem_cgroup_nodeinfo(memcg, nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 		map = rcu_dereference_protected(pn->shrinker_map, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 		if (map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 			kvfree(map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 		rcu_assign_pointer(pn->shrinker_map, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 	struct memcg_shrinker_map *map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 	int nid, size, ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 	if (mem_cgroup_is_root(memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 	mutex_lock(&memcg_shrinker_map_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 	size = memcg_shrinker_map_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 	for_each_node(nid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 		if (!map) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 			memcg_free_shrinker_maps(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 			ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 	mutex_unlock(&memcg_shrinker_map_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) int memcg_expand_shrinker_maps(int new_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 	int size, old_size, ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 	old_size = memcg_shrinker_map_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 	if (size <= old_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 	mutex_lock(&memcg_shrinker_map_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 	if (!root_mem_cgroup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 	for_each_mem_cgroup(memcg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 		if (mem_cgroup_is_root(memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 		if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 			mem_cgroup_iter_break(NULL, memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 			goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 	if (!ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 		memcg_shrinker_map_size = size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 	mutex_unlock(&memcg_shrinker_map_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 		struct memcg_shrinker_map *map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 		rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 		/* Pairs with smp mb in shrink_slab() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 		smp_mb__before_atomic();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 		set_bit(shrinker_id, map->map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 		rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523)  * mem_cgroup_css_from_page - css of the memcg associated with a page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524)  * @page: page of interest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526)  * If memcg is bound to the default hierarchy, css of the memcg associated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527)  * with @page is returned.  The returned css remains associated with @page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528)  * until it is released.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530)  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531)  * is returned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 	memcg = page->mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 		memcg = root_mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 	return &memcg->css;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546)  * page_cgroup_ino - return inode number of the memcg a page is charged to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547)  * @page: the page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549)  * Look up the closest online ancestor of the memory cgroup @page is charged to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550)  * and return its inode number or 0 if @page is not charged to any cgroup. It
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551)  * is safe to call this function without holding a reference to @page.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553)  * Note, this function is inherently racy, because there is nothing to prevent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554)  * the cgroup inode from getting torn down and potentially reallocated a moment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555)  * after page_cgroup_ino() returns, so it only should be used by callers that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556)  * do not care (such as procfs interfaces).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) ino_t page_cgroup_ino(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 	unsigned long ino = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 	memcg = page->mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 	 * The lowest bit set means that memcg isn't a valid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 	 * memcg pointer, but a obj_cgroups pointer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 	 * In this case the page is shared and doesn't belong
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 	 * to any specific memory cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 	if ((unsigned long) memcg & 0x1UL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 		memcg = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 		memcg = parent_mem_cgroup(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 	if (memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 		ino = cgroup_ino(memcg->css.cgroup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 	return ino;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) static struct mem_cgroup_per_node *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 	int nid = page_to_nid(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 	return memcg->nodeinfo[nid];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) static struct mem_cgroup_tree_per_node *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) soft_limit_tree_node(int nid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 	return soft_limit_tree.rb_tree_per_node[nid];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) static struct mem_cgroup_tree_per_node *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) soft_limit_tree_from_page(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 	int nid = page_to_nid(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 	return soft_limit_tree.rb_tree_per_node[nid];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 					 struct mem_cgroup_tree_per_node *mctz,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 					 unsigned long new_usage_in_excess)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 	struct rb_node **p = &mctz->rb_root.rb_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 	struct rb_node *parent = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 	struct mem_cgroup_per_node *mz_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) 	bool rightmost = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 	if (mz->on_tree)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 	mz->usage_in_excess = new_usage_in_excess;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 	if (!mz->usage_in_excess)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 	while (*p) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 		parent = *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 					tree_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 			p = &(*p)->rb_left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 			rightmost = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 		 * We can't avoid mem cgroups that are over their soft
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 		 * limit by the same amount
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 			p = &(*p)->rb_right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 	if (rightmost)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 		mctz->rb_rightmost = &mz->tree_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 	rb_link_node(&mz->tree_node, parent, p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 	mz->on_tree = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) 					 struct mem_cgroup_tree_per_node *mctz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 	if (!mz->on_tree)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 	if (&mz->tree_node == mctz->rb_rightmost)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 	rb_erase(&mz->tree_node, &mctz->rb_root);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) 	mz->on_tree = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 				       struct mem_cgroup_tree_per_node *mctz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 	spin_lock_irqsave(&mctz->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 	__mem_cgroup_remove_exceeded(mz, mctz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 	spin_unlock_irqrestore(&mctz->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 	unsigned long nr_pages = page_counter_read(&memcg->memory);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 	unsigned long excess = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 	if (nr_pages > soft_limit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 		excess = nr_pages - soft_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 	return excess;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 	unsigned long excess;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 	struct mem_cgroup_per_node *mz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 	struct mem_cgroup_tree_per_node *mctz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 	mctz = soft_limit_tree_from_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 	if (!mctz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 	 * Necessary to update all ancestors when hierarchy is used.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 	 * because their event counter is not touched.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 		mz = mem_cgroup_page_nodeinfo(memcg, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 		excess = soft_limit_excess(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 		 * We have to update the tree if mz is on RB-tree or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 		 * mem is over its softlimit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 		if (excess || mz->on_tree) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 			unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 			spin_lock_irqsave(&mctz->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 			/* if on-tree, remove it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 			if (mz->on_tree)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 				__mem_cgroup_remove_exceeded(mz, mctz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 			 * Insert again. mz->usage_in_excess will be updated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 			 * If excess is 0, no tree ops.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 			spin_unlock_irqrestore(&mctz->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 	struct mem_cgroup_tree_per_node *mctz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 	struct mem_cgroup_per_node *mz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 	int nid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 	for_each_node(nid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 		mz = mem_cgroup_nodeinfo(memcg, nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 		mctz = soft_limit_tree_node(nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 		if (mctz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 			mem_cgroup_remove_exceeded(mz, mctz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) static struct mem_cgroup_per_node *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 	struct mem_cgroup_per_node *mz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 	mz = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 	if (!mctz->rb_rightmost)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 		goto done;		/* Nothing to reclaim from */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 	mz = rb_entry(mctz->rb_rightmost,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 		      struct mem_cgroup_per_node, tree_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 	 * Remove the node now but someone else can add it back,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 	 * we will to add it back at the end of reclaim to its correct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 	 * position in the tree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 	__mem_cgroup_remove_exceeded(mz, mctz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 	if (!soft_limit_excess(mz->memcg) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 	    !css_tryget(&mz->memcg->css))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 		goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 	return mz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) static struct mem_cgroup_per_node *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 	struct mem_cgroup_per_node *mz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) 	spin_lock_irq(&mctz->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 	spin_unlock_irq(&mctz->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 	return mz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768)  * __mod_memcg_state - update cgroup memory statistics
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769)  * @memcg: the memory cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770)  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771)  * @val: delta to add to the counter, can be negative
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 	long x, threshold = MEMCG_CHARGE_BATCH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 	if (mem_cgroup_disabled())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 	if (memcg_stat_item_in_bytes(idx))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 		threshold <<= PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 	if (unlikely(abs(x) > threshold)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 		struct mem_cgroup *mi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 		 * Batch local counters to keep them in sync with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 		 * the hierarchical ones.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 			atomic_long_add(x, &mi->vmstats[idx]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 		x = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) static struct mem_cgroup_per_node *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 	struct mem_cgroup *parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 	parent = parent_mem_cgroup(pn->memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 	if (!parent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 	return mem_cgroup_nodeinfo(parent, nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 			      int val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 	struct mem_cgroup_per_node *pn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 	long x, threshold = MEMCG_CHARGE_BATCH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 	memcg = pn->memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 	/* Update memcg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 	__mod_memcg_state(memcg, idx, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 	/* Update lruvec */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 	if (vmstat_item_in_bytes(idx))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 		threshold <<= PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 	if (unlikely(abs(x) > threshold)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 		pg_data_t *pgdat = lruvec_pgdat(lruvec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 		struct mem_cgroup_per_node *pi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 			atomic_long_add(x, &pi->lruvec_stat[idx]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 		x = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842)  * __mod_lruvec_state - update lruvec memory statistics
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843)  * @lruvec: the lruvec
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844)  * @idx: the stat item
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845)  * @val: delta to add to the counter, can be negative
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847)  * The lruvec is the intersection of the NUMA node and a cgroup. This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848)  * function updates the all three counters that are affected by a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849)  * change of state at this level: per-node, per-cgroup, per-lruvec.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 			int val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 	/* Update node */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 	/* Update memcg and lruvec */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 	if (!mem_cgroup_disabled())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 		__mod_memcg_lruvec_state(lruvec, idx, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 	struct lruvec *lruvec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 	memcg = mem_cgroup_from_obj(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 	 * Untracked pages have no memcg, no lruvec. Update only the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 	 * node. If we reparent the slab objects to the root memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 	 * when we free the slab object, we need to update the per-memcg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 	 * vmstats to keep it correct for the root memcg.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 	if (!memcg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 		__mod_node_page_state(pgdat, idx, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 		__mod_lruvec_state(lruvec, idx, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) void mod_memcg_obj_state(void *p, int idx, int val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 	memcg = mem_cgroup_from_obj(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 	if (memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 		mod_memcg_state(memcg, idx, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898)  * __count_memcg_events - account VM events in a cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899)  * @memcg: the memory cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900)  * @idx: the event item
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901)  * @count: the number of events that occured
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 			  unsigned long count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 	unsigned long x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 	if (mem_cgroup_disabled())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 		struct mem_cgroup *mi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 		 * Batch local counters to keep them in sync with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 		 * the hierarchical ones.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 			atomic_long_add(x, &mi->vmevents[idx]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 		x = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 	return atomic_long_read(&memcg->vmevents[event]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 	long x = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 	for_each_possible_cpu(cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 	return x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 					 struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 					 int nr_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 	/* pagein of a big page is an event. So, ignore page size */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 	if (nr_pages > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 		__count_memcg_events(memcg, PGPGIN, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 	else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 		__count_memcg_events(memcg, PGPGOUT, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 		nr_pages = -nr_pages; /* for event */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 				       enum mem_cgroup_events_target target)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 	unsigned long val, next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 	/* from time_after() in jiffies.h */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 	if ((long)(next - val) < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 		switch (target) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 		case MEM_CGROUP_TARGET_THRESH:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 			next = val + THRESHOLDS_EVENTS_TARGET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 		case MEM_CGROUP_TARGET_SOFTLIMIT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 			next = val + SOFTLIMIT_EVENTS_TARGET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983)  * Check events in order.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 	/* threshold event is triggered in finer grain than soft limit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 						MEM_CGROUP_TARGET_THRESH))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 		bool do_softlimit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 						MEM_CGROUP_TARGET_SOFTLIMIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 		mem_cgroup_threshold(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 		if (unlikely(do_softlimit))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 			mem_cgroup_update_tree(memcg, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 	 * mm_update_next_owner() may clear mm->owner to NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 	 * if it races with swapoff, page migration, etc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 	 * So this can be called with p == NULL.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 	if (unlikely(!p))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) EXPORT_SYMBOL(mem_cgroup_from_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016)  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017)  * @mm: mm from which memcg should be extracted. It can be NULL.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019)  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020)  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021)  * returned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 	if (mem_cgroup_disabled())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 		 * Page cache insertions can happen withou an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 		 * actual mm context, e.g. during disk probing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 		 * on boot, loopback IO, acct() writes etc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 		if (unlikely(!mm))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 			memcg = root_mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 		else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 			if (unlikely(!memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 				memcg = root_mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 	} while (!css_tryget(&memcg->css));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 	return memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) EXPORT_SYMBOL(get_mem_cgroup_from_mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051)  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052)  * @page: page from which memcg should be extracted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054)  * Obtain a reference on page->memcg and returns it if successful. Otherwise
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055)  * root_mem_cgroup is returned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 	struct mem_cgroup *memcg = page->mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 	if (mem_cgroup_disabled())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 	/* Page should not get uncharged and freed memcg under us. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 		memcg = root_mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 	return memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) EXPORT_SYMBOL(get_mem_cgroup_from_page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) static __always_inline struct mem_cgroup *active_memcg(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 	if (in_interrupt())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 		return this_cpu_read(int_active_memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 		return current->active_memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) static __always_inline struct mem_cgroup *get_active_memcg(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 	memcg = active_memcg();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 	/* remote memcg must hold a ref. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 	if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 		memcg = root_mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 	return memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) static __always_inline bool memcg_kmem_bypass(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 	/* Allow remote memcg charging from any context. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 	if (unlikely(active_memcg()))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 	/* Memcg to charge can't be determined. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109)  * If active memcg is set, do not fallback to current->mm->memcg.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 	if (memcg_kmem_bypass())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 	if (unlikely(active_memcg()))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 		return get_active_memcg();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 	return get_mem_cgroup_from_mm(current->mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123)  * mem_cgroup_iter - iterate over memory cgroup hierarchy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124)  * @root: hierarchy root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125)  * @prev: previously returned memcg, NULL on first invocation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126)  * @reclaim: cookie for shared reclaim walks, NULL for full walks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128)  * Returns references to children of the hierarchy below @root, or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129)  * @root itself, or %NULL after a full round-trip.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131)  * Caller must pass the return value in @prev on subsequent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132)  * invocations for reference counting, or use mem_cgroup_iter_break()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133)  * to cancel a hierarchy walk before the round-trip is complete.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135)  * Reclaimers can specify a node in @reclaim to divide up the memcgs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136)  * in the hierarchy among all concurrent reclaimers operating on the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137)  * same node.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 				   struct mem_cgroup *prev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 				   struct mem_cgroup_reclaim_cookie *reclaim)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 	struct mem_cgroup_reclaim_iter *iter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 	struct cgroup_subsys_state *css = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 	struct mem_cgroup *memcg = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 	struct mem_cgroup *pos = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 	if (mem_cgroup_disabled())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 	if (!root)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 		root = root_mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 	if (prev && !reclaim)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 		pos = prev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 	if (!root->use_hierarchy && root != root_mem_cgroup) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 		if (prev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 		return root;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 	if (reclaim) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 		struct mem_cgroup_per_node *mz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 		iter = &mz->iter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 		if (prev && reclaim->generation != iter->generation)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 			goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 		while (1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 			pos = READ_ONCE(iter->position);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 			if (!pos || css_tryget(&pos->css))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 			 * css reference reached zero, so iter->position will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 			 * be cleared by ->css_released. However, we should not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 			 * rely on this happening soon, because ->css_released
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 			 * is called from a work queue, and by busy-waiting we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 			 * might block it. So we clear iter->position right
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 			 * away.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 			(void)cmpxchg(&iter->position, pos, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 	if (pos)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 		css = &pos->css;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 	for (;;) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 		css = css_next_descendant_pre(css, &root->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 		if (!css) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 			 * Reclaimers share the hierarchy walk, and a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 			 * new one might jump in right at the end of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 			 * the hierarchy - make sure they see at least
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 			 * one group and restart from the beginning.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 			if (!prev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 		 * Verify the css and acquire a reference.  The root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 		 * is provided by the caller, so we know it's alive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 		 * and kicking, and don't take an extra reference.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 		memcg = mem_cgroup_from_css(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 		if (css == &root->css)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 		if (css_tryget(css))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 		memcg = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 	if (reclaim) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 		 * The position could have already been updated by a competing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 		 * thread, so check that the value hasn't changed since we read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 		 * it to avoid reclaiming from the same cgroup twice.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 		(void)cmpxchg(&iter->position, pos, memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 		if (pos)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 			css_put(&pos->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 		if (!memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 			iter->generation++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 		else if (!prev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 			reclaim->generation = iter->generation;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) out_unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 	if (prev && prev != root)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) 		css_put(&prev->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) 	return memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250)  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251)  * @root: hierarchy root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252)  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) void mem_cgroup_iter_break(struct mem_cgroup *root,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) 			   struct mem_cgroup *prev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 	if (!root)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 		root = root_mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 	if (prev && prev != root)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 		css_put(&prev->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 					struct mem_cgroup *dead_memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 	struct mem_cgroup_reclaim_iter *iter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 	struct mem_cgroup_per_node *mz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 	int nid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 	for_each_node(nid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 		mz = mem_cgroup_nodeinfo(from, nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 		iter = &mz->iter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 		cmpxchg(&iter->position, dead_memcg, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 	struct mem_cgroup *memcg = dead_memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 	struct mem_cgroup *last;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) 		__invalidate_reclaim_iterators(memcg, dead_memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) 		last = memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 	} while ((memcg = parent_mem_cgroup(memcg)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 	 * When cgruop1 non-hierarchy mode is used,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) 	 * parent_mem_cgroup() does not walk all the way up to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) 	 * cgroup root (root_mem_cgroup). So we have to handle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 	 * dead_memcg from cgroup root separately.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) 	if (last != root_mem_cgroup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 		__invalidate_reclaim_iterators(root_mem_cgroup,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) 						dead_memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299)  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300)  * @memcg: hierarchy root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301)  * @fn: function to call for each task
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302)  * @arg: argument passed to @fn
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304)  * This function iterates over tasks attached to @memcg or to any of its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305)  * descendants and calls @fn for each task. If @fn returns a non-zero
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306)  * value, the function breaks the iteration loop and returns the value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307)  * Otherwise, it will iterate over all tasks and return 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309)  * This function must not be called for the root memory cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 			  int (*fn)(struct task_struct *, void *), void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 	struct mem_cgroup *iter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 	BUG_ON(memcg == root_mem_cgroup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 	for_each_mem_cgroup_tree(iter, memcg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 		struct css_task_iter it;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 		struct task_struct *task;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 		while (!ret && (task = css_task_iter_next(&it)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 			ret = fn(task, arg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 		css_task_iter_end(&it);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 		if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 			mem_cgroup_iter_break(memcg, iter);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336)  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337)  * @page: the page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338)  * @pgdat: pgdat of the page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340)  * This function relies on page->mem_cgroup being stable - see the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341)  * access rules in commit_charge().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 	struct mem_cgroup_per_node *mz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 	struct lruvec *lruvec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 	if (mem_cgroup_disabled()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 		lruvec = &pgdat->__lruvec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 	memcg = page->mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 	 * Swapcache readahead pages are added to the LRU - and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 	 * possibly migrated - before they are charged.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 	if (!memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 		memcg = root_mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 	mz = mem_cgroup_page_nodeinfo(memcg, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 	lruvec = &mz->lruvec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 	 * Since a node can be onlined after the mem_cgroup was created,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) 	 * we have to be prepared to initialize lruvec->zone here;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 	 * and if offlined then reonlined, we need to reinitialize it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 	if (unlikely(lruvec->pgdat != pgdat))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 		lruvec->pgdat = pgdat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 	return lruvec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376)  * mem_cgroup_update_lru_size - account for adding or removing an lru page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377)  * @lruvec: mem_cgroup per zone lru vector
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378)  * @lru: index of lru list the page is sitting on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379)  * @zid: zone id of the accounted pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380)  * @nr_pages: positive when adding or negative when removing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382)  * This function must be called under lru_lock, just before a page is added
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383)  * to or just after a page is removed from an lru list (that ordering being
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384)  * so as to allow it to check that lru_size 0 is consistent with list_empty).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) 				int zid, int nr_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 	struct mem_cgroup_per_node *mz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) 	unsigned long *lru_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 	long size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 	if (mem_cgroup_disabled())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 	lru_size = &mz->lru_zone_size[zid][lru];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 	if (nr_pages < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 		*lru_size += nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 	size = *lru_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 	if (WARN_ONCE(size < 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 		"%s(%p, %d, %d): lru_size %ld\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 		__func__, lruvec, lru, nr_pages, size)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 		VM_BUG_ON(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 		*lru_size = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) 	if (nr_pages > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) 		*lru_size += nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415)  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416)  * @memcg: the memory cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418)  * Returns the maximum amount of memory @mem can be charged with, in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419)  * pages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) 	unsigned long margin = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) 	unsigned long count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) 	unsigned long limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 	count = page_counter_read(&memcg->memory);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 	limit = READ_ONCE(memcg->memory.max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 	if (count < limit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 		margin = limit - count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) 	if (do_memsw_account()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) 		count = page_counter_read(&memcg->memsw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) 		limit = READ_ONCE(memcg->memsw.max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) 		if (count < limit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) 			margin = min(margin, limit - count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) 			margin = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) 	return margin;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445)  * A routine for checking "mem" is under move_account() or not.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447)  * Checking a cgroup is mc.from or mc.to or under hierarchy of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448)  * moving cgroups. This is for waiting at high-memory pressure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449)  * caused by "move".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) 	struct mem_cgroup *from;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) 	struct mem_cgroup *to;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) 	bool ret = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) 	 * Unlike task_move routines, we access mc.to, mc.from not under
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) 	spin_lock(&mc.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) 	from = mc.from;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) 	to = mc.to;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) 	if (!from)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) 	ret = mem_cgroup_is_descendant(from, memcg) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) 		mem_cgroup_is_descendant(to, memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) 	spin_unlock(&mc.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) 	if (mc.moving_task && current != mc.moving_task) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) 		if (mem_cgroup_under_move(memcg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) 			DEFINE_WAIT(wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) 			/* moving charge context might have finished. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) 			if (mc.moving_task)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) 				schedule();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) 			finish_wait(&mc.waitq, &wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) 			return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) struct memory_stat {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) 	const char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) 	unsigned int ratio;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) 	unsigned int idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) static struct memory_stat memory_stats[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) 	{ "anon", PAGE_SIZE, NR_ANON_MAPPED },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) 	{ "file", PAGE_SIZE, NR_FILE_PAGES },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) 	{ "kernel_stack", 1024, NR_KERNEL_STACK_KB },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) 	{ "percpu", 1, MEMCG_PERCPU_B },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) 	{ "sock", PAGE_SIZE, MEMCG_SOCK },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) 	{ "shmem", PAGE_SIZE, NR_SHMEM },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) 	{ "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) 	{ "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) 	{ "file_writeback", PAGE_SIZE, NR_WRITEBACK },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) #ifdef CONFIG_TRANSPARENT_HUGEPAGE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) 	 * The ratio will be initialized in memory_stats_init(). Because
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) 	 * on some architectures, the macro of HPAGE_PMD_SIZE is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) 	 * constant(e.g. powerpc).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) 	{ "anon_thp", 0, NR_ANON_THPS },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) 	{ "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) 	{ "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 	{ "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) 	{ "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) 	{ "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) 	 * Note: The slab_reclaimable and slab_unreclaimable must be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) 	 * together and slab_reclaimable must be in front.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) 	{ "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) 	{ "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) 	/* The memory events */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) 	{ "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) 	{ "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) 	{ "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) 	{ "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) 	{ "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) 	{ "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) 	{ "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) static int __init memory_stats_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) #ifdef CONFIG_TRANSPARENT_HUGEPAGE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) 		if (memory_stats[i].idx == NR_ANON_THPS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) 			memory_stats[i].ratio = HPAGE_PMD_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) 		VM_BUG_ON(!memory_stats[i].ratio);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) 		VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) pure_initcall(memory_stats_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) static char *memory_stat_format(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 	struct seq_buf s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) 	if (!s.buffer)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) 	 * Provide statistics on the state of the memory subsystem as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) 	 * well as cumulative event counters that show past behavior.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) 	 * This list is ordered following a combination of these gradients:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) 	 * 1) generic big picture -> specifics and details
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) 	 * Current memory state:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) 		u64 size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) 		size = memcg_page_state(memcg, memory_stats[i].idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) 		size *= memory_stats[i].ratio;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) 			size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) 			       memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) 			seq_buf_printf(&s, "slab %llu\n", size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) 	/* Accumulated memory events */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) 		       memcg_events(memcg, PGFAULT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) 		       memcg_events(memcg, PGMAJFAULT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) 		       memcg_events(memcg, PGREFILL));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) 	seq_buf_printf(&s, "pgscan %lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) 		       memcg_events(memcg, PGSCAN_KSWAPD) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) 		       memcg_events(memcg, PGSCAN_DIRECT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) 	seq_buf_printf(&s, "pgsteal %lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) 		       memcg_events(memcg, PGSTEAL_DIRECT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) 		       memcg_events(memcg, PGACTIVATE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) 		       memcg_events(memcg, PGDEACTIVATE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) 		       memcg_events(memcg, PGLAZYFREE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) 		       memcg_events(memcg, PGLAZYFREED));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) #ifdef CONFIG_TRANSPARENT_HUGEPAGE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) 		       memcg_events(memcg, THP_FAULT_ALLOC));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) 	/* The above should easily fit into one page */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) 	return s.buffer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) #define K(x) ((x) << (PAGE_SHIFT-10))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625)  * mem_cgroup_print_oom_context: Print OOM information relevant to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626)  * memory controller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627)  * @memcg: The memory cgroup that went over limit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628)  * @p: Task that is going to be killed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630)  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631)  * enabled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) 	if (memcg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) 		pr_cont(",oom_memcg=");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) 		pr_cont_cgroup_path(memcg->css.cgroup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) 		pr_cont(",global_oom");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) 	if (p) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) 		pr_cont(",task_memcg=");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650)  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651)  * memory controller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652)  * @memcg: The memory cgroup that went over limit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) 	char *buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) 		K((u64)page_counter_read(&memcg->memory)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) 			K((u64)page_counter_read(&memcg->swap)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) 	else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) 			K((u64)page_counter_read(&memcg->memsw)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) 			K((u64)page_counter_read(&memcg->kmem)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671) 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) 	pr_info("Memory cgroup stats for ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) 	pr_cont_cgroup_path(memcg->css.cgroup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) 	pr_cont(":");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) 	buf = memory_stat_format(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) 	if (!buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) 	pr_info("%s", buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) 	kfree(buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685)  * Return the memory (and swap, if configured) limit for a memcg.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) 	unsigned long max = READ_ONCE(memcg->memory.max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) 		if (mem_cgroup_swappiness(memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) 			max += min(READ_ONCE(memcg->swap.max),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) 				   (unsigned long)total_swap_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) 	} else { /* v1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) 		if (mem_cgroup_swappiness(memcg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) 			/* Calculate swap excess capacity from memsw limit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) 			max += min(swap, (unsigned long)total_swap_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) 	return max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) 	return page_counter_read(&memcg->memory);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) 				     int order)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) 	struct oom_control oc = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) 		.zonelist = NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716) 		.nodemask = NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) 		.memcg = memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) 		.gfp_mask = gfp_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719) 		.order = order,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) 	bool ret = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) 	if (mutex_lock_killable(&oom_lock))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) 	if (mem_cgroup_margin(memcg) >= (1 << order))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) 	 * A few threads which were not waiting at mutex_lock_killable() can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) 	 * fail to bail out. Therefore, check again after holding oom_lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) 	ret = task_is_dying() || out_of_memory(&oc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) 	mutex_unlock(&oom_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) 				   pg_data_t *pgdat,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) 				   gfp_t gfp_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) 				   unsigned long *total_scanned)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) 	struct mem_cgroup *victim = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) 	int total = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) 	int loop = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) 	unsigned long excess;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) 	unsigned long nr_scanned;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) 	struct mem_cgroup_reclaim_cookie reclaim = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751) 		.pgdat = pgdat,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) 	excess = soft_limit_excess(root_memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) 	while (1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) 		if (!victim) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) 			loop++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) 			if (loop >= 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) 				/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) 				 * If we have not been able to reclaim
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) 				 * anything, it might because there are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) 				 * no reclaimable pages under this hierarchy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) 				if (!total)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) 					break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) 				/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) 				 * We want to do more targeted reclaim.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) 				 * excess >> 2 is not to excessive so as to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) 				 * reclaim too much, nor too less that we keep
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) 				 * coming back to reclaim from this cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774) 				if (total >= (excess >> 2) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) 					break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780) 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) 					pgdat, &nr_scanned);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) 		*total_scanned += nr_scanned;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) 		if (!soft_limit_excess(root_memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) 	mem_cgroup_iter_break(root_memcg, victim);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) 	return total;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790) #ifdef CONFIG_LOCKDEP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791) static struct lockdep_map memcg_oom_lock_dep_map = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) 	.name = "memcg_oom_lock",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) static DEFINE_SPINLOCK(memcg_oom_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799)  * Check OOM-Killer is already running under our hierarchy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800)  * If someone is running, return false.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802) static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) 	struct mem_cgroup *iter, *failed = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) 	spin_lock(&memcg_oom_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) 	for_each_mem_cgroup_tree(iter, memcg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809) 		if (iter->oom_lock) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) 			 * this subtree of our hierarchy is already locked
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) 			 * so we cannot give a lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) 			failed = iter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815) 			mem_cgroup_iter_break(memcg, iter);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817) 		} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818) 			iter->oom_lock = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) 	if (failed) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) 		 * OK, we failed to lock the whole subtree so we have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) 		 * to clean up what we set up to the failing subtree
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) 		for_each_mem_cgroup_tree(iter, memcg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827) 			if (iter == failed) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) 				mem_cgroup_iter_break(memcg, iter);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) 			iter->oom_lock = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834) 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836) 	spin_unlock(&memcg_oom_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838) 	return !failed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841) static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) 	struct mem_cgroup *iter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) 	spin_lock(&memcg_oom_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846) 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) 	for_each_mem_cgroup_tree(iter, memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) 		iter->oom_lock = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849) 	spin_unlock(&memcg_oom_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) 	struct mem_cgroup *iter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) 	spin_lock(&memcg_oom_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857) 	for_each_mem_cgroup_tree(iter, memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) 		iter->under_oom++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) 	spin_unlock(&memcg_oom_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862) static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) 	struct mem_cgroup *iter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867) 	 * Be careful about under_oom underflows becase a child memcg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) 	 * could have been added after mem_cgroup_mark_under_oom.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870) 	spin_lock(&memcg_oom_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871) 	for_each_mem_cgroup_tree(iter, memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872) 		if (iter->under_oom > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873) 			iter->under_oom--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) 	spin_unlock(&memcg_oom_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877) static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879) struct oom_wait_info {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881) 	wait_queue_entry_t	wait;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884) static int memcg_oom_wake_function(wait_queue_entry_t *wait,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885) 	unsigned mode, int sync, void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887) 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888) 	struct mem_cgroup *oom_wait_memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889) 	struct oom_wait_info *oom_wait_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892) 	oom_wait_memcg = oom_wait_info->memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894) 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) 	return autoremove_wake_function(wait, mode, sync, arg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900) static void memcg_oom_recover(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903) 	 * For the following lockless ->under_oom test, the only required
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904) 	 * guarantee is that it must see the state asserted by an OOM when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905) 	 * this function is called as a result of userland actions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906) 	 * triggered by the notification of the OOM.  This is trivially
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907) 	 * achieved by invoking mem_cgroup_mark_under_oom() before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908) 	 * triggering notification.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910) 	if (memcg && memcg->under_oom)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911) 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914) enum oom_status {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915) 	OOM_SUCCESS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916) 	OOM_FAILED,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917) 	OOM_ASYNC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918) 	OOM_SKIPPED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921) static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923) 	enum oom_status ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) 	bool locked;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926) 	if (order > PAGE_ALLOC_COSTLY_ORDER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) 		return OOM_SKIPPED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929) 	memcg_memory_event(memcg, MEMCG_OOM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932) 	 * We are in the middle of the charge context here, so we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) 	 * don't want to block when potentially sitting on a callstack
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934) 	 * that holds all kinds of filesystem and mm locks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936) 	 * cgroup1 allows disabling the OOM killer and waiting for outside
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) 	 * handling until the charge can succeed; remember the context and put
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938) 	 * the task to sleep at the end of the page fault when all locks are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939) 	 * released.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) 	 * On the other hand, in-kernel OOM killer allows for an async victim
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942) 	 * memory reclaim (oom_reaper) and that means that we are not solely
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) 	 * relying on the oom victim to make a forward progress and we can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) 	 * invoke the oom killer here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) 	 * Please note that mem_cgroup_out_of_memory might fail to find a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) 	 * victim and then we have to bail out from the charge path.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) 	if (memcg->oom_kill_disable) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) 		if (!current->in_user_fault)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951) 			return OOM_SKIPPED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) 		css_get(&memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) 		current->memcg_in_oom = memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954) 		current->memcg_oom_gfp_mask = mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) 		current->memcg_oom_order = order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) 		return OOM_ASYNC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960) 	mem_cgroup_mark_under_oom(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962) 	locked = mem_cgroup_oom_trylock(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964) 	if (locked)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) 		mem_cgroup_oom_notify(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) 	mem_cgroup_unmark_under_oom(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968) 	if (mem_cgroup_out_of_memory(memcg, mask, order))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969) 		ret = OOM_SUCCESS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) 		ret = OOM_FAILED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) 	if (locked)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974) 		mem_cgroup_oom_unlock(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980)  * mem_cgroup_oom_synchronize - complete memcg OOM handling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981)  * @handle: actually kill/wait or just clean up the OOM state
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983)  * This has to be called at the end of a page fault if the memcg OOM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984)  * handler was enabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986)  * Memcg supports userspace OOM handling where failed allocations must
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987)  * sleep on a waitqueue until the userspace task resolves the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988)  * situation.  Sleeping directly in the charge context with all kinds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989)  * of locks held is not a good idea, instead we remember an OOM state
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990)  * in the task and mem_cgroup_oom_synchronize() has to be called at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991)  * the end of the page fault to complete the OOM handling.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993)  * Returns %true if an ongoing memcg OOM situation was detected and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994)  * completed, %false otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) bool mem_cgroup_oom_synchronize(bool handle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) 	struct mem_cgroup *memcg = current->memcg_in_oom;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) 	struct oom_wait_info owait;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) 	bool locked;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) 	/* OOM is global, do not handle */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003) 	if (!memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006) 	if (!handle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007) 		goto cleanup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009) 	owait.memcg = memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) 	owait.wait.flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011) 	owait.wait.func = memcg_oom_wake_function;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012) 	owait.wait.private = current;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013) 	INIT_LIST_HEAD(&owait.wait.entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015) 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016) 	mem_cgroup_mark_under_oom(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018) 	locked = mem_cgroup_oom_trylock(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020) 	if (locked)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) 		mem_cgroup_oom_notify(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023) 	if (locked && !memcg->oom_kill_disable) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) 		mem_cgroup_unmark_under_oom(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) 		finish_wait(&memcg_oom_waitq, &owait.wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026) 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) 					 current->memcg_oom_order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) 		schedule();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) 		mem_cgroup_unmark_under_oom(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031) 		finish_wait(&memcg_oom_waitq, &owait.wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) 	if (locked) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) 		mem_cgroup_oom_unlock(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) 		 * There is no guarantee that an OOM-lock contender
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) 		 * sees the wakeups triggered by the OOM kill
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) 		 * uncharges.  Wake any sleepers explicitely.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) 		memcg_oom_recover(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) cleanup:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) 	current->memcg_in_oom = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045) 	css_put(&memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) 	return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050)  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051)  * @victim: task to be killed by the OOM killer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052)  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054)  * Returns a pointer to a memory cgroup, which has to be cleaned up
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055)  * by killing all belonging OOM-killable tasks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057)  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059) struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060) 					    struct mem_cgroup *oom_domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062) 	struct mem_cgroup *oom_group = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065) 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068) 	if (!oom_domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069) 		oom_domain = root_mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073) 	memcg = mem_cgroup_from_task(victim);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074) 	if (memcg == root_mem_cgroup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078) 	 * If the victim task has been asynchronously moved to a different
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079) 	 * memory cgroup, we might end up killing tasks outside oom_domain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080) 	 * In this case it's better to ignore memory.group.oom.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082) 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086) 	 * Traverse the memory cgroup hierarchy from the victim task's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087) 	 * cgroup up to the OOMing cgroup (or root) to find the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088) 	 * highest-level memory cgroup with oom.group set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090) 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091) 		if (memcg->oom_group)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092) 			oom_group = memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094) 		if (memcg == oom_domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098) 	if (oom_group)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) 		css_get(&oom_group->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) 	return oom_group;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106) void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108) 	pr_info("Tasks in ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109) 	pr_cont_cgroup_path(memcg->css.cgroup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110) 	pr_cont(" are going to be killed due to memory.oom.group set\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114)  * lock_page_memcg - lock a page->mem_cgroup binding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115)  * @page: the page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117)  * This function protects unlocked LRU pages from being moved to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118)  * another cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120)  * It ensures lifetime of the returned memcg. Caller is responsible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121)  * for the lifetime of the page; __unlock_page_memcg() is available
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122)  * when @page might get freed inside the locked section.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124) struct mem_cgroup *lock_page_memcg(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126) 	struct page *head = compound_head(page); /* rmap on tail pages */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) 	 * The RCU lock is held throughout the transaction.  The fast
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132) 	 * path can get away without acquiring the memcg->move_lock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133) 	 * because page moving starts with an RCU grace period.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135) 	 * The RCU lock also protects the memcg from being freed when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136) 	 * the page state that is going to change is the only thing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137) 	 * preventing the page itself from being freed. E.g. writeback
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138) 	 * doesn't hold a page reference and relies on PG_writeback to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139) 	 * keep off truncation, migration and so forth.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140)          */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143) 	if (mem_cgroup_disabled())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2144) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2145) again:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2146) 	memcg = head->mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2147) 	if (unlikely(!memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2148) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2150) 	if (atomic_read(&memcg->moving_account) <= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2151) 		return memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2153) 	spin_lock_irqsave(&memcg->move_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2154) 	if (memcg != head->mem_cgroup) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2155) 		spin_unlock_irqrestore(&memcg->move_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2156) 		goto again;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2157) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2159) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2160) 	 * When charge migration first begins, we can have locked and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2161) 	 * unlocked page stat updates happening concurrently.  Track
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2162) 	 * the task who has the lock for unlock_page_memcg().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2163) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2164) 	memcg->move_lock_task = current;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2165) 	memcg->move_lock_flags = flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2167) 	return memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2168) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2169) EXPORT_SYMBOL(lock_page_memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2171) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2172)  * __unlock_page_memcg - unlock and unpin a memcg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2173)  * @memcg: the memcg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2174)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2175)  * Unlock and unpin a memcg returned by lock_page_memcg().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2176)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2177) void __unlock_page_memcg(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2178) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2179) 	if (memcg && memcg->move_lock_task == current) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2180) 		unsigned long flags = memcg->move_lock_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2182) 		memcg->move_lock_task = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2183) 		memcg->move_lock_flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2185) 		spin_unlock_irqrestore(&memcg->move_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2186) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2188) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2189) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2191) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2192)  * unlock_page_memcg - unlock a page->mem_cgroup binding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2193)  * @page: the page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2194)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2195) void unlock_page_memcg(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2196) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2197) 	struct page *head = compound_head(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2199) 	__unlock_page_memcg(head->mem_cgroup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2200) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2201) EXPORT_SYMBOL(unlock_page_memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2203) struct memcg_stock_pcp {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2204) 	struct mem_cgroup *cached; /* this never be root cgroup */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2205) 	unsigned int nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2207) #ifdef CONFIG_MEMCG_KMEM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2208) 	struct obj_cgroup *cached_objcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2209) 	unsigned int nr_bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2210) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2212) 	struct work_struct work;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2213) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2214) #define FLUSHING_CACHED_CHARGE	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2215) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2216) static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2217) static DEFINE_MUTEX(percpu_charge_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2219) #ifdef CONFIG_MEMCG_KMEM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2220) static void drain_obj_stock(struct memcg_stock_pcp *stock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2221) static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2222) 				     struct mem_cgroup *root_memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2224) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2225) static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2226) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2227) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2228) static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2229) 				     struct mem_cgroup *root_memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2230) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2231) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2232) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2233) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2235) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2236)  * consume_stock: Try to consume stocked charge on this cpu.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2237)  * @memcg: memcg to consume from.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2238)  * @nr_pages: how many pages to charge.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2239)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2240)  * The charges will only happen if @memcg matches the current cpu's memcg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2241)  * stock, and at least @nr_pages are available in that stock.  Failure to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2242)  * service an allocation will refill the stock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2243)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2244)  * returns true if successful, false otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2245)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2246) static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2247) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2248) 	struct memcg_stock_pcp *stock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2249) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2250) 	bool ret = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2252) 	if (nr_pages > MEMCG_CHARGE_BATCH)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2253) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2255) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2257) 	stock = this_cpu_ptr(&memcg_stock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2258) 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2259) 		stock->nr_pages -= nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2260) 		ret = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2261) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2263) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2264) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2265) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2266) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2268) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2269)  * Returns stocks cached in percpu and reset cached information.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2270)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2271) static void drain_stock(struct memcg_stock_pcp *stock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2272) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2273) 	struct mem_cgroup *old = stock->cached;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2275) 	if (!old)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2276) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2278) 	if (stock->nr_pages) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2279) 		page_counter_uncharge(&old->memory, stock->nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2280) 		if (do_memsw_account())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2281) 			page_counter_uncharge(&old->memsw, stock->nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2282) 		stock->nr_pages = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2283) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2284) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2285) 	css_put(&old->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2286) 	stock->cached = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2287) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2289) static void drain_local_stock(struct work_struct *dummy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2290) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2291) 	struct memcg_stock_pcp *stock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2292) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2294) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2295) 	 * The only protection from memory hotplug vs. drain_stock races is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2296) 	 * that we always operate on local CPU stock here with IRQ disabled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2297) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2298) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2300) 	stock = this_cpu_ptr(&memcg_stock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2301) 	drain_obj_stock(stock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2302) 	drain_stock(stock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2303) 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2305) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2306) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2307) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2308) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2309)  * Cache charges(val) to local per_cpu area.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2310)  * This will be consumed by consume_stock() function, later.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2311)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2312) static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2313) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2314) 	struct memcg_stock_pcp *stock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2315) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2317) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2319) 	stock = this_cpu_ptr(&memcg_stock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2320) 	if (stock->cached != memcg) { /* reset if necessary */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2321) 		drain_stock(stock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2322) 		css_get(&memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2323) 		stock->cached = memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2324) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2325) 	stock->nr_pages += nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2327) 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2328) 		drain_stock(stock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2330) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2331) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2332) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2333) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2334)  * Drains all per-CPU charge caches for given root_memcg resp. subtree
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2335)  * of the hierarchy under it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2336)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2337) static void drain_all_stock(struct mem_cgroup *root_memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2338) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2339) 	int cpu, curcpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2341) 	/* If someone's already draining, avoid adding running more workers. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2342) 	if (!mutex_trylock(&percpu_charge_mutex))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2343) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2344) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2345) 	 * Notify other cpus that system-wide "drain" is running
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2346) 	 * We do not care about races with the cpu hotplug because cpu down
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2347) 	 * as well as workers from this path always operate on the local
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2348) 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2349) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2350) 	curcpu = get_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2351) 	for_each_online_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2352) 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2353) 		struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2354) 		bool flush = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2356) 		rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2357) 		memcg = stock->cached;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2358) 		if (memcg && stock->nr_pages &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2359) 		    mem_cgroup_is_descendant(memcg, root_memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2360) 			flush = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2361) 		if (obj_stock_flush_required(stock, root_memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2362) 			flush = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2363) 		rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2364) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2365) 		if (flush &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2366) 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2367) 			if (cpu == curcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2368) 				drain_local_stock(&stock->work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2369) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2370) 				schedule_work_on(cpu, &stock->work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2371) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2372) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2373) 	put_cpu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2374) 	mutex_unlock(&percpu_charge_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2375) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2377) static int memcg_hotplug_cpu_dead(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2378) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2379) 	struct memcg_stock_pcp *stock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2380) 	struct mem_cgroup *memcg, *mi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2381) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2382) 	stock = &per_cpu(memcg_stock, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2383) 	drain_stock(stock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2385) 	for_each_mem_cgroup(memcg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2386) 		int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2388) 		for (i = 0; i < MEMCG_NR_STAT; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2389) 			int nid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2390) 			long x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2391) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2392) 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2393) 			if (x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2394) 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2395) 					atomic_long_add(x, &memcg->vmstats[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2397) 			if (i >= NR_VM_NODE_STAT_ITEMS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2398) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2399) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2400) 			for_each_node(nid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2401) 				struct mem_cgroup_per_node *pn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2403) 				pn = mem_cgroup_nodeinfo(memcg, nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2404) 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2405) 				if (x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2406) 					do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2407) 						atomic_long_add(x, &pn->lruvec_stat[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2408) 					} while ((pn = parent_nodeinfo(pn, nid)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2409) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2410) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2412) 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2413) 			long x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2414) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2415) 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2416) 			if (x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2417) 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2418) 					atomic_long_add(x, &memcg->vmevents[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2419) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2420) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2422) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2423) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2425) static unsigned long reclaim_high(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2426) 				  unsigned int nr_pages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2427) 				  gfp_t gfp_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2428) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2429) 	unsigned long nr_reclaimed = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2430) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2431) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2432) 		unsigned long pflags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2434) 		if (page_counter_read(&memcg->memory) <=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2435) 		    READ_ONCE(memcg->memory.high))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2436) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2438) 		memcg_memory_event(memcg, MEMCG_HIGH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2439) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2440) 		psi_memstall_enter(&pflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2441) 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2442) 							     gfp_mask, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2443) 		psi_memstall_leave(&pflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2444) 	} while ((memcg = parent_mem_cgroup(memcg)) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2445) 		 !mem_cgroup_is_root(memcg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2446) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2447) 	return nr_reclaimed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2448) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2449) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2450) static void high_work_func(struct work_struct *work)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2451) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2452) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2454) 	memcg = container_of(work, struct mem_cgroup, high_work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2455) 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2456) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2458) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2459)  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2460)  * enough to still cause a significant slowdown in most cases, while still
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2461)  * allowing diagnostics and tracing to proceed without becoming stuck.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2462)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2463) #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2464) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2465) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2466)  * When calculating the delay, we use these either side of the exponentiation to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2467)  * maintain precision and scale to a reasonable number of jiffies (see the table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2468)  * below.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2469)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2470)  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2471)  *   overage ratio to a delay.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2472)  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2473)  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2474)  *   to produce a reasonable delay curve.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2475)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2476)  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2477)  * reasonable delay curve compared to precision-adjusted overage, not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2478)  * penalising heavily at first, but still making sure that growth beyond the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2479)  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2480)  * example, with a high of 100 megabytes:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2481)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2482)  *  +-------+------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2483)  *  | usage | time to allocate in ms |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2484)  *  +-------+------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2485)  *  | 100M  |                      0 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2486)  *  | 101M  |                      6 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2487)  *  | 102M  |                     25 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2488)  *  | 103M  |                     57 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2489)  *  | 104M  |                    102 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2490)  *  | 105M  |                    159 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2491)  *  | 106M  |                    230 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2492)  *  | 107M  |                    313 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2493)  *  | 108M  |                    409 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2494)  *  | 109M  |                    518 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2495)  *  | 110M  |                    639 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2496)  *  | 111M  |                    774 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2497)  *  | 112M  |                    921 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2498)  *  | 113M  |                   1081 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2499)  *  | 114M  |                   1254 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2500)  *  | 115M  |                   1439 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2501)  *  | 116M  |                   1638 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2502)  *  | 117M  |                   1849 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2503)  *  | 118M  |                   2000 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2504)  *  | 119M  |                   2000 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2505)  *  | 120M  |                   2000 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2506)  *  +-------+------------------------+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2507)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2508)  #define MEMCG_DELAY_PRECISION_SHIFT 20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2509)  #define MEMCG_DELAY_SCALING_SHIFT 14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2511) static u64 calculate_overage(unsigned long usage, unsigned long high)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2512) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2513) 	u64 overage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2515) 	if (usage <= high)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2516) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2517) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2518) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2519) 	 * Prevent division by 0 in overage calculation by acting as if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2520) 	 * it was a threshold of 1 page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2521) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2522) 	high = max(high, 1UL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2523) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2524) 	overage = usage - high;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2525) 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2526) 	return div64_u64(overage, high);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2527) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2529) static u64 mem_find_max_overage(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2530) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2531) 	u64 overage, max_overage = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2533) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2534) 		overage = calculate_overage(page_counter_read(&memcg->memory),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2535) 					    READ_ONCE(memcg->memory.high));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2536) 		max_overage = max(overage, max_overage);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2537) 	} while ((memcg = parent_mem_cgroup(memcg)) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2538) 		 !mem_cgroup_is_root(memcg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2540) 	return max_overage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2541) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2542) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2543) static u64 swap_find_max_overage(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2544) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2545) 	u64 overage, max_overage = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2546) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2547) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2548) 		overage = calculate_overage(page_counter_read(&memcg->swap),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2549) 					    READ_ONCE(memcg->swap.high));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2550) 		if (overage)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2551) 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2552) 		max_overage = max(overage, max_overage);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2553) 	} while ((memcg = parent_mem_cgroup(memcg)) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2554) 		 !mem_cgroup_is_root(memcg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2556) 	return max_overage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2557) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2559) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2560)  * Get the number of jiffies that we should penalise a mischievous cgroup which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2561)  * is exceeding its memory.high by checking both it and its ancestors.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2562)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2563) static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2564) 					  unsigned int nr_pages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2565) 					  u64 max_overage)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2566) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2567) 	unsigned long penalty_jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2568) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2569) 	if (!max_overage)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2570) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2571) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2572) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2573) 	 * We use overage compared to memory.high to calculate the number of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2574) 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2575) 	 * fairly lenient on small overages, and increasingly harsh when the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2576) 	 * memcg in question makes it clear that it has no intention of stopping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2577) 	 * its crazy behaviour, so we exponentially increase the delay based on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2578) 	 * overage amount.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2579) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2580) 	penalty_jiffies = max_overage * max_overage * HZ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2581) 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2582) 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2584) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2585) 	 * Factor in the task's own contribution to the overage, such that four
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2586) 	 * N-sized allocations are throttled approximately the same as one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2587) 	 * 4N-sized allocation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2588) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2589) 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2590) 	 * larger the current charge patch is than that.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2591) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2592) 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2593) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2594) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2595) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2596)  * Scheduled by try_charge() to be executed from the userland return path
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2597)  * and reclaims memory over the high limit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2598)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2599) void mem_cgroup_handle_over_high(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2600) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2601) 	unsigned long penalty_jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2602) 	unsigned long pflags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2603) 	unsigned long nr_reclaimed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2604) 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2605) 	int nr_retries = MAX_RECLAIM_RETRIES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2606) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2607) 	bool in_retry = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2608) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2609) 	if (likely(!nr_pages))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2610) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2611) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2612) 	memcg = get_mem_cgroup_from_mm(current->mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2613) 	current->memcg_nr_pages_over_high = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2614) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2615) retry_reclaim:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2616) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2617) 	 * The allocating task should reclaim at least the batch size, but for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2618) 	 * subsequent retries we only want to do what's necessary to prevent oom
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2619) 	 * or breaching resource isolation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2620) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2621) 	 * This is distinct from memory.max or page allocator behaviour because
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2622) 	 * memory.high is currently batched, whereas memory.max and the page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2623) 	 * allocator run every time an allocation is made.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2624) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2625) 	nr_reclaimed = reclaim_high(memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2626) 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2627) 				    GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2628) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2629) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2630) 	 * memory.high is breached and reclaim is unable to keep up. Throttle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2631) 	 * allocators proactively to slow down excessive growth.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2632) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2633) 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2634) 					       mem_find_max_overage(memcg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2635) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2636) 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2637) 						swap_find_max_overage(memcg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2639) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2640) 	 * Clamp the max delay per usermode return so as to still keep the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2641) 	 * application moving forwards and also permit diagnostics, albeit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2642) 	 * extremely slowly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2643) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2644) 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2645) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2646) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2647) 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2648) 	 * that it's not even worth doing, in an attempt to be nice to those who
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2649) 	 * go only a small amount over their memory.high value and maybe haven't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2650) 	 * been aggressively reclaimed enough yet.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2651) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2652) 	if (penalty_jiffies <= HZ / 100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2653) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2654) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2655) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2656) 	 * If reclaim is making forward progress but we're still over
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2657) 	 * memory.high, we want to encourage that rather than doing allocator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2658) 	 * throttling.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2659) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2660) 	if (nr_reclaimed || nr_retries--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2661) 		in_retry = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2662) 		goto retry_reclaim;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2663) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2664) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2665) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2666) 	 * If we exit early, we're guaranteed to die (since
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2667) 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2668) 	 * need to account for any ill-begotten jiffies to pay them off later.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2669) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2670) 	psi_memstall_enter(&pflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2671) 	schedule_timeout_killable(penalty_jiffies);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2672) 	psi_memstall_leave(&pflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2673) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2674) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2675) 	css_put(&memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2676) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2677) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2678) static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2679) 		      unsigned int nr_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2680) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2681) 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2682) 	int nr_retries = MAX_RECLAIM_RETRIES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2683) 	struct mem_cgroup *mem_over_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2684) 	struct page_counter *counter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2685) 	enum oom_status oom_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2686) 	unsigned long nr_reclaimed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2687) 	bool passed_oom = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2688) 	bool may_swap = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2689) 	bool drained = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2690) 	unsigned long pflags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2691) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2692) 	if (mem_cgroup_is_root(memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2693) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2694) retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2695) 	if (consume_stock(memcg, nr_pages))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2696) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2697) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2698) 	if (!do_memsw_account() ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2699) 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2700) 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2701) 			goto done_restock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2702) 		if (do_memsw_account())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2703) 			page_counter_uncharge(&memcg->memsw, batch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2704) 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2705) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2706) 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2707) 		may_swap = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2708) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2709) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2710) 	if (batch > nr_pages) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2711) 		batch = nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2712) 		goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2713) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2714) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2715) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2716) 	 * Memcg doesn't have a dedicated reserve for atomic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2717) 	 * allocations. But like the global atomic pool, we need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2718) 	 * put the burden of reclaim on regular allocation requests
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2719) 	 * and let these go through as privileged allocations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2720) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2721) 	if (gfp_mask & __GFP_ATOMIC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2722) 		goto force;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2723) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2724) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2725) 	 * Prevent unbounded recursion when reclaim operations need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2726) 	 * allocate memory. This might exceed the limits temporarily,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2727) 	 * but we prefer facilitating memory reclaim and getting back
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2728) 	 * under the limit over triggering OOM kills in these cases.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2729) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2730) 	if (unlikely(current->flags & PF_MEMALLOC))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2731) 		goto force;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2732) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2733) 	if (unlikely(task_in_memcg_oom(current)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2734) 		goto nomem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2735) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2736) 	if (!gfpflags_allow_blocking(gfp_mask))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2737) 		goto nomem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2738) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2739) 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2740) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2741) 	psi_memstall_enter(&pflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2742) 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2743) 						    gfp_mask, may_swap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2744) 	psi_memstall_leave(&pflags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2745) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2746) 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2747) 		goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2749) 	if (!drained) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2750) 		drain_all_stock(mem_over_limit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2751) 		drained = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2752) 		goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2753) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2754) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2755) 	if (gfp_mask & __GFP_NORETRY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2756) 		goto nomem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2757) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2758) 	 * Even though the limit is exceeded at this point, reclaim
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2759) 	 * may have been able to free some pages.  Retry the charge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2760) 	 * before killing the task.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2761) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2762) 	 * Only for regular pages, though: huge pages are rather
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2763) 	 * unlikely to succeed so close to the limit, and we fall back
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2764) 	 * to regular pages anyway in case of failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2765) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2766) 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2767) 		goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2768) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2769) 	 * At task move, charge accounts can be doubly counted. So, it's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2770) 	 * better to wait until the end of task_move if something is going on.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2771) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2772) 	if (mem_cgroup_wait_acct_move(mem_over_limit))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2773) 		goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2774) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2775) 	if (nr_retries--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2776) 		goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2777) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2778) 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2779) 		goto nomem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2780) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2781) 	if (gfp_mask & __GFP_NOFAIL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2782) 		goto force;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2783) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2784) 	/* Avoid endless loop for tasks bypassed by the oom killer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2785) 	if (passed_oom && task_is_dying())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2786) 		goto nomem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2787) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2788) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2789) 	 * keep retrying as long as the memcg oom killer is able to make
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2790) 	 * a forward progress or bypass the charge if the oom killer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2791) 	 * couldn't make any progress.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2792) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2793) 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2794) 		       get_order(nr_pages * PAGE_SIZE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2795) 	if (oom_status == OOM_SUCCESS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2796) 		passed_oom = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2797) 		nr_retries = MAX_RECLAIM_RETRIES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2798) 		goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2799) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2800) nomem:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2801) 	if (!(gfp_mask & __GFP_NOFAIL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2802) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2803) force:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2804) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2805) 	 * The allocation either can't fail or will lead to more memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2806) 	 * being freed very soon.  Allow memory usage go over the limit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2807) 	 * temporarily by force charging it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2808) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2809) 	page_counter_charge(&memcg->memory, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2810) 	if (do_memsw_account())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2811) 		page_counter_charge(&memcg->memsw, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2812) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2813) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2814) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2815) done_restock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2816) 	if (batch > nr_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2817) 		refill_stock(memcg, batch - nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2818) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2819) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2820) 	 * If the hierarchy is above the normal consumption range, schedule
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2821) 	 * reclaim on returning to userland.  We can perform reclaim here
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2822) 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2823) 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2824) 	 * not recorded as it most likely matches current's and won't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2825) 	 * change in the meantime.  As high limit is checked again before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2826) 	 * reclaim, the cost of mismatch is negligible.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2827) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2828) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2829) 		bool mem_high, swap_high;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2830) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2831) 		mem_high = page_counter_read(&memcg->memory) >
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2832) 			READ_ONCE(memcg->memory.high);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2833) 		swap_high = page_counter_read(&memcg->swap) >
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2834) 			READ_ONCE(memcg->swap.high);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2835) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2836) 		/* Don't bother a random interrupted task */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2837) 		if (in_interrupt()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2838) 			if (mem_high) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2839) 				schedule_work(&memcg->high_work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2840) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2841) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2842) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2843) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2844) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2845) 		if (mem_high || swap_high) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2846) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2847) 			 * The allocating tasks in this cgroup will need to do
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2848) 			 * reclaim or be throttled to prevent further growth
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2849) 			 * of the memory or swap footprints.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2850) 			 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2851) 			 * Target some best-effort fairness between the tasks,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2852) 			 * and distribute reclaim work and delay penalties
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2853) 			 * based on how much each task is actually allocating.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2854) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2855) 			current->memcg_nr_pages_over_high += batch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2856) 			set_notify_resume(current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2857) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2858) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2859) 	} while ((memcg = parent_mem_cgroup(memcg)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2860) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2861) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2862) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2863) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2864) #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2865) static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2866) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2867) 	if (mem_cgroup_is_root(memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2868) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2869) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2870) 	page_counter_uncharge(&memcg->memory, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2871) 	if (do_memsw_account())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2872) 		page_counter_uncharge(&memcg->memsw, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2873) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2874) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2875) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2876) static void commit_charge(struct page *page, struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2877) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2878) 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2879) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2880) 	 * Any of the following ensures page->mem_cgroup stability:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2881) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2882) 	 * - the page lock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2883) 	 * - LRU isolation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2884) 	 * - lock_page_memcg()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2885) 	 * - exclusive reference
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2886) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2887) 	page->mem_cgroup = memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2888) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2889) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2890) #ifdef CONFIG_MEMCG_KMEM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2891) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2892)  * The allocated objcg pointers array is not accounted directly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2893)  * Moreover, it should not come from DMA buffer and is not readily
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2894)  * reclaimable. So those GFP bits should be masked off.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2895)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2896) #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2897) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2898) int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2899) 				 gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2900) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2901) 	unsigned int objects = objs_per_slab_page(s, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2902) 	void *vec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2903) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2904) 	gfp &= ~OBJCGS_CLEAR_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2905) 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2906) 			   page_to_nid(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2907) 	if (!vec)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2908) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2909) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2910) 	if (cmpxchg(&page->obj_cgroups, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2911) 		    (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2912) 		kfree(vec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2913) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2914) 		kmemleak_not_leak(vec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2915) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2916) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2917) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2918) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2919) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2920)  * Returns a pointer to the memory cgroup to which the kernel object is charged.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2921)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2922)  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2923)  * cgroup_mutex, etc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2924)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2925) struct mem_cgroup *mem_cgroup_from_obj(void *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2926) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2927) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2928) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2929) 	if (mem_cgroup_disabled())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2930) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2931) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2932) 	page = virt_to_head_page(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2933) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2934) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2935) 	 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2936) 	 * or a pointer to obj_cgroup vector. In the latter case the lowest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2937) 	 * bit of the pointer is set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2938) 	 * The page->mem_cgroup pointer can be asynchronously changed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2939) 	 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2940) 	 * from a valid memcg pointer to objcg vector or back.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2941) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2942) 	if (!page->mem_cgroup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2943) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2944) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2945) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2946) 	 * Slab objects are accounted individually, not per-page.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2947) 	 * Memcg membership data for each individual object is saved in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2948) 	 * the page->obj_cgroups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2949) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2950) 	if (page_has_obj_cgroups(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2951) 		struct obj_cgroup *objcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2952) 		unsigned int off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2953) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2954) 		off = obj_to_index(page->slab_cache, page, p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2955) 		objcg = page_obj_cgroups(page)[off];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2956) 		if (objcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2957) 			return obj_cgroup_memcg(objcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2958) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2959) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2960) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2961) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2962) 	/* All other pages use page->mem_cgroup */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2963) 	return page->mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2964) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2965) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2966) __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2967) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2968) 	struct obj_cgroup *objcg = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2969) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2970) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2971) 	if (memcg_kmem_bypass())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2972) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2973) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2974) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2975) 	if (unlikely(active_memcg()))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2976) 		memcg = active_memcg();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2977) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2978) 		memcg = mem_cgroup_from_task(current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2979) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2980) 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2981) 		objcg = rcu_dereference(memcg->objcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2982) 		if (objcg && obj_cgroup_tryget(objcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2983) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2984) 		objcg = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2985) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2986) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2987) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2988) 	return objcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2989) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2990) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2991) static int memcg_alloc_cache_id(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2992) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2993) 	int id, size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2994) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2995) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2996) 	id = ida_simple_get(&memcg_cache_ida,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2997) 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2998) 	if (id < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2999) 		return id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3000) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3001) 	if (id < memcg_nr_cache_ids)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3002) 		return id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3003) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3004) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3005) 	 * There's no space for the new id in memcg_caches arrays,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3006) 	 * so we have to grow them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3007) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3008) 	down_write(&memcg_cache_ids_sem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3009) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3010) 	size = 2 * (id + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3011) 	if (size < MEMCG_CACHES_MIN_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3012) 		size = MEMCG_CACHES_MIN_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3013) 	else if (size > MEMCG_CACHES_MAX_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3014) 		size = MEMCG_CACHES_MAX_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3015) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3016) 	err = memcg_update_all_list_lrus(size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3017) 	if (!err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3018) 		memcg_nr_cache_ids = size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3019) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3020) 	up_write(&memcg_cache_ids_sem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3021) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3022) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3023) 		ida_simple_remove(&memcg_cache_ida, id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3024) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3025) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3026) 	return id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3027) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3028) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3029) static void memcg_free_cache_id(int id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3030) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3031) 	ida_simple_remove(&memcg_cache_ida, id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3032) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3033) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3034) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3035)  * __memcg_kmem_charge: charge a number of kernel pages to a memcg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3036)  * @memcg: memory cgroup to charge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3037)  * @gfp: reclaim mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3038)  * @nr_pages: number of pages to charge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3039)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3040)  * Returns 0 on success, an error code on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3041)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3042) int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3043) 			unsigned int nr_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3044) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3045) 	struct page_counter *counter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3046) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3047) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3048) 	ret = try_charge(memcg, gfp, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3049) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3050) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3051) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3052) 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3053) 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3054) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3055) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3056) 		 * Enforce __GFP_NOFAIL allocation because callers are not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3057) 		 * prepared to see failures and likely do not have any failure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3058) 		 * handling code.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3059) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3060) 		if (gfp & __GFP_NOFAIL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3061) 			page_counter_charge(&memcg->kmem, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3062) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3063) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3064) 		cancel_charge(memcg, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3065) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3066) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3067) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3068) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3069) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3070) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3071)  * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3072)  * @memcg: memcg to uncharge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3073)  * @nr_pages: number of pages to uncharge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3074)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3075) void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3076) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3077) 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3078) 		page_counter_uncharge(&memcg->kmem, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3079) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3080) 	refill_stock(memcg, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3081) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3082) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3083) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3084)  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3085)  * @page: page to charge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3086)  * @gfp: reclaim mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3087)  * @order: allocation order
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3088)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3089)  * Returns 0 on success, an error code on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3090)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3091) int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3092) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3093) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3094) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3095) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3096) 	memcg = get_mem_cgroup_from_current();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3097) 	if (memcg && !mem_cgroup_is_root(memcg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3098) 		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3099) 		if (!ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3100) 			page->mem_cgroup = memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3101) 			__SetPageKmemcg(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3102) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3103) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3104) 		css_put(&memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3105) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3106) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3107) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3109) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3110)  * __memcg_kmem_uncharge_page: uncharge a kmem page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3111)  * @page: page to uncharge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3112)  * @order: allocation order
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3113)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3114) void __memcg_kmem_uncharge_page(struct page *page, int order)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3115) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3116) 	struct mem_cgroup *memcg = page->mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3117) 	unsigned int nr_pages = 1 << order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3119) 	if (!memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3120) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3122) 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3123) 	__memcg_kmem_uncharge(memcg, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3124) 	page->mem_cgroup = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3125) 	css_put(&memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3127) 	/* slab pages do not have PageKmemcg flag set */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3128) 	if (PageKmemcg(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3129) 		__ClearPageKmemcg(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3130) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3132) static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3133) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3134) 	struct memcg_stock_pcp *stock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3135) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3136) 	bool ret = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3138) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3140) 	stock = this_cpu_ptr(&memcg_stock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3141) 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3142) 		stock->nr_bytes -= nr_bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3143) 		ret = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3144) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3146) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3148) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3149) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3151) static void drain_obj_stock(struct memcg_stock_pcp *stock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3152) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3153) 	struct obj_cgroup *old = stock->cached_objcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3155) 	if (!old)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3156) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3158) 	if (stock->nr_bytes) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3159) 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3160) 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3162) 		if (nr_pages) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3163) 			struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3165) 			rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3166) retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3167) 			memcg = obj_cgroup_memcg(old);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3168) 			if (unlikely(!css_tryget(&memcg->css)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3169) 				goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3170) 			rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3172) 			__memcg_kmem_uncharge(memcg, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3173) 			css_put(&memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3174) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3176) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3177) 		 * The leftover is flushed to the centralized per-memcg value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3178) 		 * On the next attempt to refill obj stock it will be moved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3179) 		 * to a per-cpu stock (probably, on an other CPU), see
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3180) 		 * refill_obj_stock().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3181) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3182) 		 * How often it's flushed is a trade-off between the memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3183) 		 * limit enforcement accuracy and potential CPU contention,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3184) 		 * so it might be changed in the future.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3185) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3186) 		atomic_add(nr_bytes, &old->nr_charged_bytes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3187) 		stock->nr_bytes = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3188) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3190) 	obj_cgroup_put(old);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3191) 	stock->cached_objcg = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3192) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3194) static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3195) 				     struct mem_cgroup *root_memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3196) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3197) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3199) 	if (stock->cached_objcg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3200) 		memcg = obj_cgroup_memcg(stock->cached_objcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3201) 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3202) 			return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3203) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3205) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3206) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3208) static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3209) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3210) 	struct memcg_stock_pcp *stock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3211) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3213) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3215) 	stock = this_cpu_ptr(&memcg_stock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3216) 	if (stock->cached_objcg != objcg) { /* reset if necessary */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3217) 		drain_obj_stock(stock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3218) 		obj_cgroup_get(objcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3219) 		stock->cached_objcg = objcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3220) 		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3221) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3222) 	stock->nr_bytes += nr_bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3224) 	if (stock->nr_bytes > PAGE_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3225) 		drain_obj_stock(stock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3227) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3228) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3230) int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3231) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3232) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3233) 	unsigned int nr_pages, nr_bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3234) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3235) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3236) 	if (consume_obj_stock(objcg, size))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3237) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3239) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3240) 	 * In theory, memcg->nr_charged_bytes can have enough
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3241) 	 * pre-charged bytes to satisfy the allocation. However,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3242) 	 * flushing memcg->nr_charged_bytes requires two atomic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3243) 	 * operations, and memcg->nr_charged_bytes can't be big,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3244) 	 * so it's better to ignore it and try grab some new pages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3245) 	 * memcg->nr_charged_bytes will be flushed in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3246) 	 * refill_obj_stock(), called from this function or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3247) 	 * independently later.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3248) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3249) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3250) retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3251) 	memcg = obj_cgroup_memcg(objcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3252) 	if (unlikely(!css_tryget(&memcg->css)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3253) 		goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3254) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3255) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3256) 	nr_pages = size >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3257) 	nr_bytes = size & (PAGE_SIZE - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3259) 	if (nr_bytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3260) 		nr_pages += 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3262) 	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3263) 	if (!ret && nr_bytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3264) 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3266) 	css_put(&memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3267) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3268) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3270) void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3271) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3272) 	refill_obj_stock(objcg, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3273) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3275) #endif /* CONFIG_MEMCG_KMEM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3277) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3278)  * Because head->mem_cgroup is not set on tails, set it now.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3279)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3280) void split_page_memcg(struct page *head, unsigned int nr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3281) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3282) 	struct mem_cgroup *memcg = head->mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3283) 	int kmemcg = PageKmemcg(head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3284) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3286) 	if (mem_cgroup_disabled() || !memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3287) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3289) 	for (i = 1; i < nr; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3290) 		head[i].mem_cgroup = memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3291) 		if (kmemcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3292) 			__SetPageKmemcg(head + i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3293) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3294) 	css_get_many(&memcg->css, nr - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3295) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3297) #ifdef CONFIG_MEMCG_SWAP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3298) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3299)  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3300)  * @entry: swap entry to be moved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3301)  * @from:  mem_cgroup which the entry is moved from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3302)  * @to:  mem_cgroup which the entry is moved to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3303)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3304)  * It succeeds only when the swap_cgroup's record for this entry is the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3305)  * as the mem_cgroup's id of @from.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3306)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3307)  * Returns 0 on success, -EINVAL on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3308)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3309)  * The caller must have charged to @to, IOW, called page_counter_charge() about
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3310)  * both res and memsw, and called css_get().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3311)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3312) static int mem_cgroup_move_swap_account(swp_entry_t entry,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3313) 				struct mem_cgroup *from, struct mem_cgroup *to)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3314) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3315) 	unsigned short old_id, new_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3317) 	old_id = mem_cgroup_id(from);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3318) 	new_id = mem_cgroup_id(to);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3320) 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3321) 		mod_memcg_state(from, MEMCG_SWAP, -1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3322) 		mod_memcg_state(to, MEMCG_SWAP, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3323) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3324) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3325) 	return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3326) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3327) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3328) static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3329) 				struct mem_cgroup *from, struct mem_cgroup *to)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3330) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3331) 	return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3332) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3333) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3334) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3335) static DEFINE_MUTEX(memcg_max_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3337) static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3338) 				 unsigned long max, bool memsw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3339) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3340) 	bool enlarge = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3341) 	bool drained = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3342) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3343) 	bool limits_invariant;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3344) 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3346) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3347) 		if (signal_pending(current)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3348) 			ret = -EINTR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3349) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3350) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3352) 		mutex_lock(&memcg_max_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3353) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3354) 		 * Make sure that the new limit (memsw or memory limit) doesn't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3355) 		 * break our basic invariant rule memory.max <= memsw.max.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3356) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3357) 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3358) 					   max <= memcg->memsw.max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3359) 		if (!limits_invariant) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3360) 			mutex_unlock(&memcg_max_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3361) 			ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3362) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3363) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3364) 		if (max > counter->max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3365) 			enlarge = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3366) 		ret = page_counter_set_max(counter, max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3367) 		mutex_unlock(&memcg_max_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3369) 		if (!ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3370) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3372) 		if (!drained) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3373) 			drain_all_stock(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3374) 			drained = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3375) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3376) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3377) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3378) 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3379) 					GFP_KERNEL, !memsw)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3380) 			ret = -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3381) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3382) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3383) 	} while (true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3385) 	if (!ret && enlarge)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3386) 		memcg_oom_recover(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3388) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3389) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3391) unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3392) 					    gfp_t gfp_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3393) 					    unsigned long *total_scanned)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3394) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3395) 	unsigned long nr_reclaimed = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3396) 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3397) 	unsigned long reclaimed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3398) 	int loop = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3399) 	struct mem_cgroup_tree_per_node *mctz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3400) 	unsigned long excess;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3401) 	unsigned long nr_scanned;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3403) 	if (order > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3404) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3406) 	mctz = soft_limit_tree_node(pgdat->node_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3408) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3409) 	 * Do not even bother to check the largest node if the root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3410) 	 * is empty. Do it lockless to prevent lock bouncing. Races
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3411) 	 * are acceptable as soft limit is best effort anyway.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3412) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3413) 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3414) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3415) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3416) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3417) 	 * This loop can run a while, specially if mem_cgroup's continuously
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3418) 	 * keep exceeding their soft limit and putting the system under
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3419) 	 * pressure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3420) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3421) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3422) 		if (next_mz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3423) 			mz = next_mz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3424) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3425) 			mz = mem_cgroup_largest_soft_limit_node(mctz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3426) 		if (!mz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3427) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3429) 		nr_scanned = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3430) 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3431) 						    gfp_mask, &nr_scanned);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3432) 		nr_reclaimed += reclaimed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3433) 		*total_scanned += nr_scanned;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3434) 		spin_lock_irq(&mctz->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3435) 		__mem_cgroup_remove_exceeded(mz, mctz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3436) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3437) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3438) 		 * If we failed to reclaim anything from this memory cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3439) 		 * it is time to move on to the next cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3440) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3441) 		next_mz = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3442) 		if (!reclaimed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3443) 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3444) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3445) 		excess = soft_limit_excess(mz->memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3446) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3447) 		 * One school of thought says that we should not add
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3448) 		 * back the node to the tree if reclaim returns 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3449) 		 * But our reclaim could return 0, simply because due
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3450) 		 * to priority we are exposing a smaller subset of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3451) 		 * memory to reclaim from. Consider this as a longer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3452) 		 * term TODO.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3453) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3454) 		/* If excess == 0, no tree ops */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3455) 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3456) 		spin_unlock_irq(&mctz->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3457) 		css_put(&mz->memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3458) 		loop++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3459) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3460) 		 * Could not reclaim anything and there are no more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3461) 		 * mem cgroups to try or we seem to be looping without
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3462) 		 * reclaiming anything.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3463) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3464) 		if (!nr_reclaimed &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3465) 			(next_mz == NULL ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3466) 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3467) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3468) 	} while (!nr_reclaimed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3469) 	if (next_mz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3470) 		css_put(&next_mz->memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3471) 	return nr_reclaimed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3472) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3474) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3475)  * Test whether @memcg has children, dead or alive.  Note that this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3476)  * function doesn't care whether @memcg has use_hierarchy enabled and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3477)  * returns %true if there are child csses according to the cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3478)  * hierarchy.  Testing use_hierarchy is the caller's responsibility.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3479)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3480) static inline bool memcg_has_children(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3481) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3482) 	bool ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3483) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3484) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3485) 	ret = css_next_child(NULL, &memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3486) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3487) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3488) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3489) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3490) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3491)  * Reclaims as many pages from the given memcg as possible.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3492)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3493)  * Caller is responsible for holding css reference for memcg.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3494)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3495) static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3496) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3497) 	int nr_retries = MAX_RECLAIM_RETRIES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3499) 	/* we call try-to-free pages for make this cgroup empty */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3500) 	lru_add_drain_all();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3501) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3502) 	drain_all_stock(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3503) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3504) 	/* try to free all pages in this cgroup */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3505) 	while (nr_retries && page_counter_read(&memcg->memory)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3506) 		int progress;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3508) 		if (signal_pending(current))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3509) 			return -EINTR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3511) 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3512) 							GFP_KERNEL, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3513) 		if (!progress) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3514) 			nr_retries--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3515) 			/* maybe some writeback is necessary */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3516) 			congestion_wait(BLK_RW_ASYNC, HZ/10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3517) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3519) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3520) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3521) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3522) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3523) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3524) static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3525) 					    char *buf, size_t nbytes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3526) 					    loff_t off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3527) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3528) 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3529) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3530) 	if (mem_cgroup_is_root(memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3531) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3532) 	return mem_cgroup_force_empty(memcg) ?: nbytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3533) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3535) static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3536) 				     struct cftype *cft)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3537) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3538) 	return mem_cgroup_from_css(css)->use_hierarchy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3539) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3540) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3541) static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3542) 				      struct cftype *cft, u64 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3543) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3544) 	int retval = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3545) 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3546) 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3547) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3548) 	if (memcg->use_hierarchy == val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3549) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3550) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3551) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3552) 	 * If parent's use_hierarchy is set, we can't make any modifications
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3553) 	 * in the child subtrees. If it is unset, then the change can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3554) 	 * occur, provided the current cgroup has no children.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3555) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3556) 	 * For the root cgroup, parent_mem is NULL, we allow value to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3557) 	 * set if there are no children.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3558) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3559) 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3560) 				(val == 1 || val == 0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3561) 		if (!memcg_has_children(memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3562) 			memcg->use_hierarchy = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3563) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3564) 			retval = -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3565) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3566) 		retval = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3568) 	return retval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3569) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3571) static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3572) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3573) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3575) 	if (mem_cgroup_is_root(memcg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3576) 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3577) 			memcg_page_state(memcg, NR_ANON_MAPPED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3578) 		if (swap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3579) 			val += memcg_page_state(memcg, MEMCG_SWAP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3580) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3581) 		if (!swap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3582) 			val = page_counter_read(&memcg->memory);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3583) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3584) 			val = page_counter_read(&memcg->memsw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3585) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3586) 	return val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3587) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3588) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3589) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3590) 	RES_USAGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3591) 	RES_LIMIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3592) 	RES_MAX_USAGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3593) 	RES_FAILCNT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3594) 	RES_SOFT_LIMIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3595) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3596) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3597) static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3598) 			       struct cftype *cft)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3599) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3600) 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3601) 	struct page_counter *counter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3602) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3603) 	switch (MEMFILE_TYPE(cft->private)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3604) 	case _MEM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3605) 		counter = &memcg->memory;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3606) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3607) 	case _MEMSWAP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3608) 		counter = &memcg->memsw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3609) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3610) 	case _KMEM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3611) 		counter = &memcg->kmem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3612) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3613) 	case _TCP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3614) 		counter = &memcg->tcpmem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3615) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3616) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3617) 		BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3618) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3619) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3620) 	switch (MEMFILE_ATTR(cft->private)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3621) 	case RES_USAGE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3622) 		if (counter == &memcg->memory)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3623) 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3624) 		if (counter == &memcg->memsw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3625) 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3626) 		return (u64)page_counter_read(counter) * PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3627) 	case RES_LIMIT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3628) 		return (u64)counter->max * PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3629) 	case RES_MAX_USAGE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3630) 		return (u64)counter->watermark * PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3631) 	case RES_FAILCNT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3632) 		return counter->failcnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3633) 	case RES_SOFT_LIMIT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3634) 		return (u64)memcg->soft_limit * PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3635) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3636) 		BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3637) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3638) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3639) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3640) static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3641) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3642) 	unsigned long stat[MEMCG_NR_STAT] = {0};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3643) 	struct mem_cgroup *mi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3644) 	int node, cpu, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3645) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3646) 	for_each_online_cpu(cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3647) 		for (i = 0; i < MEMCG_NR_STAT; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3648) 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3649) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3650) 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3651) 		for (i = 0; i < MEMCG_NR_STAT; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3652) 			atomic_long_add(stat[i], &mi->vmstats[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3653) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3654) 	for_each_node(node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3655) 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3656) 		struct mem_cgroup_per_node *pi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3658) 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3659) 			stat[i] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3660) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3661) 		for_each_online_cpu(cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3662) 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3663) 				stat[i] += per_cpu(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3664) 					pn->lruvec_stat_cpu->count[i], cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3665) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3666) 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3667) 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3668) 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3669) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3670) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3671) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3672) static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3673) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3674) 	unsigned long events[NR_VM_EVENT_ITEMS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3675) 	struct mem_cgroup *mi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3676) 	int cpu, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3677) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3678) 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3679) 		events[i] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3680) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3681) 	for_each_online_cpu(cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3682) 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3683) 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3684) 					     cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3685) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3686) 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3687) 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3688) 			atomic_long_add(events[i], &mi->vmevents[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3689) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3691) #ifdef CONFIG_MEMCG_KMEM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3692) static int memcg_online_kmem(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3693) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3694) 	struct obj_cgroup *objcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3695) 	int memcg_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3696) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3697) 	if (cgroup_memory_nokmem)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3698) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3699) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3700) 	BUG_ON(memcg->kmemcg_id >= 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3701) 	BUG_ON(memcg->kmem_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3702) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3703) 	memcg_id = memcg_alloc_cache_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3704) 	if (memcg_id < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3705) 		return memcg_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3706) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3707) 	objcg = obj_cgroup_alloc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3708) 	if (!objcg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3709) 		memcg_free_cache_id(memcg_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3710) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3711) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3712) 	objcg->memcg = memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3713) 	rcu_assign_pointer(memcg->objcg, objcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3714) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3715) 	static_branch_enable(&memcg_kmem_enabled_key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3716) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3717) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3718) 	 * A memory cgroup is considered kmem-online as soon as it gets
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3719) 	 * kmemcg_id. Setting the id after enabling static branching will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3720) 	 * guarantee no one starts accounting before all call sites are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3721) 	 * patched.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3722) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3723) 	memcg->kmemcg_id = memcg_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3724) 	memcg->kmem_state = KMEM_ONLINE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3726) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3727) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3728) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3729) static void memcg_offline_kmem(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3730) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3731) 	struct cgroup_subsys_state *css;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3732) 	struct mem_cgroup *parent, *child;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3733) 	int kmemcg_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3734) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3735) 	if (memcg->kmem_state != KMEM_ONLINE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3736) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3737) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3738) 	memcg->kmem_state = KMEM_ALLOCATED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3739) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3740) 	parent = parent_mem_cgroup(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3741) 	if (!parent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3742) 		parent = root_mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3743) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3744) 	memcg_reparent_objcgs(memcg, parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3745) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3746) 	kmemcg_id = memcg->kmemcg_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3747) 	BUG_ON(kmemcg_id < 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3749) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3750) 	 * Change kmemcg_id of this cgroup and all its descendants to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3751) 	 * parent's id, and then move all entries from this cgroup's list_lrus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3752) 	 * to ones of the parent. After we have finished, all list_lrus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3753) 	 * corresponding to this cgroup are guaranteed to remain empty. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3754) 	 * ordering is imposed by list_lru_node->lock taken by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3755) 	 * memcg_drain_all_list_lrus().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3756) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3757) 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3758) 	css_for_each_descendant_pre(css, &memcg->css) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3759) 		child = mem_cgroup_from_css(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3760) 		BUG_ON(child->kmemcg_id != kmemcg_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3761) 		child->kmemcg_id = parent->kmemcg_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3762) 		if (!memcg->use_hierarchy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3763) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3764) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3765) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3766) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3767) 	memcg_drain_all_list_lrus(kmemcg_id, parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3768) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3769) 	memcg_free_cache_id(kmemcg_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3770) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3771) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3772) static void memcg_free_kmem(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3773) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3774) 	/* css_alloc() failed, offlining didn't happen */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3775) 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3776) 		memcg_offline_kmem(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3777) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3778) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3779) static int memcg_online_kmem(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3780) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3781) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3782) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3783) static void memcg_offline_kmem(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3784) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3785) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3786) static void memcg_free_kmem(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3787) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3788) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3789) #endif /* CONFIG_MEMCG_KMEM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3790) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3791) static int memcg_update_kmem_max(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3792) 				 unsigned long max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3793) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3794) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3795) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3796) 	mutex_lock(&memcg_max_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3797) 	ret = page_counter_set_max(&memcg->kmem, max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3798) 	mutex_unlock(&memcg_max_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3799) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3800) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3801) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3802) static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3803) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3804) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3805) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3806) 	mutex_lock(&memcg_max_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3807) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3808) 	ret = page_counter_set_max(&memcg->tcpmem, max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3809) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3810) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3811) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3812) 	if (!memcg->tcpmem_active) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3813) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3814) 		 * The active flag needs to be written after the static_key
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3815) 		 * update. This is what guarantees that the socket activation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3816) 		 * function is the last one to run. See mem_cgroup_sk_alloc()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3817) 		 * for details, and note that we don't mark any socket as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3818) 		 * belonging to this memcg until that flag is up.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3819) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3820) 		 * We need to do this, because static_keys will span multiple
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3821) 		 * sites, but we can't control their order. If we mark a socket
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3822) 		 * as accounted, but the accounting functions are not patched in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3823) 		 * yet, we'll lose accounting.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3824) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3825) 		 * We never race with the readers in mem_cgroup_sk_alloc(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3826) 		 * because when this value change, the code to process it is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3827) 		 * patched in yet.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3828) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3829) 		static_branch_inc(&memcg_sockets_enabled_key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3830) 		memcg->tcpmem_active = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3831) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3832) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3833) 	mutex_unlock(&memcg_max_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3834) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3835) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3836) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3837) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3838)  * The user of this function is...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3839)  * RES_LIMIT.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3840)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3841) static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3842) 				char *buf, size_t nbytes, loff_t off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3843) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3844) 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3845) 	unsigned long nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3846) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3847) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3848) 	buf = strstrip(buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3849) 	ret = page_counter_memparse(buf, "-1", &nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3850) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3851) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3852) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3853) 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3854) 	case RES_LIMIT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3855) 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3856) 			ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3857) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3858) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3859) 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3860) 		case _MEM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3861) 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3862) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3863) 		case _MEMSWAP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3864) 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3865) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3866) 		case _KMEM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3867) 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3868) 				     "Please report your usecase to linux-mm@kvack.org if you "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3869) 				     "depend on this functionality.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3870) 			ret = memcg_update_kmem_max(memcg, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3871) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3872) 		case _TCP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3873) 			ret = memcg_update_tcp_max(memcg, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3874) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3875) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3876) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3877) 	case RES_SOFT_LIMIT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3878) 		memcg->soft_limit = nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3879) 		ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3880) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3881) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3882) 	return ret ?: nbytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3883) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3884) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3885) static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3886) 				size_t nbytes, loff_t off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3887) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3888) 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3889) 	struct page_counter *counter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3890) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3891) 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3892) 	case _MEM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3893) 		counter = &memcg->memory;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3894) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3895) 	case _MEMSWAP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3896) 		counter = &memcg->memsw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3897) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3898) 	case _KMEM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3899) 		counter = &memcg->kmem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3900) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3901) 	case _TCP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3902) 		counter = &memcg->tcpmem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3903) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3904) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3905) 		BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3906) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3907) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3908) 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3909) 	case RES_MAX_USAGE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3910) 		page_counter_reset_watermark(counter);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3911) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3912) 	case RES_FAILCNT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3913) 		counter->failcnt = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3914) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3915) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3916) 		BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3917) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3918) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3919) 	return nbytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3920) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3921) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3922) static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3923) 					struct cftype *cft)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3924) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3925) 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3926) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3927) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3928) #ifdef CONFIG_MMU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3929) static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3930) 					struct cftype *cft, u64 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3931) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3932) 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3933) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3934) 	if (val & ~MOVE_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3935) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3936) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3937) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3938) 	 * No kind of locking is needed in here, because ->can_attach() will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3939) 	 * check this value once in the beginning of the process, and then carry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3940) 	 * on with stale data. This means that changes to this value will only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3941) 	 * affect task migrations starting after the change.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3942) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3943) 	memcg->move_charge_at_immigrate = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3944) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3945) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3946) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3947) static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3948) 					struct cftype *cft, u64 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3949) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3950) 	return -ENOSYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3951) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3952) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3953) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3954) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3955) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3956) #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3957) #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3958) #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3959) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3960) static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3961) 				int nid, unsigned int lru_mask, bool tree)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3962) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3963) 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3964) 	unsigned long nr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3965) 	enum lru_list lru;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3966) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3967) 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3968) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3969) 	for_each_lru(lru) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3970) 		if (!(BIT(lru) & lru_mask))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3971) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3972) 		if (tree)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3973) 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3974) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3975) 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3976) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3977) 	return nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3978) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3979) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3980) static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3981) 					     unsigned int lru_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3982) 					     bool tree)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3983) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3984) 	unsigned long nr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3985) 	enum lru_list lru;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3986) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3987) 	for_each_lru(lru) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3988) 		if (!(BIT(lru) & lru_mask))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3989) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3990) 		if (tree)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3991) 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3992) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3993) 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3994) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3995) 	return nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3996) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3997) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3998) static int memcg_numa_stat_show(struct seq_file *m, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3999) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4000) 	struct numa_stat {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4001) 		const char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4002) 		unsigned int lru_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4003) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4004) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4005) 	static const struct numa_stat stats[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4006) 		{ "total", LRU_ALL },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4007) 		{ "file", LRU_ALL_FILE },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4008) 		{ "anon", LRU_ALL_ANON },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4009) 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4010) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4011) 	const struct numa_stat *stat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4012) 	int nid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4013) 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4014) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4015) 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4016) 		seq_printf(m, "%s=%lu", stat->name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4017) 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4018) 						   false));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4019) 		for_each_node_state(nid, N_MEMORY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4020) 			seq_printf(m, " N%d=%lu", nid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4021) 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4022) 							stat->lru_mask, false));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4023) 		seq_putc(m, '\n');
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4024) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4025) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4026) 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4027) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4028) 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4029) 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4030) 						   true));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4031) 		for_each_node_state(nid, N_MEMORY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4032) 			seq_printf(m, " N%d=%lu", nid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4033) 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4034) 							stat->lru_mask, true));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4035) 		seq_putc(m, '\n');
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4036) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4037) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4038) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4039) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4040) #endif /* CONFIG_NUMA */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4041) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4042) static const unsigned int memcg1_stats[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4043) 	NR_FILE_PAGES,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4044) 	NR_ANON_MAPPED,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4045) #ifdef CONFIG_TRANSPARENT_HUGEPAGE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4046) 	NR_ANON_THPS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4047) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4048) 	NR_SHMEM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4049) 	NR_FILE_MAPPED,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4050) 	NR_FILE_DIRTY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4051) 	NR_WRITEBACK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4052) 	MEMCG_SWAP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4053) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4054) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4055) static const char *const memcg1_stat_names[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4056) 	"cache",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4057) 	"rss",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4058) #ifdef CONFIG_TRANSPARENT_HUGEPAGE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4059) 	"rss_huge",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4060) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4061) 	"shmem",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4062) 	"mapped_file",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4063) 	"dirty",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4064) 	"writeback",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4065) 	"swap",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4066) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4067) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4068) /* Universal VM events cgroup1 shows, original sort order */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4069) static const unsigned int memcg1_events[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4070) 	PGPGIN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4071) 	PGPGOUT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4072) 	PGFAULT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4073) 	PGMAJFAULT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4074) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4075) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4076) static int memcg_stat_show(struct seq_file *m, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4077) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4078) 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4079) 	unsigned long memory, memsw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4080) 	struct mem_cgroup *mi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4081) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4082) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4083) 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4084) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4085) 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4086) 		unsigned long nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4087) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4088) 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4089) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4090) 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4091) #ifdef CONFIG_TRANSPARENT_HUGEPAGE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4092) 		if (memcg1_stats[i] == NR_ANON_THPS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4093) 			nr *= HPAGE_PMD_NR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4094) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4095) 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4096) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4097) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4098) 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4099) 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4100) 			   memcg_events_local(memcg, memcg1_events[i]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4102) 	for (i = 0; i < NR_LRU_LISTS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4103) 		seq_printf(m, "%s %lu\n", lru_list_name(i),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4104) 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4105) 			   PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4107) 	/* Hierarchical information */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4108) 	memory = memsw = PAGE_COUNTER_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4109) 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4110) 		memory = min(memory, READ_ONCE(mi->memory.max));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4111) 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4112) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4113) 	seq_printf(m, "hierarchical_memory_limit %llu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4114) 		   (u64)memory * PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4115) 	if (do_memsw_account())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4116) 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4117) 			   (u64)memsw * PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4119) 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4120) 		unsigned long nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4122) 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4123) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4124) 		nr = memcg_page_state(memcg, memcg1_stats[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4125) #ifdef CONFIG_TRANSPARENT_HUGEPAGE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4126) 		if (memcg1_stats[i] == NR_ANON_THPS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4127) 			nr *= HPAGE_PMD_NR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4128) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4129) 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4130) 						(u64)nr * PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4131) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4133) 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4134) 		seq_printf(m, "total_%s %llu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4135) 			   vm_event_name(memcg1_events[i]),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4136) 			   (u64)memcg_events(memcg, memcg1_events[i]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4138) 	for (i = 0; i < NR_LRU_LISTS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4139) 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4140) 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4141) 			   PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4143) #ifdef CONFIG_DEBUG_VM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4144) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4145) 		pg_data_t *pgdat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4146) 		struct mem_cgroup_per_node *mz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4147) 		unsigned long anon_cost = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4148) 		unsigned long file_cost = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4150) 		for_each_online_pgdat(pgdat) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4151) 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4153) 			anon_cost += mz->lruvec.anon_cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4154) 			file_cost += mz->lruvec.file_cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4155) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4156) 		seq_printf(m, "anon_cost %lu\n", anon_cost);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4157) 		seq_printf(m, "file_cost %lu\n", file_cost);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4158) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4159) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4161) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4162) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4164) static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4165) 				      struct cftype *cft)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4166) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4167) 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4169) 	return mem_cgroup_swappiness(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4170) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4172) static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4173) 				       struct cftype *cft, u64 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4174) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4175) 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4177) 	if (val > 100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4178) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4180) 	if (css->parent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4181) 		memcg->swappiness = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4182) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4183) 		vm_swappiness = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4185) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4186) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4188) static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4189) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4190) 	struct mem_cgroup_threshold_ary *t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4191) 	unsigned long usage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4192) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4194) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4195) 	if (!swap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4196) 		t = rcu_dereference(memcg->thresholds.primary);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4197) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4198) 		t = rcu_dereference(memcg->memsw_thresholds.primary);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4200) 	if (!t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4201) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4203) 	usage = mem_cgroup_usage(memcg, swap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4205) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4206) 	 * current_threshold points to threshold just below or equal to usage.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4207) 	 * If it's not true, a threshold was crossed after last
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4208) 	 * call of __mem_cgroup_threshold().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4209) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4210) 	i = t->current_threshold;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4212) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4213) 	 * Iterate backward over array of thresholds starting from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4214) 	 * current_threshold and check if a threshold is crossed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4215) 	 * If none of thresholds below usage is crossed, we read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4216) 	 * only one element of the array here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4217) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4218) 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4219) 		eventfd_signal(t->entries[i].eventfd, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4221) 	/* i = current_threshold + 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4222) 	i++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4224) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4225) 	 * Iterate forward over array of thresholds starting from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4226) 	 * current_threshold+1 and check if a threshold is crossed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4227) 	 * If none of thresholds above usage is crossed, we read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4228) 	 * only one element of the array here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4229) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4230) 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4231) 		eventfd_signal(t->entries[i].eventfd, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4233) 	/* Update current_threshold */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4234) 	t->current_threshold = i - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4235) unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4236) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4237) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4239) static void mem_cgroup_threshold(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4240) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4241) 	while (memcg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4242) 		__mem_cgroup_threshold(memcg, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4243) 		if (do_memsw_account())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4244) 			__mem_cgroup_threshold(memcg, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4246) 		memcg = parent_mem_cgroup(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4247) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4248) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4250) static int compare_thresholds(const void *a, const void *b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4251) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4252) 	const struct mem_cgroup_threshold *_a = a;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4253) 	const struct mem_cgroup_threshold *_b = b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4255) 	if (_a->threshold > _b->threshold)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4256) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4258) 	if (_a->threshold < _b->threshold)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4259) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4260) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4261) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4262) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4264) static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4265) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4266) 	struct mem_cgroup_eventfd_list *ev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4268) 	spin_lock(&memcg_oom_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4270) 	list_for_each_entry(ev, &memcg->oom_notify, list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4271) 		eventfd_signal(ev->eventfd, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4273) 	spin_unlock(&memcg_oom_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4274) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4275) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4277) static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4278) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4279) 	struct mem_cgroup *iter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4281) 	for_each_mem_cgroup_tree(iter, memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4282) 		mem_cgroup_oom_notify_cb(iter);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4283) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4284) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4285) static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4286) 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4287) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4288) 	struct mem_cgroup_thresholds *thresholds;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4289) 	struct mem_cgroup_threshold_ary *new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4290) 	unsigned long threshold;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4291) 	unsigned long usage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4292) 	int i, size, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4294) 	ret = page_counter_memparse(args, "-1", &threshold);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4295) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4296) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4298) 	mutex_lock(&memcg->thresholds_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4300) 	if (type == _MEM) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4301) 		thresholds = &memcg->thresholds;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4302) 		usage = mem_cgroup_usage(memcg, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4303) 	} else if (type == _MEMSWAP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4304) 		thresholds = &memcg->memsw_thresholds;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4305) 		usage = mem_cgroup_usage(memcg, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4306) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4307) 		BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4309) 	/* Check if a threshold crossed before adding a new one */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4310) 	if (thresholds->primary)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4311) 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4313) 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4314) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4315) 	/* Allocate memory for new array of thresholds */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4316) 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4317) 	if (!new) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4318) 		ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4319) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4320) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4321) 	new->size = size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4322) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4323) 	/* Copy thresholds (if any) to new array */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4324) 	if (thresholds->primary)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4325) 		memcpy(new->entries, thresholds->primary->entries,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4326) 		       flex_array_size(new, entries, size - 1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4328) 	/* Add new threshold */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4329) 	new->entries[size - 1].eventfd = eventfd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4330) 	new->entries[size - 1].threshold = threshold;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4332) 	/* Sort thresholds. Registering of new threshold isn't time-critical */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4333) 	sort(new->entries, size, sizeof(*new->entries),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4334) 			compare_thresholds, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4336) 	/* Find current threshold */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4337) 	new->current_threshold = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4338) 	for (i = 0; i < size; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4339) 		if (new->entries[i].threshold <= usage) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4340) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4341) 			 * new->current_threshold will not be used until
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4342) 			 * rcu_assign_pointer(), so it's safe to increment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4343) 			 * it here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4344) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4345) 			++new->current_threshold;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4346) 		} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4347) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4348) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4350) 	/* Free old spare buffer and save old primary buffer as spare */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4351) 	kfree(thresholds->spare);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4352) 	thresholds->spare = thresholds->primary;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4353) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4354) 	rcu_assign_pointer(thresholds->primary, new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4356) 	/* To be sure that nobody uses thresholds */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4357) 	synchronize_rcu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4359) unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4360) 	mutex_unlock(&memcg->thresholds_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4362) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4363) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4364) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4365) static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4366) 	struct eventfd_ctx *eventfd, const char *args)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4367) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4368) 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4369) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4371) static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4372) 	struct eventfd_ctx *eventfd, const char *args)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4373) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4374) 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4375) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4377) static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4378) 	struct eventfd_ctx *eventfd, enum res_type type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4379) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4380) 	struct mem_cgroup_thresholds *thresholds;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4381) 	struct mem_cgroup_threshold_ary *new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4382) 	unsigned long usage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4383) 	int i, j, size, entries;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4385) 	mutex_lock(&memcg->thresholds_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4387) 	if (type == _MEM) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4388) 		thresholds = &memcg->thresholds;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4389) 		usage = mem_cgroup_usage(memcg, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4390) 	} else if (type == _MEMSWAP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4391) 		thresholds = &memcg->memsw_thresholds;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4392) 		usage = mem_cgroup_usage(memcg, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4393) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4394) 		BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4396) 	if (!thresholds->primary)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4397) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4399) 	/* Check if a threshold crossed before removing */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4400) 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4402) 	/* Calculate new number of threshold */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4403) 	size = entries = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4404) 	for (i = 0; i < thresholds->primary->size; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4405) 		if (thresholds->primary->entries[i].eventfd != eventfd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4406) 			size++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4407) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4408) 			entries++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4409) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4410) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4411) 	new = thresholds->spare;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4413) 	/* If no items related to eventfd have been cleared, nothing to do */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4414) 	if (!entries)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4415) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4417) 	/* Set thresholds array to NULL if we don't have thresholds */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4418) 	if (!size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4419) 		kfree(new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4420) 		new = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4421) 		goto swap_buffers;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4422) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4424) 	new->size = size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4426) 	/* Copy thresholds and find current threshold */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4427) 	new->current_threshold = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4428) 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4429) 		if (thresholds->primary->entries[i].eventfd == eventfd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4430) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4431) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4432) 		new->entries[j] = thresholds->primary->entries[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4433) 		if (new->entries[j].threshold <= usage) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4434) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4435) 			 * new->current_threshold will not be used
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4436) 			 * until rcu_assign_pointer(), so it's safe to increment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4437) 			 * it here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4438) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4439) 			++new->current_threshold;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4440) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4441) 		j++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4442) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4443) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4444) swap_buffers:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4445) 	/* Swap primary and spare array */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4446) 	thresholds->spare = thresholds->primary;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4448) 	rcu_assign_pointer(thresholds->primary, new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4449) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4450) 	/* To be sure that nobody uses thresholds */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4451) 	synchronize_rcu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4452) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4453) 	/* If all events are unregistered, free the spare array */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4454) 	if (!new) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4455) 		kfree(thresholds->spare);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4456) 		thresholds->spare = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4457) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4458) unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4459) 	mutex_unlock(&memcg->thresholds_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4460) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4462) static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4463) 	struct eventfd_ctx *eventfd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4464) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4465) 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4466) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4467) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4468) static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4469) 	struct eventfd_ctx *eventfd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4470) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4471) 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4472) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4474) static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4475) 	struct eventfd_ctx *eventfd, const char *args)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4476) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4477) 	struct mem_cgroup_eventfd_list *event;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4478) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4479) 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4480) 	if (!event)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4481) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4482) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4483) 	spin_lock(&memcg_oom_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4485) 	event->eventfd = eventfd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4486) 	list_add(&event->list, &memcg->oom_notify);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4488) 	/* already in OOM ? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4489) 	if (memcg->under_oom)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4490) 		eventfd_signal(eventfd, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4491) 	spin_unlock(&memcg_oom_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4492) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4493) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4494) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4495) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4496) static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4497) 	struct eventfd_ctx *eventfd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4498) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4499) 	struct mem_cgroup_eventfd_list *ev, *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4501) 	spin_lock(&memcg_oom_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4502) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4503) 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4504) 		if (ev->eventfd == eventfd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4505) 			list_del(&ev->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4506) 			kfree(ev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4507) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4508) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4509) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4510) 	spin_unlock(&memcg_oom_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4511) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4512) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4513) static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4514) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4515) 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4516) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4517) 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4518) 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4519) 	seq_printf(sf, "oom_kill %lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4520) 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4521) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4522) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4523) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4524) static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4525) 	struct cftype *cft, u64 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4526) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4527) 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4529) 	/* cannot set to root cgroup and only 0 and 1 are allowed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4530) 	if (!css->parent || !((val == 0) || (val == 1)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4531) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4533) 	memcg->oom_kill_disable = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4534) 	if (!val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4535) 		memcg_oom_recover(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4536) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4537) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4538) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4540) #ifdef CONFIG_CGROUP_WRITEBACK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4541) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4542) #include <trace/events/writeback.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4544) static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4545) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4546) 	return wb_domain_init(&memcg->cgwb_domain, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4547) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4549) static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4550) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4551) 	wb_domain_exit(&memcg->cgwb_domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4552) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4553) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4554) static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4555) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4556) 	wb_domain_size_changed(&memcg->cgwb_domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4557) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4559) struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4560) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4561) 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4563) 	if (!memcg->css.parent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4564) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4566) 	return &memcg->cgwb_domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4567) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4568) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4569) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4570)  * idx can be of type enum memcg_stat_item or node_stat_item.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4571)  * Keep in sync with memcg_exact_page().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4572)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4573) static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4574) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4575) 	long x = atomic_long_read(&memcg->vmstats[idx]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4576) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4578) 	for_each_online_cpu(cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4579) 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4580) 	if (x < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4581) 		x = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4582) 	return x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4583) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4584) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4585) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4586)  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4587)  * @wb: bdi_writeback in question
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4588)  * @pfilepages: out parameter for number of file pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4589)  * @pheadroom: out parameter for number of allocatable pages according to memcg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4590)  * @pdirty: out parameter for number of dirty pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4591)  * @pwriteback: out parameter for number of pages under writeback
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4592)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4593)  * Determine the numbers of file, headroom, dirty, and writeback pages in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4594)  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4595)  * is a bit more involved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4596)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4597)  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4598)  * headroom is calculated as the lowest headroom of itself and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4599)  * ancestors.  Note that this doesn't consider the actual amount of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4600)  * available memory in the system.  The caller should further cap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4601)  * *@pheadroom accordingly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4602)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4603) void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4604) 			 unsigned long *pheadroom, unsigned long *pdirty,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4605) 			 unsigned long *pwriteback)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4606) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4607) 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4608) 	struct mem_cgroup *parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4610) 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4611) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4612) 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4613) 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4614) 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4615) 	*pheadroom = PAGE_COUNTER_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4616) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4617) 	while ((parent = parent_mem_cgroup(memcg))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4618) 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4619) 					    READ_ONCE(memcg->memory.high));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4620) 		unsigned long used = page_counter_read(&memcg->memory);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4621) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4622) 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4623) 		memcg = parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4624) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4625) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4626) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4627) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4628)  * Foreign dirty flushing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4629)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4630)  * There's an inherent mismatch between memcg and writeback.  The former
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4631)  * trackes ownership per-page while the latter per-inode.  This was a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4632)  * deliberate design decision because honoring per-page ownership in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4633)  * writeback path is complicated, may lead to higher CPU and IO overheads
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4634)  * and deemed unnecessary given that write-sharing an inode across
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4635)  * different cgroups isn't a common use-case.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4636)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4637)  * Combined with inode majority-writer ownership switching, this works well
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4638)  * enough in most cases but there are some pathological cases.  For
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4639)  * example, let's say there are two cgroups A and B which keep writing to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4640)  * different but confined parts of the same inode.  B owns the inode and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4641)  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4642)  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4643)  * triggering background writeback.  A will be slowed down without a way to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4644)  * make writeback of the dirty pages happen.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4645)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4646)  * Conditions like the above can lead to a cgroup getting repatedly and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4647)  * severely throttled after making some progress after each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4648)  * dirty_expire_interval while the underyling IO device is almost
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4649)  * completely idle.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4650)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4651)  * Solving this problem completely requires matching the ownership tracking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4652)  * granularities between memcg and writeback in either direction.  However,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4653)  * the more egregious behaviors can be avoided by simply remembering the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4654)  * most recent foreign dirtying events and initiating remote flushes on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4655)  * them when local writeback isn't enough to keep the memory clean enough.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4656)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4657)  * The following two functions implement such mechanism.  When a foreign
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4658)  * page - a page whose memcg and writeback ownerships don't match - is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4659)  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4660)  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4661)  * decides that the memcg needs to sleep due to high dirty ratio, it calls
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4662)  * mem_cgroup_flush_foreign() which queues writeback on the recorded
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4663)  * foreign bdi_writebacks which haven't expired.  Both the numbers of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4664)  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4665)  * limited to MEMCG_CGWB_FRN_CNT.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4666)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4667)  * The mechanism only remembers IDs and doesn't hold any object references.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4668)  * As being wrong occasionally doesn't matter, updates and accesses to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4669)  * records are lockless and racy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4670)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4671) void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4672) 					     struct bdi_writeback *wb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4673) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4674) 	struct mem_cgroup *memcg = page->mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4675) 	struct memcg_cgwb_frn *frn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4676) 	u64 now = get_jiffies_64();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4677) 	u64 oldest_at = now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4678) 	int oldest = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4679) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4680) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4681) 	trace_track_foreign_dirty(page, wb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4682) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4683) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4684) 	 * Pick the slot to use.  If there is already a slot for @wb, keep
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4685) 	 * using it.  If not replace the oldest one which isn't being
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4686) 	 * written out.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4687) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4688) 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4689) 		frn = &memcg->cgwb_frn[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4690) 		if (frn->bdi_id == wb->bdi->id &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4691) 		    frn->memcg_id == wb->memcg_css->id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4692) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4693) 		if (time_before64(frn->at, oldest_at) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4694) 		    atomic_read(&frn->done.cnt) == 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4695) 			oldest = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4696) 			oldest_at = frn->at;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4697) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4698) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4699) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4700) 	if (i < MEMCG_CGWB_FRN_CNT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4701) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4702) 		 * Re-using an existing one.  Update timestamp lazily to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4703) 		 * avoid making the cacheline hot.  We want them to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4704) 		 * reasonably up-to-date and significantly shorter than
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4705) 		 * dirty_expire_interval as that's what expires the record.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4706) 		 * Use the shorter of 1s and dirty_expire_interval / 8.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4707) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4708) 		unsigned long update_intv =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4709) 			min_t(unsigned long, HZ,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4710) 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4711) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4712) 		if (time_before64(frn->at, now - update_intv))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4713) 			frn->at = now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4714) 	} else if (oldest >= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4715) 		/* replace the oldest free one */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4716) 		frn = &memcg->cgwb_frn[oldest];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4717) 		frn->bdi_id = wb->bdi->id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4718) 		frn->memcg_id = wb->memcg_css->id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4719) 		frn->at = now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4720) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4721) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4722) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4723) /* issue foreign writeback flushes for recorded foreign dirtying events */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4724) void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4725) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4726) 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4727) 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4728) 	u64 now = jiffies_64;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4729) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4730) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4731) 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4732) 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4734) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4735) 		 * If the record is older than dirty_expire_interval,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4736) 		 * writeback on it has already started.  No need to kick it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4737) 		 * off again.  Also, don't start a new one if there's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4738) 		 * already one in flight.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4739) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4740) 		if (time_after64(frn->at, now - intv) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4741) 		    atomic_read(&frn->done.cnt) == 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4742) 			frn->at = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4743) 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4744) 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4745) 					       WB_REASON_FOREIGN_FLUSH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4746) 					       &frn->done);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4747) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4748) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4749) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4750) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4751) #else	/* CONFIG_CGROUP_WRITEBACK */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4752) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4753) static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4754) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4755) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4756) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4757) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4758) static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4759) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4760) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4761) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4762) static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4763) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4764) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4765) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4766) #endif	/* CONFIG_CGROUP_WRITEBACK */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4767) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4768) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4769)  * DO NOT USE IN NEW FILES.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4770)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4771)  * "cgroup.event_control" implementation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4772)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4773)  * This is way over-engineered.  It tries to support fully configurable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4774)  * events for each user.  Such level of flexibility is completely
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4775)  * unnecessary especially in the light of the planned unified hierarchy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4776)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4777)  * Please deprecate this and replace with something simpler if at all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4778)  * possible.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4779)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4780) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4781) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4782)  * Unregister event and free resources.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4783)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4784)  * Gets called from workqueue.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4785)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4786) static void memcg_event_remove(struct work_struct *work)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4787) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4788) 	struct mem_cgroup_event *event =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4789) 		container_of(work, struct mem_cgroup_event, remove);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4790) 	struct mem_cgroup *memcg = event->memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4791) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4792) 	remove_wait_queue(event->wqh, &event->wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4793) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4794) 	event->unregister_event(memcg, event->eventfd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4795) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4796) 	/* Notify userspace the event is going away. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4797) 	eventfd_signal(event->eventfd, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4798) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4799) 	eventfd_ctx_put(event->eventfd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4800) 	kfree(event);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4801) 	css_put(&memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4802) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4803) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4804) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4805)  * Gets called on EPOLLHUP on eventfd when user closes it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4806)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4807)  * Called with wqh->lock held and interrupts disabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4808)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4809) static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4810) 			    int sync, void *key)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4811) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4812) 	struct mem_cgroup_event *event =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4813) 		container_of(wait, struct mem_cgroup_event, wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4814) 	struct mem_cgroup *memcg = event->memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4815) 	__poll_t flags = key_to_poll(key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4816) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4817) 	if (flags & EPOLLHUP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4818) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4819) 		 * If the event has been detached at cgroup removal, we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4820) 		 * can simply return knowing the other side will cleanup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4821) 		 * for us.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4822) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4823) 		 * We can't race against event freeing since the other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4824) 		 * side will require wqh->lock via remove_wait_queue(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4825) 		 * which we hold.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4826) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4827) 		spin_lock(&memcg->event_list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4828) 		if (!list_empty(&event->list)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4829) 			list_del_init(&event->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4830) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4831) 			 * We are in atomic context, but cgroup_event_remove()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4832) 			 * may sleep, so we have to call it in workqueue.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4833) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4834) 			schedule_work(&event->remove);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4835) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4836) 		spin_unlock(&memcg->event_list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4837) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4838) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4839) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4840) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4841) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4842) static void memcg_event_ptable_queue_proc(struct file *file,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4843) 		wait_queue_head_t *wqh, poll_table *pt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4844) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4845) 	struct mem_cgroup_event *event =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4846) 		container_of(pt, struct mem_cgroup_event, pt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4847) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4848) 	event->wqh = wqh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4849) 	add_wait_queue(wqh, &event->wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4850) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4851) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4852) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4853)  * DO NOT USE IN NEW FILES.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4854)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4855)  * Parse input and register new cgroup event handler.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4856)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4857)  * Input must be in format '<event_fd> <control_fd> <args>'.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4858)  * Interpretation of args is defined by control file implementation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4859)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4860) static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4861) 					 char *buf, size_t nbytes, loff_t off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4862) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4863) 	struct cgroup_subsys_state *css = of_css(of);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4864) 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4865) 	struct mem_cgroup_event *event;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4866) 	struct cgroup_subsys_state *cfile_css;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4867) 	unsigned int efd, cfd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4868) 	struct fd efile;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4869) 	struct fd cfile;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4870) 	const char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4871) 	char *endp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4872) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4873) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4874) 	buf = strstrip(buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4875) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4876) 	efd = simple_strtoul(buf, &endp, 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4877) 	if (*endp != ' ')
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4878) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4879) 	buf = endp + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4880) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4881) 	cfd = simple_strtoul(buf, &endp, 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4882) 	if ((*endp != ' ') && (*endp != '\0'))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4883) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4884) 	buf = endp + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4885) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4886) 	event = kzalloc(sizeof(*event), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4887) 	if (!event)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4888) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4889) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4890) 	event->memcg = memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4891) 	INIT_LIST_HEAD(&event->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4892) 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4893) 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4894) 	INIT_WORK(&event->remove, memcg_event_remove);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4895) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4896) 	efile = fdget(efd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4897) 	if (!efile.file) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4898) 		ret = -EBADF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4899) 		goto out_kfree;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4900) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4901) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4902) 	event->eventfd = eventfd_ctx_fileget(efile.file);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4903) 	if (IS_ERR(event->eventfd)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4904) 		ret = PTR_ERR(event->eventfd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4905) 		goto out_put_efile;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4906) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4907) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4908) 	cfile = fdget(cfd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4909) 	if (!cfile.file) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4910) 		ret = -EBADF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4911) 		goto out_put_eventfd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4912) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4913) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4914) 	/* the process need read permission on control file */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4915) 	/* AV: shouldn't we check that it's been opened for read instead? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4916) 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4917) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4918) 		goto out_put_cfile;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4919) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4920) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4921) 	 * Determine the event callbacks and set them in @event.  This used
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4922) 	 * to be done via struct cftype but cgroup core no longer knows
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4923) 	 * about these events.  The following is crude but the whole thing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4924) 	 * is for compatibility anyway.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4925) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4926) 	 * DO NOT ADD NEW FILES.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4927) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4928) 	name = cfile.file->f_path.dentry->d_name.name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4929) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4930) 	if (!strcmp(name, "memory.usage_in_bytes")) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4931) 		event->register_event = mem_cgroup_usage_register_event;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4932) 		event->unregister_event = mem_cgroup_usage_unregister_event;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4933) 	} else if (!strcmp(name, "memory.oom_control")) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4934) 		event->register_event = mem_cgroup_oom_register_event;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4935) 		event->unregister_event = mem_cgroup_oom_unregister_event;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4936) 	} else if (!strcmp(name, "memory.pressure_level")) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4937) 		event->register_event = vmpressure_register_event;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4938) 		event->unregister_event = vmpressure_unregister_event;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4939) 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4940) 		event->register_event = memsw_cgroup_usage_register_event;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4941) 		event->unregister_event = memsw_cgroup_usage_unregister_event;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4942) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4943) 		ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4944) 		goto out_put_cfile;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4945) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4946) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4947) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4948) 	 * Verify @cfile should belong to @css.  Also, remaining events are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4949) 	 * automatically removed on cgroup destruction but the removal is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4950) 	 * asynchronous, so take an extra ref on @css.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4951) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4952) 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4953) 					       &memory_cgrp_subsys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4954) 	ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4955) 	if (IS_ERR(cfile_css))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4956) 		goto out_put_cfile;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4957) 	if (cfile_css != css) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4958) 		css_put(cfile_css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4959) 		goto out_put_cfile;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4960) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4961) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4962) 	ret = event->register_event(memcg, event->eventfd, buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4963) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4964) 		goto out_put_css;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4965) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4966) 	vfs_poll(efile.file, &event->pt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4967) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4968) 	spin_lock(&memcg->event_list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4969) 	list_add(&event->list, &memcg->event_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4970) 	spin_unlock(&memcg->event_list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4971) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4972) 	fdput(cfile);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4973) 	fdput(efile);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4974) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4975) 	return nbytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4976) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4977) out_put_css:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4978) 	css_put(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4979) out_put_cfile:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4980) 	fdput(cfile);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4981) out_put_eventfd:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4982) 	eventfd_ctx_put(event->eventfd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4983) out_put_efile:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4984) 	fdput(efile);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4985) out_kfree:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4986) 	kfree(event);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4987) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4988) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4989) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4990) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4991) static struct cftype mem_cgroup_legacy_files[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4992) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4993) 		.name = "usage_in_bytes",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4994) 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4995) 		.read_u64 = mem_cgroup_read_u64,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4996) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4997) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4998) 		.name = "max_usage_in_bytes",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4999) 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5000) 		.write = mem_cgroup_reset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5001) 		.read_u64 = mem_cgroup_read_u64,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5002) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5003) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5004) 		.name = "limit_in_bytes",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5005) 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5006) 		.write = mem_cgroup_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5007) 		.read_u64 = mem_cgroup_read_u64,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5008) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5009) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5010) 		.name = "soft_limit_in_bytes",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5011) 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5012) 		.write = mem_cgroup_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5013) 		.read_u64 = mem_cgroup_read_u64,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5014) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5015) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5016) 		.name = "failcnt",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5017) 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5018) 		.write = mem_cgroup_reset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5019) 		.read_u64 = mem_cgroup_read_u64,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5020) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5021) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5022) 		.name = "stat",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5023) 		.seq_show = memcg_stat_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5024) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5025) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5026) 		.name = "force_empty",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5027) 		.write = mem_cgroup_force_empty_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5028) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5029) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5030) 		.name = "use_hierarchy",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5031) 		.write_u64 = mem_cgroup_hierarchy_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5032) 		.read_u64 = mem_cgroup_hierarchy_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5033) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5034) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5035) 		.name = "cgroup.event_control",		/* XXX: for compat */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5036) 		.write = memcg_write_event_control,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5037) 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5038) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5039) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5040) 		.name = "swappiness",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5041) 		.read_u64 = mem_cgroup_swappiness_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5042) 		.write_u64 = mem_cgroup_swappiness_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5043) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5044) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5045) 		.name = "move_charge_at_immigrate",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5046) 		.read_u64 = mem_cgroup_move_charge_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5047) 		.write_u64 = mem_cgroup_move_charge_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5048) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5049) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5050) 		.name = "oom_control",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5051) 		.seq_show = mem_cgroup_oom_control_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5052) 		.write_u64 = mem_cgroup_oom_control_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5053) 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5054) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5055) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5056) 		.name = "pressure_level",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5057) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5058) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5059) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5060) 		.name = "numa_stat",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5061) 		.seq_show = memcg_numa_stat_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5062) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5063) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5064) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5065) 		.name = "kmem.limit_in_bytes",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5066) 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5067) 		.write = mem_cgroup_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5068) 		.read_u64 = mem_cgroup_read_u64,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5069) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5070) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5071) 		.name = "kmem.usage_in_bytes",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5072) 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5073) 		.read_u64 = mem_cgroup_read_u64,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5074) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5075) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5076) 		.name = "kmem.failcnt",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5077) 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5078) 		.write = mem_cgroup_reset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5079) 		.read_u64 = mem_cgroup_read_u64,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5080) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5081) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5082) 		.name = "kmem.max_usage_in_bytes",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5083) 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5084) 		.write = mem_cgroup_reset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5085) 		.read_u64 = mem_cgroup_read_u64,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5086) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5087) #if defined(CONFIG_MEMCG_KMEM) && \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5088) 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5089) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5090) 		.name = "kmem.slabinfo",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5091) 		.seq_show = memcg_slab_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5092) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5093) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5094) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5095) 		.name = "kmem.tcp.limit_in_bytes",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5096) 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5097) 		.write = mem_cgroup_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5098) 		.read_u64 = mem_cgroup_read_u64,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5099) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5100) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5101) 		.name = "kmem.tcp.usage_in_bytes",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5102) 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5103) 		.read_u64 = mem_cgroup_read_u64,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5104) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5105) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5106) 		.name = "kmem.tcp.failcnt",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5107) 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5108) 		.write = mem_cgroup_reset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5109) 		.read_u64 = mem_cgroup_read_u64,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5110) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5111) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5112) 		.name = "kmem.tcp.max_usage_in_bytes",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5113) 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5114) 		.write = mem_cgroup_reset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5115) 		.read_u64 = mem_cgroup_read_u64,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5116) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5117) 	{ },	/* terminate */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5118) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5120) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5121)  * Private memory cgroup IDR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5122)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5123)  * Swap-out records and page cache shadow entries need to store memcg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5124)  * references in constrained space, so we maintain an ID space that is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5125)  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5126)  * memory-controlled cgroups to 64k.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5127)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5128)  * However, there usually are many references to the offline CSS after
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5129)  * the cgroup has been destroyed, such as page cache or reclaimable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5130)  * slab objects, that don't need to hang on to the ID. We want to keep
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5131)  * those dead CSS from occupying IDs, or we might quickly exhaust the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5132)  * relatively small ID space and prevent the creation of new cgroups
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5133)  * even when there are much fewer than 64k cgroups - possibly none.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5134)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5135)  * Maintain a private 16-bit ID space for memcg, and allow the ID to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5136)  * be freed and recycled when it's no longer needed, which is usually
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5137)  * when the CSS is offlined.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5138)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5139)  * The only exception to that are records of swapped out tmpfs/shmem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5140)  * pages that need to be attributed to live ancestors on swapin. But
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5141)  * those references are manageable from userspace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5142)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5144) static DEFINE_IDR(mem_cgroup_idr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5146) static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5147) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5148) 	if (memcg->id.id > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5149) 		trace_android_vh_mem_cgroup_id_remove(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5150) 		idr_remove(&mem_cgroup_idr, memcg->id.id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5151) 		memcg->id.id = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5152) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5153) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5155) static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5156) 						  unsigned int n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5157) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5158) 	refcount_add(n, &memcg->id.ref);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5159) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5161) static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5162) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5163) 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5164) 		mem_cgroup_id_remove(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5166) 		/* Memcg ID pins CSS */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5167) 		css_put(&memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5168) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5169) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5171) static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5172) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5173) 	mem_cgroup_id_put_many(memcg, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5174) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5176) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5177)  * mem_cgroup_from_id - look up a memcg from a memcg id
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5178)  * @id: the memcg id to look up
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5179)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5180)  * Caller must hold rcu_read_lock().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5181)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5182) struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5183) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5184) 	WARN_ON_ONCE(!rcu_read_lock_held());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5185) 	return idr_find(&mem_cgroup_idr, id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5186) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5187) EXPORT_SYMBOL_GPL(mem_cgroup_from_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5189) static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5190) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5191) 	struct mem_cgroup_per_node *pn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5192) 	int tmp = node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5193) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5194) 	 * This routine is called against possible nodes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5195) 	 * But it's BUG to call kmalloc() against offline node.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5196) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5197) 	 * TODO: this routine can waste much memory for nodes which will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5198) 	 *       never be onlined. It's better to use memory hotplug callback
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5199) 	 *       function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5200) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5201) 	if (!node_state(node, N_NORMAL_MEMORY))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5202) 		tmp = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5203) 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5204) 	if (!pn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5205) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5207) 	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5208) 						 GFP_KERNEL_ACCOUNT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5209) 	if (!pn->lruvec_stat_local) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5210) 		kfree(pn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5211) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5212) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5214) 	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5215) 					       GFP_KERNEL_ACCOUNT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5216) 	if (!pn->lruvec_stat_cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5217) 		free_percpu(pn->lruvec_stat_local);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5218) 		kfree(pn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5219) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5220) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5222) 	lruvec_init(&pn->lruvec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5223) 	pn->usage_in_excess = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5224) 	pn->on_tree = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5225) 	pn->memcg = memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5227) 	memcg->nodeinfo[node] = pn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5228) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5229) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5230) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5231) static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5232) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5233) 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5235) 	if (!pn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5236) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5238) 	free_percpu(pn->lruvec_stat_cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5239) 	free_percpu(pn->lruvec_stat_local);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5240) 	kfree(pn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5241) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5243) static void __mem_cgroup_free(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5244) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5245) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5247) 	trace_android_vh_mem_cgroup_free(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5248) 	for_each_node(node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5249) 		free_mem_cgroup_per_node_info(memcg, node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5250) 	free_percpu(memcg->vmstats_percpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5251) 	free_percpu(memcg->vmstats_local);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5252) 	kfree(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5253) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5255) static void mem_cgroup_free(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5256) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5257) 	memcg_wb_domain_exit(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5258) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5259) 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5260) 	 * on parent's and all ancestor levels.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5261) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5262) 	memcg_flush_percpu_vmstats(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5263) 	memcg_flush_percpu_vmevents(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5264) 	__mem_cgroup_free(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5265) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5267) static struct mem_cgroup *mem_cgroup_alloc(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5268) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5269) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5270) 	unsigned int size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5271) 	int node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5272) 	int __maybe_unused i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5273) 	long error = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5275) 	size = sizeof(struct mem_cgroup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5276) 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5278) 	memcg = kzalloc(size, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5279) 	if (!memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5280) 		return ERR_PTR(error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5282) 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5283) 				 1, MEM_CGROUP_ID_MAX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5284) 				 GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5285) 	if (memcg->id.id < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5286) 		error = memcg->id.id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5287) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5288) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5290) 	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5291) 						GFP_KERNEL_ACCOUNT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5292) 	if (!memcg->vmstats_local)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5293) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5295) 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5296) 						 GFP_KERNEL_ACCOUNT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5297) 	if (!memcg->vmstats_percpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5298) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5300) 	for_each_node(node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5301) 		if (alloc_mem_cgroup_per_node_info(memcg, node))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5302) 			goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5304) 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5305) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5307) 	INIT_WORK(&memcg->high_work, high_work_func);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5308) 	INIT_LIST_HEAD(&memcg->oom_notify);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5309) 	mutex_init(&memcg->thresholds_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5310) 	spin_lock_init(&memcg->move_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5311) 	vmpressure_init(&memcg->vmpressure);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5312) 	INIT_LIST_HEAD(&memcg->event_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5313) 	spin_lock_init(&memcg->event_list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5314) 	memcg->socket_pressure = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5315) #ifdef CONFIG_MEMCG_KMEM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5316) 	memcg->kmemcg_id = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5317) 	INIT_LIST_HEAD(&memcg->objcg_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5318) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5319) #ifdef CONFIG_CGROUP_WRITEBACK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5320) 	INIT_LIST_HEAD(&memcg->cgwb_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5321) 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5322) 		memcg->cgwb_frn[i].done =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5323) 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5324) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5325) #ifdef CONFIG_TRANSPARENT_HUGEPAGE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5326) 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5327) 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5328) 	memcg->deferred_split_queue.split_queue_len = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5329) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5330) 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5331) 	trace_android_vh_mem_cgroup_alloc(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5332) 	return memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5333) fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5334) 	mem_cgroup_id_remove(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5335) 	__mem_cgroup_free(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5336) 	return ERR_PTR(error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5337) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5339) static struct cgroup_subsys_state * __ref
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5340) mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5341) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5342) 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5343) 	struct mem_cgroup *memcg, *old_memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5344) 	long error = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5346) 	old_memcg = set_active_memcg(parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5347) 	memcg = mem_cgroup_alloc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5348) 	set_active_memcg(old_memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5349) 	if (IS_ERR(memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5350) 		return ERR_CAST(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5352) 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5353) 	memcg->soft_limit = PAGE_COUNTER_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5354) 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5355) 	if (parent) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5356) 		memcg->swappiness = mem_cgroup_swappiness(parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5357) 		memcg->oom_kill_disable = parent->oom_kill_disable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5358) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5359) 	if (!parent) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5360) 		page_counter_init(&memcg->memory, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5361) 		page_counter_init(&memcg->swap, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5362) 		page_counter_init(&memcg->kmem, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5363) 		page_counter_init(&memcg->tcpmem, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5364) 	} else if (parent->use_hierarchy) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5365) 		memcg->use_hierarchy = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5366) 		page_counter_init(&memcg->memory, &parent->memory);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5367) 		page_counter_init(&memcg->swap, &parent->swap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5368) 		page_counter_init(&memcg->kmem, &parent->kmem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5369) 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5370) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5371) 		page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5372) 		page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5373) 		page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5374) 		page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5375) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5376) 		 * Deeper hierachy with use_hierarchy == false doesn't make
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5377) 		 * much sense so let cgroup subsystem know about this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5378) 		 * unfortunate state in our controller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5379) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5380) 		if (parent != root_mem_cgroup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5381) 			memory_cgrp_subsys.broken_hierarchy = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5382) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5384) 	/* The following stuff does not apply to the root */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5385) 	if (!parent) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5386) 		root_mem_cgroup = memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5387) 		return &memcg->css;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5388) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5389) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5390) 	error = memcg_online_kmem(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5391) 	if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5392) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5394) 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5395) 		static_branch_inc(&memcg_sockets_enabled_key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5397) 	return &memcg->css;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5398) fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5399) 	mem_cgroup_id_remove(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5400) 	mem_cgroup_free(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5401) 	return ERR_PTR(error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5402) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5403) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5404) static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5405) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5406) 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5408) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5409) 	 * A memcg must be visible for memcg_expand_shrinker_maps()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5410) 	 * by the time the maps are allocated. So, we allocate maps
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5411) 	 * here, when for_each_mem_cgroup() can't skip it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5412) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5413) 	if (memcg_alloc_shrinker_maps(memcg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5414) 		mem_cgroup_id_remove(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5415) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5416) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5417) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5418) 	/* Online state pins memcg ID, memcg ID pins CSS */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5419) 	refcount_set(&memcg->id.ref, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5420) 	css_get(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5421) 	trace_android_vh_mem_cgroup_css_online(css, memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5422) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5423) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5425) static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5426) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5427) 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5428) 	struct mem_cgroup_event *event, *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5430) 	trace_android_vh_mem_cgroup_css_offline(css, memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5431) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5432) 	 * Unregister events and notify userspace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5433) 	 * Notify userspace about cgroup removing only after rmdir of cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5434) 	 * directory to avoid race between userspace and kernelspace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5435) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5436) 	spin_lock(&memcg->event_list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5437) 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5438) 		list_del_init(&event->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5439) 		schedule_work(&event->remove);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5440) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5441) 	spin_unlock(&memcg->event_list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5443) 	page_counter_set_min(&memcg->memory, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5444) 	page_counter_set_low(&memcg->memory, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5446) 	memcg_offline_kmem(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5447) 	wb_memcg_offline(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5449) 	drain_all_stock(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5451) 	mem_cgroup_id_put(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5452) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5454) static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5455) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5456) 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5458) 	invalidate_reclaim_iterators(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5459) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5460) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5461) static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5462) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5463) 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5464) 	int __maybe_unused i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5466) #ifdef CONFIG_CGROUP_WRITEBACK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5467) 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5468) 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5469) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5470) 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5471) 		static_branch_dec(&memcg_sockets_enabled_key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5472) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5473) 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5474) 		static_branch_dec(&memcg_sockets_enabled_key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5475) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5476) 	vmpressure_cleanup(&memcg->vmpressure);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5477) 	cancel_work_sync(&memcg->high_work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5478) 	mem_cgroup_remove_from_trees(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5479) 	memcg_free_shrinker_maps(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5480) 	memcg_free_kmem(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5481) 	mem_cgroup_free(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5482) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5483) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5484) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5485)  * mem_cgroup_css_reset - reset the states of a mem_cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5486)  * @css: the target css
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5487)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5488)  * Reset the states of the mem_cgroup associated with @css.  This is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5489)  * invoked when the userland requests disabling on the default hierarchy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5490)  * but the memcg is pinned through dependency.  The memcg should stop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5491)  * applying policies and should revert to the vanilla state as it may be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5492)  * made visible again.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5493)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5494)  * The current implementation only resets the essential configurations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5495)  * This needs to be expanded to cover all the visible parts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5496)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5497) static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5498) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5499) 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5501) 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5502) 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5503) 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5504) 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5505) 	page_counter_set_min(&memcg->memory, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5506) 	page_counter_set_low(&memcg->memory, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5507) 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5508) 	memcg->soft_limit = PAGE_COUNTER_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5509) 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5510) 	memcg_wb_domain_size_changed(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5511) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5512) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5513) #ifdef CONFIG_MMU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5514) /* Handlers for move charge at task migration. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5515) static int mem_cgroup_do_precharge(unsigned long count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5516) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5517) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5519) 	/* Try a single bulk charge without reclaim first, kswapd may wake */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5520) 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5521) 	if (!ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5522) 		mc.precharge += count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5523) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5524) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5525) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5526) 	/* Try charges one by one with reclaim, but do not retry */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5527) 	while (count--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5528) 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5529) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5530) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5531) 		mc.precharge++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5532) 		cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5533) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5534) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5535) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5536) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5537) union mc_target {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5538) 	struct page	*page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5539) 	swp_entry_t	ent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5540) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5541) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5542) enum mc_target_type {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5543) 	MC_TARGET_NONE = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5544) 	MC_TARGET_PAGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5545) 	MC_TARGET_SWAP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5546) 	MC_TARGET_DEVICE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5547) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5549) static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5550) 						unsigned long addr, pte_t ptent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5551) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5552) 	struct page *page = vm_normal_page(vma, addr, ptent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5553) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5554) 	if (!page || !page_mapped(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5555) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5556) 	if (PageAnon(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5557) 		if (!(mc.flags & MOVE_ANON))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5558) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5559) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5560) 		if (!(mc.flags & MOVE_FILE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5561) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5562) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5563) 	if (!get_page_unless_zero(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5564) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5566) 	return page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5567) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5568) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5569) #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5570) static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5571) 			pte_t ptent, swp_entry_t *entry)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5572) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5573) 	struct page *page = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5574) 	swp_entry_t ent = pte_to_swp_entry(ptent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5575) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5576) 	if (!(mc.flags & MOVE_ANON))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5577) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5578) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5579) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5580) 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5581) 	 * a device and because they are not accessible by CPU they are store
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5582) 	 * as special swap entry in the CPU page table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5583) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5584) 	if (is_device_private_entry(ent)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5585) 		page = device_private_entry_to_page(ent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5586) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5587) 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5588) 		 * a refcount of 1 when free (unlike normal page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5589) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5590) 		if (!page_ref_add_unless(page, 1, 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5591) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5592) 		return page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5593) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5594) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5595) 	if (non_swap_entry(ent))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5596) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5598) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5599) 	 * Because lookup_swap_cache() updates some statistics counter,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5600) 	 * we call find_get_page() with swapper_space directly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5601) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5602) 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5603) 	entry->val = ent.val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5604) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5605) 	return page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5606) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5607) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5608) static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5609) 			pte_t ptent, swp_entry_t *entry)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5610) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5611) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5612) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5613) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5614) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5615) static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5616) 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5617) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5618) 	if (!vma->vm_file) /* anonymous vma */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5619) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5620) 	if (!(mc.flags & MOVE_FILE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5621) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5622) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5623) 	/* page is moved even if it's not RSS of this task(page-faulted). */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5624) 	/* shmem/tmpfs may report page out on swap: account for that too. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5625) 	return find_get_incore_page(vma->vm_file->f_mapping,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5626) 			linear_page_index(vma, addr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5627) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5628) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5629) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5630)  * mem_cgroup_move_account - move account of the page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5631)  * @page: the page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5632)  * @compound: charge the page as compound or small page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5633)  * @from: mem_cgroup which the page is moved from.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5634)  * @to:	mem_cgroup which the page is moved to. @from != @to.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5635)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5636)  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5637)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5638)  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5639)  * from old cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5640)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5641) static int mem_cgroup_move_account(struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5642) 				   bool compound,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5643) 				   struct mem_cgroup *from,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5644) 				   struct mem_cgroup *to)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5645) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5646) 	struct lruvec *from_vec, *to_vec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5647) 	struct pglist_data *pgdat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5648) 	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5649) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5650) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5651) 	VM_BUG_ON(from == to);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5652) 	VM_BUG_ON_PAGE(PageLRU(page), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5653) 	VM_BUG_ON(compound && !PageTransHuge(page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5654) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5655) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5656) 	 * Prevent mem_cgroup_migrate() from looking at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5657) 	 * page->mem_cgroup of its source page while we change it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5658) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5659) 	ret = -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5660) 	if (!trylock_page(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5661) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5662) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5663) 	ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5664) 	if (page->mem_cgroup != from)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5665) 		goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5666) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5667) 	pgdat = page_pgdat(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5668) 	from_vec = mem_cgroup_lruvec(from, pgdat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5669) 	to_vec = mem_cgroup_lruvec(to, pgdat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5670) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5671) 	lock_page_memcg(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5672) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5673) 	if (PageAnon(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5674) 		if (page_mapped(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5675) 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5676) 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5677) 			if (PageTransHuge(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5678) 				__dec_lruvec_state(from_vec, NR_ANON_THPS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5679) 				__inc_lruvec_state(to_vec, NR_ANON_THPS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5680) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5681) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5682) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5683) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5684) 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5685) 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5687) 		if (PageSwapBacked(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5688) 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5689) 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5690) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5691) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5692) 		if (page_mapped(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5693) 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5694) 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5695) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5696) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5697) 		if (PageDirty(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5698) 			struct address_space *mapping = page_mapping(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5699) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5700) 			if (mapping_can_writeback(mapping)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5701) 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5702) 						   -nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5703) 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5704) 						   nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5705) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5706) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5707) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5708) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5709) 	if (PageWriteback(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5710) 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5711) 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5712) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5713) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5714) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5715) 	 * All state has been migrated, let's switch to the new memcg.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5716) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5717) 	 * It is safe to change page->mem_cgroup here because the page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5718) 	 * is referenced, charged, isolated, and locked: we can't race
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5719) 	 * with (un)charging, migration, LRU putback, or anything else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5720) 	 * that would rely on a stable page->mem_cgroup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5721) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5722) 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5723) 	 * to save space. As soon as we switch page->mem_cgroup to a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5724) 	 * new memcg that isn't locked, the above state can change
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5725) 	 * concurrently again. Make sure we're truly done with it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5726) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5727) 	smp_mb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5728) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5729) 	css_get(&to->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5730) 	css_put(&from->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5731) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5732) 	page->mem_cgroup = to;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5734) 	__unlock_page_memcg(from);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5735) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5736) 	ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5737) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5738) 	local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5739) 	mem_cgroup_charge_statistics(to, page, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5740) 	memcg_check_events(to, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5741) 	mem_cgroup_charge_statistics(from, page, -nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5742) 	memcg_check_events(from, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5743) 	local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5744) out_unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5745) 	unlock_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5746) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5747) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5748) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5749) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5750) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5751)  * get_mctgt_type - get target type of moving charge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5752)  * @vma: the vma the pte to be checked belongs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5753)  * @addr: the address corresponding to the pte to be checked
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5754)  * @ptent: the pte to be checked
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5755)  * @target: the pointer the target page or swap ent will be stored(can be NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5756)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5757)  * Returns
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5758)  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5759)  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5760)  *     move charge. if @target is not NULL, the page is stored in target->page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5761)  *     with extra refcnt got(Callers should handle it).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5762)  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5763)  *     target for charge migration. if @target is not NULL, the entry is stored
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5764)  *     in target->ent.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5765)  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5766)  *     (so ZONE_DEVICE page and thus not on the lru).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5767)  *     For now we such page is charge like a regular page would be as for all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5768)  *     intent and purposes it is just special memory taking the place of a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5769)  *     regular page.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5770)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5771)  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5772)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5773)  * Called with pte lock held.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5774)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5775) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5776) static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5777) 		unsigned long addr, pte_t ptent, union mc_target *target)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5778) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5779) 	struct page *page = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5780) 	enum mc_target_type ret = MC_TARGET_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5781) 	swp_entry_t ent = { .val = 0 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5782) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5783) 	if (pte_present(ptent))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5784) 		page = mc_handle_present_pte(vma, addr, ptent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5785) 	else if (is_swap_pte(ptent))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5786) 		page = mc_handle_swap_pte(vma, ptent, &ent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5787) 	else if (pte_none(ptent))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5788) 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5789) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5790) 	if (!page && !ent.val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5791) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5792) 	if (page) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5793) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5794) 		 * Do only loose check w/o serialization.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5795) 		 * mem_cgroup_move_account() checks the page is valid or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5796) 		 * not under LRU exclusion.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5797) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5798) 		if (page->mem_cgroup == mc.from) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5799) 			ret = MC_TARGET_PAGE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5800) 			if (is_device_private_page(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5801) 				ret = MC_TARGET_DEVICE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5802) 			if (target)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5803) 				target->page = page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5804) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5805) 		if (!ret || !target)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5806) 			put_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5807) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5808) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5809) 	 * There is a swap entry and a page doesn't exist or isn't charged.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5810) 	 * But we cannot move a tail-page in a THP.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5811) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5812) 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5813) 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5814) 		ret = MC_TARGET_SWAP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5815) 		if (target)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5816) 			target->ent = ent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5817) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5818) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5819) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5820) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5821) #ifdef CONFIG_TRANSPARENT_HUGEPAGE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5822) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5823)  * We don't consider PMD mapped swapping or file mapped pages because THP does
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5824)  * not support them for now.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5825)  * Caller should make sure that pmd_trans_huge(pmd) is true.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5826)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5827) static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5828) 		unsigned long addr, pmd_t pmd, union mc_target *target)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5829) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5830) 	struct page *page = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5831) 	enum mc_target_type ret = MC_TARGET_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5832) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5833) 	if (unlikely(is_swap_pmd(pmd))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5834) 		VM_BUG_ON(thp_migration_supported() &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5835) 				  !is_pmd_migration_entry(pmd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5836) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5837) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5838) 	page = pmd_page(pmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5839) 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5840) 	if (!(mc.flags & MOVE_ANON))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5841) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5842) 	if (page->mem_cgroup == mc.from) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5843) 		ret = MC_TARGET_PAGE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5844) 		if (target) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5845) 			get_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5846) 			target->page = page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5847) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5848) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5849) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5850) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5851) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5852) static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5853) 		unsigned long addr, pmd_t pmd, union mc_target *target)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5854) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5855) 	return MC_TARGET_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5856) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5857) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5858) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5859) static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5860) 					unsigned long addr, unsigned long end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5861) 					struct mm_walk *walk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5862) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5863) 	struct vm_area_struct *vma = walk->vma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5864) 	pte_t *pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5865) 	spinlock_t *ptl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5866) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5867) 	ptl = pmd_trans_huge_lock(pmd, vma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5868) 	if (ptl) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5869) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5870) 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5871) 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5872) 		 * this might change.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5873) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5874) 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5875) 			mc.precharge += HPAGE_PMD_NR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5876) 		spin_unlock(ptl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5877) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5878) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5879) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5880) 	if (pmd_trans_unstable(pmd))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5881) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5882) 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5883) 	for (; addr != end; pte++, addr += PAGE_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5884) 		if (get_mctgt_type(vma, addr, *pte, NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5885) 			mc.precharge++;	/* increment precharge temporarily */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5886) 	pte_unmap_unlock(pte - 1, ptl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5887) 	cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5888) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5889) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5890) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5891) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5892) static const struct mm_walk_ops precharge_walk_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5893) 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5894) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5895) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5896) static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5897) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5898) 	unsigned long precharge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5899) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5900) 	mmap_read_lock(mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5901) 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5902) 	mmap_read_unlock(mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5903) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5904) 	precharge = mc.precharge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5905) 	mc.precharge = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5906) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5907) 	return precharge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5908) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5909) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5910) static int mem_cgroup_precharge_mc(struct mm_struct *mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5911) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5912) 	unsigned long precharge = mem_cgroup_count_precharge(mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5913) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5914) 	VM_BUG_ON(mc.moving_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5915) 	mc.moving_task = current;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5916) 	return mem_cgroup_do_precharge(precharge);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5917) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5918) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5919) /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5920) static void __mem_cgroup_clear_mc(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5921) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5922) 	struct mem_cgroup *from = mc.from;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5923) 	struct mem_cgroup *to = mc.to;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5924) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5925) 	/* we must uncharge all the leftover precharges from mc.to */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5926) 	if (mc.precharge) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5927) 		cancel_charge(mc.to, mc.precharge);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5928) 		mc.precharge = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5929) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5930) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5931) 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5932) 	 * we must uncharge here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5933) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5934) 	if (mc.moved_charge) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5935) 		cancel_charge(mc.from, mc.moved_charge);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5936) 		mc.moved_charge = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5937) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5938) 	/* we must fixup refcnts and charges */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5939) 	if (mc.moved_swap) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5940) 		/* uncharge swap account from the old cgroup */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5941) 		if (!mem_cgroup_is_root(mc.from))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5942) 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5943) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5944) 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5945) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5946) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5947) 		 * we charged both to->memory and to->memsw, so we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5948) 		 * should uncharge to->memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5949) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5950) 		if (!mem_cgroup_is_root(mc.to))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5951) 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5952) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5953) 		mc.moved_swap = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5954) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5955) 	memcg_oom_recover(from);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5956) 	memcg_oom_recover(to);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5957) 	wake_up_all(&mc.waitq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5958) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5959) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5960) static void mem_cgroup_clear_mc(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5961) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5962) 	struct mm_struct *mm = mc.mm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5963) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5964) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5965) 	 * we must clear moving_task before waking up waiters at the end of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5966) 	 * task migration.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5967) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5968) 	mc.moving_task = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5969) 	__mem_cgroup_clear_mc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5970) 	spin_lock(&mc.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5971) 	mc.from = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5972) 	mc.to = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5973) 	mc.mm = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5974) 	spin_unlock(&mc.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5975) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5976) 	mmput(mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5977) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5978) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5979) static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5980) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5981) 	struct cgroup_subsys_state *css;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5982) 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5983) 	struct mem_cgroup *from;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5984) 	struct task_struct *leader, *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5985) 	struct mm_struct *mm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5986) 	unsigned long move_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5987) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5988) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5989) 	/* charge immigration isn't supported on the default hierarchy */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5990) 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5991) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5992) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5993) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5994) 	 * Multi-process migrations only happen on the default hierarchy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5995) 	 * where charge immigration is not used.  Perform charge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5996) 	 * immigration if @tset contains a leader and whine if there are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5997) 	 * multiple.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5998) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5999) 	p = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6000) 	cgroup_taskset_for_each_leader(leader, css, tset) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6001) 		WARN_ON_ONCE(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6002) 		p = leader;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6003) 		memcg = mem_cgroup_from_css(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6004) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6005) 	if (!p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6006) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6007) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6008) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6009) 	 * We are now commited to this value whatever it is. Changes in this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6010) 	 * tunable will only affect upcoming migrations, not the current one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6011) 	 * So we need to save it, and keep it going.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6012) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6013) 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6014) 	if (!move_flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6015) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6016) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6017) 	from = mem_cgroup_from_task(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6018) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6019) 	VM_BUG_ON(from == memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6020) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6021) 	mm = get_task_mm(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6022) 	if (!mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6023) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6024) 	/* We move charges only when we move a owner of the mm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6025) 	if (mm->owner == p) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6026) 		VM_BUG_ON(mc.from);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6027) 		VM_BUG_ON(mc.to);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6028) 		VM_BUG_ON(mc.precharge);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6029) 		VM_BUG_ON(mc.moved_charge);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6030) 		VM_BUG_ON(mc.moved_swap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6031) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6032) 		spin_lock(&mc.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6033) 		mc.mm = mm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6034) 		mc.from = from;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6035) 		mc.to = memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6036) 		mc.flags = move_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6037) 		spin_unlock(&mc.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6038) 		/* We set mc.moving_task later */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6039) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6040) 		ret = mem_cgroup_precharge_mc(mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6041) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6042) 			mem_cgroup_clear_mc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6043) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6044) 		mmput(mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6045) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6046) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6047) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6048) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6049) static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6050) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6051) 	if (mc.to)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6052) 		mem_cgroup_clear_mc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6053) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6054) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6055) static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6056) 				unsigned long addr, unsigned long end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6057) 				struct mm_walk *walk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6058) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6059) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6060) 	struct vm_area_struct *vma = walk->vma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6061) 	pte_t *pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6062) 	spinlock_t *ptl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6063) 	enum mc_target_type target_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6064) 	union mc_target target;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6065) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6066) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6067) 	ptl = pmd_trans_huge_lock(pmd, vma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6068) 	if (ptl) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6069) 		if (mc.precharge < HPAGE_PMD_NR) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6070) 			spin_unlock(ptl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6071) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6072) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6073) 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6074) 		if (target_type == MC_TARGET_PAGE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6075) 			page = target.page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6076) 			if (!isolate_lru_page(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6077) 				if (!mem_cgroup_move_account(page, true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6078) 							     mc.from, mc.to)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6079) 					mc.precharge -= HPAGE_PMD_NR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6080) 					mc.moved_charge += HPAGE_PMD_NR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6081) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6082) 				putback_lru_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6083) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6084) 			put_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6085) 		} else if (target_type == MC_TARGET_DEVICE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6086) 			page = target.page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6087) 			if (!mem_cgroup_move_account(page, true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6088) 						     mc.from, mc.to)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6089) 				mc.precharge -= HPAGE_PMD_NR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6090) 				mc.moved_charge += HPAGE_PMD_NR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6091) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6092) 			put_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6093) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6094) 		spin_unlock(ptl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6095) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6096) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6097) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6098) 	if (pmd_trans_unstable(pmd))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6099) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6100) retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6101) 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6102) 	for (; addr != end; addr += PAGE_SIZE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6103) 		pte_t ptent = *(pte++);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6104) 		bool device = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6105) 		swp_entry_t ent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6107) 		if (!mc.precharge)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6108) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6110) 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6111) 		case MC_TARGET_DEVICE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6112) 			device = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6113) 			fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6114) 		case MC_TARGET_PAGE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6115) 			page = target.page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6116) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6117) 			 * We can have a part of the split pmd here. Moving it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6118) 			 * can be done but it would be too convoluted so simply
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6119) 			 * ignore such a partial THP and keep it in original
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6120) 			 * memcg. There should be somebody mapping the head.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6121) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6122) 			if (PageTransCompound(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6123) 				goto put;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6124) 			if (!device && isolate_lru_page(page))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6125) 				goto put;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6126) 			if (!mem_cgroup_move_account(page, false,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6127) 						mc.from, mc.to)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6128) 				mc.precharge--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6129) 				/* we uncharge from mc.from later. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6130) 				mc.moved_charge++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6131) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6132) 			if (!device)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6133) 				putback_lru_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6134) put:			/* get_mctgt_type() gets the page */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6135) 			put_page(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6136) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6137) 		case MC_TARGET_SWAP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6138) 			ent = target.ent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6139) 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6140) 				mc.precharge--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6141) 				mem_cgroup_id_get_many(mc.to, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6142) 				/* we fixup other refcnts and charges later. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6143) 				mc.moved_swap++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6144) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6145) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6146) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6147) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6148) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6149) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6150) 	pte_unmap_unlock(pte - 1, ptl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6151) 	cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6153) 	if (addr != end) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6154) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6155) 		 * We have consumed all precharges we got in can_attach().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6156) 		 * We try charge one by one, but don't do any additional
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6157) 		 * charges to mc.to if we have failed in charge once in attach()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6158) 		 * phase.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6159) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6160) 		ret = mem_cgroup_do_precharge(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6161) 		if (!ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6162) 			goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6163) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6165) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6166) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6168) static const struct mm_walk_ops charge_walk_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6169) 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6170) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6172) static void mem_cgroup_move_charge(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6173) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6174) 	lru_add_drain_all();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6175) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6176) 	 * Signal lock_page_memcg() to take the memcg's move_lock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6177) 	 * while we're moving its pages to another memcg. Then wait
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6178) 	 * for already started RCU-only updates to finish.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6179) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6180) 	atomic_inc(&mc.from->moving_account);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6181) 	synchronize_rcu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6182) retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6183) 	if (unlikely(!mmap_read_trylock(mc.mm))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6184) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6185) 		 * Someone who are holding the mmap_lock might be waiting in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6186) 		 * waitq. So we cancel all extra charges, wake up all waiters,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6187) 		 * and retry. Because we cancel precharges, we might not be able
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6188) 		 * to move enough charges, but moving charge is a best-effort
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6189) 		 * feature anyway, so it wouldn't be a big problem.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6190) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6191) 		__mem_cgroup_clear_mc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6192) 		cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6193) 		goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6194) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6195) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6196) 	 * When we have consumed all precharges and failed in doing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6197) 	 * additional charge, the page walk just aborts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6198) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6199) 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6200) 			NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6202) 	mmap_read_unlock(mc.mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6203) 	atomic_dec(&mc.from->moving_account);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6204) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6206) static void mem_cgroup_move_task(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6207) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6208) 	if (mc.to) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6209) 		mem_cgroup_move_charge();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6210) 		mem_cgroup_clear_mc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6211) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6212) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6213) #else	/* !CONFIG_MMU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6214) static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6215) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6216) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6217) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6218) static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6219) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6220) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6221) static void mem_cgroup_move_task(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6222) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6223) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6224) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6226) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6227)  * Cgroup retains root cgroups across [un]mount cycles making it necessary
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6228)  * to verify whether we're attached to the default hierarchy on each mount
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6229)  * attempt.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6230)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6231) static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6232) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6233) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6234) 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6235) 	 * guarantees that @root doesn't have any children, so turning it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6236) 	 * on for the root memcg is enough.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6237) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6238) 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6239) 		root_mem_cgroup->use_hierarchy = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6240) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6241) 		root_mem_cgroup->use_hierarchy = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6242) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6244) static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6245) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6246) 	if (value == PAGE_COUNTER_MAX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6247) 		seq_puts(m, "max\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6248) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6249) 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6251) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6252) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6254) static u64 memory_current_read(struct cgroup_subsys_state *css,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6255) 			       struct cftype *cft)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6256) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6257) 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6259) 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6260) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6262) static int memory_min_show(struct seq_file *m, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6263) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6264) 	return seq_puts_memcg_tunable(m,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6265) 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6266) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6268) static ssize_t memory_min_write(struct kernfs_open_file *of,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6269) 				char *buf, size_t nbytes, loff_t off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6270) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6271) 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6272) 	unsigned long min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6273) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6275) 	buf = strstrip(buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6276) 	err = page_counter_memparse(buf, "max", &min);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6277) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6278) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6280) 	page_counter_set_min(&memcg->memory, min);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6282) 	return nbytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6283) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6284) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6285) static int memory_low_show(struct seq_file *m, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6286) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6287) 	return seq_puts_memcg_tunable(m,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6288) 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6289) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6291) static ssize_t memory_low_write(struct kernfs_open_file *of,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6292) 				char *buf, size_t nbytes, loff_t off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6293) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6294) 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6295) 	unsigned long low;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6296) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6298) 	buf = strstrip(buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6299) 	err = page_counter_memparse(buf, "max", &low);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6300) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6301) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6303) 	page_counter_set_low(&memcg->memory, low);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6305) 	return nbytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6306) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6307) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6308) static int memory_high_show(struct seq_file *m, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6309) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6310) 	return seq_puts_memcg_tunable(m,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6311) 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6312) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6314) static ssize_t memory_high_write(struct kernfs_open_file *of,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6315) 				 char *buf, size_t nbytes, loff_t off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6316) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6317) 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6318) 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6319) 	bool drained = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6320) 	unsigned long high;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6321) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6322) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6323) 	buf = strstrip(buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6324) 	err = page_counter_memparse(buf, "max", &high);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6325) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6326) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6328) 	page_counter_set_high(&memcg->memory, high);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6330) 	for (;;) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6331) 		unsigned long nr_pages = page_counter_read(&memcg->memory);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6332) 		unsigned long reclaimed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6333) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6334) 		if (nr_pages <= high)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6335) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6337) 		if (signal_pending(current))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6338) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6340) 		if (!drained) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6341) 			drain_all_stock(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6342) 			drained = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6343) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6344) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6346) 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6347) 							 GFP_KERNEL, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6349) 		if (!reclaimed && !nr_retries--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6350) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6351) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6353) 	memcg_wb_domain_size_changed(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6354) 	return nbytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6355) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6356) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6357) static int memory_max_show(struct seq_file *m, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6358) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6359) 	return seq_puts_memcg_tunable(m,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6360) 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6361) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6362) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6363) static ssize_t memory_max_write(struct kernfs_open_file *of,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6364) 				char *buf, size_t nbytes, loff_t off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6365) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6366) 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6367) 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6368) 	bool drained = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6369) 	unsigned long max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6370) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6372) 	buf = strstrip(buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6373) 	err = page_counter_memparse(buf, "max", &max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6374) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6375) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6377) 	xchg(&memcg->memory.max, max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6378) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6379) 	for (;;) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6380) 		unsigned long nr_pages = page_counter_read(&memcg->memory);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6381) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6382) 		if (nr_pages <= max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6383) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6385) 		if (signal_pending(current))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6386) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6388) 		if (!drained) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6389) 			drain_all_stock(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6390) 			drained = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6391) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6392) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6394) 		if (nr_reclaims) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6395) 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6396) 							  GFP_KERNEL, true))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6397) 				nr_reclaims--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6398) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6399) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6400) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6401) 		memcg_memory_event(memcg, MEMCG_OOM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6402) 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6403) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6404) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6406) 	memcg_wb_domain_size_changed(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6407) 	return nbytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6408) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6410) static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6411) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6412) 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6413) 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6414) 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6415) 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6416) 	seq_printf(m, "oom_kill %lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6417) 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6418) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6419) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6420) static int memory_events_show(struct seq_file *m, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6421) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6422) 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6424) 	__memory_events_show(m, memcg->memory_events);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6425) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6426) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6427) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6428) static int memory_events_local_show(struct seq_file *m, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6429) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6430) 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6431) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6432) 	__memory_events_show(m, memcg->memory_events_local);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6433) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6434) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6436) static int memory_stat_show(struct seq_file *m, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6437) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6438) 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6439) 	char *buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6440) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6441) 	buf = memory_stat_format(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6442) 	if (!buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6443) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6444) 	seq_puts(m, buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6445) 	kfree(buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6446) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6447) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6449) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6450) static int memory_numa_stat_show(struct seq_file *m, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6451) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6452) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6453) 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6454) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6455) 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6456) 		int nid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6458) 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6459) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6460) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6461) 		seq_printf(m, "%s", memory_stats[i].name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6462) 		for_each_node_state(nid, N_MEMORY) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6463) 			u64 size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6464) 			struct lruvec *lruvec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6466) 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6467) 			size = lruvec_page_state(lruvec, memory_stats[i].idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6468) 			size *= memory_stats[i].ratio;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6469) 			seq_printf(m, " N%d=%llu", nid, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6470) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6471) 		seq_putc(m, '\n');
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6472) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6474) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6475) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6476) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6478) static int memory_oom_group_show(struct seq_file *m, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6479) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6480) 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6481) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6482) 	seq_printf(m, "%d\n", memcg->oom_group);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6483) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6484) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6485) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6486) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6487) static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6488) 				      char *buf, size_t nbytes, loff_t off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6489) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6490) 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6491) 	int ret, oom_group;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6492) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6493) 	buf = strstrip(buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6494) 	if (!buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6495) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6497) 	ret = kstrtoint(buf, 0, &oom_group);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6498) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6499) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6501) 	if (oom_group != 0 && oom_group != 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6502) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6503) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6504) 	memcg->oom_group = oom_group;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6505) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6506) 	return nbytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6507) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6508) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6509) static struct cftype memory_files[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6510) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6511) 		.name = "current",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6512) 		.flags = CFTYPE_NOT_ON_ROOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6513) 		.read_u64 = memory_current_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6514) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6515) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6516) 		.name = "min",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6517) 		.flags = CFTYPE_NOT_ON_ROOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6518) 		.seq_show = memory_min_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6519) 		.write = memory_min_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6520) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6521) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6522) 		.name = "low",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6523) 		.flags = CFTYPE_NOT_ON_ROOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6524) 		.seq_show = memory_low_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6525) 		.write = memory_low_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6526) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6527) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6528) 		.name = "high",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6529) 		.flags = CFTYPE_NOT_ON_ROOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6530) 		.seq_show = memory_high_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6531) 		.write = memory_high_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6532) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6533) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6534) 		.name = "max",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6535) 		.flags = CFTYPE_NOT_ON_ROOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6536) 		.seq_show = memory_max_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6537) 		.write = memory_max_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6538) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6539) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6540) 		.name = "events",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6541) 		.flags = CFTYPE_NOT_ON_ROOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6542) 		.file_offset = offsetof(struct mem_cgroup, events_file),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6543) 		.seq_show = memory_events_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6544) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6545) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6546) 		.name = "events.local",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6547) 		.flags = CFTYPE_NOT_ON_ROOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6548) 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6549) 		.seq_show = memory_events_local_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6550) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6551) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6552) 		.name = "stat",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6553) 		.seq_show = memory_stat_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6554) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6555) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6556) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6557) 		.name = "numa_stat",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6558) 		.seq_show = memory_numa_stat_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6559) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6560) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6561) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6562) 		.name = "oom.group",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6563) 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6564) 		.seq_show = memory_oom_group_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6565) 		.write = memory_oom_group_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6566) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6567) 	{ }	/* terminate */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6568) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6569) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6570) struct cgroup_subsys memory_cgrp_subsys = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6571) 	.css_alloc = mem_cgroup_css_alloc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6572) 	.css_online = mem_cgroup_css_online,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6573) 	.css_offline = mem_cgroup_css_offline,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6574) 	.css_released = mem_cgroup_css_released,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6575) 	.css_free = mem_cgroup_css_free,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6576) 	.css_reset = mem_cgroup_css_reset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6577) 	.can_attach = mem_cgroup_can_attach,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6578) 	.cancel_attach = mem_cgroup_cancel_attach,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6579) 	.post_attach = mem_cgroup_move_task,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6580) 	.bind = mem_cgroup_bind,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6581) 	.dfl_cftypes = memory_files,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6582) 	.legacy_cftypes = mem_cgroup_legacy_files,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6583) 	.early_init = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6584) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6586) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6587)  * This function calculates an individual cgroup's effective
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6588)  * protection which is derived from its own memory.min/low, its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6589)  * parent's and siblings' settings, as well as the actual memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6590)  * distribution in the tree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6591)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6592)  * The following rules apply to the effective protection values:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6593)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6594)  * 1. At the first level of reclaim, effective protection is equal to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6595)  *    the declared protection in memory.min and memory.low.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6596)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6597)  * 2. To enable safe delegation of the protection configuration, at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6598)  *    subsequent levels the effective protection is capped to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6599)  *    parent's effective protection.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6600)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6601)  * 3. To make complex and dynamic subtrees easier to configure, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6602)  *    user is allowed to overcommit the declared protection at a given
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6603)  *    level. If that is the case, the parent's effective protection is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6604)  *    distributed to the children in proportion to how much protection
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6605)  *    they have declared and how much of it they are utilizing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6606)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6607)  *    This makes distribution proportional, but also work-conserving:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6608)  *    if one cgroup claims much more protection than it uses memory,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6609)  *    the unused remainder is available to its siblings.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6610)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6611)  * 4. Conversely, when the declared protection is undercommitted at a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6612)  *    given level, the distribution of the larger parental protection
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6613)  *    budget is NOT proportional. A cgroup's protection from a sibling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6614)  *    is capped to its own memory.min/low setting.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6615)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6616)  * 5. However, to allow protecting recursive subtrees from each other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6617)  *    without having to declare each individual cgroup's fixed share
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6618)  *    of the ancestor's claim to protection, any unutilized -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6619)  *    "floating" - protection from up the tree is distributed in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6620)  *    proportion to each cgroup's *usage*. This makes the protection
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6621)  *    neutral wrt sibling cgroups and lets them compete freely over
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6622)  *    the shared parental protection budget, but it protects the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6623)  *    subtree as a whole from neighboring subtrees.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6624)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6625)  * Note that 4. and 5. are not in conflict: 4. is about protecting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6626)  * against immediate siblings whereas 5. is about protecting against
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6627)  * neighboring subtrees.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6628)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6629) static unsigned long effective_protection(unsigned long usage,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6630) 					  unsigned long parent_usage,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6631) 					  unsigned long setting,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6632) 					  unsigned long parent_effective,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6633) 					  unsigned long siblings_protected)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6634) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6635) 	unsigned long protected;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6636) 	unsigned long ep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6637) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6638) 	protected = min(usage, setting);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6639) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6640) 	 * If all cgroups at this level combined claim and use more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6641) 	 * protection then what the parent affords them, distribute
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6642) 	 * shares in proportion to utilization.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6643) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6644) 	 * We are using actual utilization rather than the statically
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6645) 	 * claimed protection in order to be work-conserving: claimed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6646) 	 * but unused protection is available to siblings that would
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6647) 	 * otherwise get a smaller chunk than what they claimed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6648) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6649) 	if (siblings_protected > parent_effective)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6650) 		return protected * parent_effective / siblings_protected;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6651) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6652) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6653) 	 * Ok, utilized protection of all children is within what the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6654) 	 * parent affords them, so we know whatever this child claims
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6655) 	 * and utilizes is effectively protected.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6656) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6657) 	 * If there is unprotected usage beyond this value, reclaim
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6658) 	 * will apply pressure in proportion to that amount.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6659) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6660) 	 * If there is unutilized protection, the cgroup will be fully
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6661) 	 * shielded from reclaim, but we do return a smaller value for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6662) 	 * protection than what the group could enjoy in theory. This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6663) 	 * is okay. With the overcommit distribution above, effective
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6664) 	 * protection is always dependent on how memory is actually
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6665) 	 * consumed among the siblings anyway.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6666) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6667) 	ep = protected;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6668) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6669) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6670) 	 * If the children aren't claiming (all of) the protection
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6671) 	 * afforded to them by the parent, distribute the remainder in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6672) 	 * proportion to the (unprotected) memory of each cgroup. That
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6673) 	 * way, cgroups that aren't explicitly prioritized wrt each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6674) 	 * other compete freely over the allowance, but they are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6675) 	 * collectively protected from neighboring trees.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6676) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6677) 	 * We're using unprotected memory for the weight so that if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6678) 	 * some cgroups DO claim explicit protection, we don't protect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6679) 	 * the same bytes twice.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6680) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6681) 	 * Check both usage and parent_usage against the respective
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6682) 	 * protected values. One should imply the other, but they
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6683) 	 * aren't read atomically - make sure the division is sane.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6684) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6685) 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6686) 		return ep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6687) 	if (parent_effective > siblings_protected &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6688) 	    parent_usage > siblings_protected &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6689) 	    usage > protected) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6690) 		unsigned long unclaimed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6691) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6692) 		unclaimed = parent_effective - siblings_protected;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6693) 		unclaimed *= usage - protected;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6694) 		unclaimed /= parent_usage - siblings_protected;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6695) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6696) 		ep += unclaimed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6697) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6698) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6699) 	return ep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6700) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6701) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6702) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6703)  * mem_cgroup_protected - check if memory consumption is in the normal range
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6704)  * @root: the top ancestor of the sub-tree being checked
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6705)  * @memcg: the memory cgroup to check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6706)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6707)  * WARNING: This function is not stateless! It can only be used as part
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6708)  *          of a top-down tree iteration, not for isolated queries.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6709)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6710) void mem_cgroup_calculate_protection(struct mem_cgroup *root,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6711) 				     struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6712) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6713) 	unsigned long usage, parent_usage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6714) 	struct mem_cgroup *parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6715) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6716) 	if (mem_cgroup_disabled())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6717) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6718) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6719) 	if (!root)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6720) 		root = root_mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6721) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6722) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6723) 	 * Effective values of the reclaim targets are ignored so they
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6724) 	 * can be stale. Have a look at mem_cgroup_protection for more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6725) 	 * details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6726) 	 * TODO: calculation should be more robust so that we do not need
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6727) 	 * that special casing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6728) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6729) 	if (memcg == root)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6730) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6731) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6732) 	usage = page_counter_read(&memcg->memory);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6733) 	if (!usage)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6734) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6735) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6736) 	parent = parent_mem_cgroup(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6737) 	/* No parent means a non-hierarchical mode on v1 memcg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6738) 	if (!parent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6739) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6740) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6741) 	if (parent == root) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6742) 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6743) 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6744) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6745) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6746) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6747) 	parent_usage = page_counter_read(&parent->memory);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6749) 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6750) 			READ_ONCE(memcg->memory.min),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6751) 			READ_ONCE(parent->memory.emin),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6752) 			atomic_long_read(&parent->memory.children_min_usage)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6753) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6754) 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6755) 			READ_ONCE(memcg->memory.low),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6756) 			READ_ONCE(parent->memory.elow),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6757) 			atomic_long_read(&parent->memory.children_low_usage)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6758) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6759) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6760) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6761)  * __mem_cgroup_charge - charge a newly allocated page to a cgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6762)  * @page: page to charge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6763)  * @mm: mm context of the victim
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6764)  * @gfp_mask: reclaim mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6765)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6766)  * Try to charge @page to the memcg that @mm belongs to, reclaiming
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6767)  * pages according to @gfp_mask if necessary.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6768)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6769)  * Returns 0 on success. Otherwise, an error code is returned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6770)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6771) int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6772) 			gfp_t gfp_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6773) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6774) 	unsigned int nr_pages = thp_nr_pages(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6775) 	struct mem_cgroup *memcg = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6776) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6777) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6778) 	if (PageSwapCache(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6779) 		swp_entry_t ent = { .val = page_private(page), };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6780) 		unsigned short id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6781) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6782) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6783) 		 * Every swap fault against a single page tries to charge the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6784) 		 * page, bail as early as possible.  shmem_unuse() encounters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6785) 		 * already charged pages, too.  page->mem_cgroup is protected
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6786) 		 * by the page lock, which serializes swap cache removal, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6787) 		 * in turn serializes uncharging.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6788) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6789) 		VM_BUG_ON_PAGE(!PageLocked(page), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6790) 		if (compound_head(page)->mem_cgroup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6791) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6792) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6793) 		id = lookup_swap_cgroup_id(ent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6794) 		rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6795) 		memcg = mem_cgroup_from_id(id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6796) 		if (memcg && !css_tryget_online(&memcg->css))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6797) 			memcg = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6798) 		rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6799) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6800) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6801) 	if (!memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6802) 		memcg = get_mem_cgroup_from_mm(mm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6803) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6804) 	ret = try_charge(memcg, gfp_mask, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6805) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6806) 		goto out_put;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6807) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6808) 	css_get(&memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6809) 	commit_charge(page, memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6810) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6811) 	local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6812) 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6813) 	memcg_check_events(memcg, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6814) 	local_irq_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6815) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6816) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6817) 	 * Cgroup1's unified memory+swap counter has been charged with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6818) 	 * new swapcache page, finish the transfer by uncharging the swap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6819) 	 * slot. The swap slot would also get uncharged when it dies, but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6820) 	 * it can stick around indefinitely and we'd count the page twice
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6821) 	 * the entire time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6822) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6823) 	 * Cgroup2 has separate resource counters for memory and swap,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6824) 	 * so this is a non-issue here. Memory and swap charge lifetimes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6825) 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6826) 	 * page to memory here, and uncharge swap when the slot is freed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6827) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6828) 	if (do_memsw_account() && PageSwapCache(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6829) 		swp_entry_t entry = { .val = page_private(page) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6830) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6831) 		 * The swap entry might not get freed for a long time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6832) 		 * let's not wait for it.  The page already received a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6833) 		 * memory+swap charge, drop the swap entry duplicate.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6834) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6835) 		mem_cgroup_uncharge_swap(entry, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6836) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6837) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6838) out_put:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6839) 	css_put(&memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6840) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6841) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6842) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6843) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6844) struct uncharge_gather {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6845) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6846) 	unsigned long nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6847) 	unsigned long pgpgout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6848) 	unsigned long nr_kmem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6849) 	struct page *dummy_page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6850) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6851) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6852) static inline void uncharge_gather_clear(struct uncharge_gather *ug)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6853) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6854) 	memset(ug, 0, sizeof(*ug));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6855) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6856) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6857) static void uncharge_batch(const struct uncharge_gather *ug)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6858) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6859) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6860) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6861) 	if (!mem_cgroup_is_root(ug->memcg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6862) 		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6863) 		if (do_memsw_account())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6864) 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6865) 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6866) 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6867) 		memcg_oom_recover(ug->memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6868) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6869) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6870) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6871) 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6872) 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6873) 	memcg_check_events(ug->memcg, ug->dummy_page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6874) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6875) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6876) 	/* drop reference from uncharge_page */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6877) 	css_put(&ug->memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6878) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6879) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6880) static void uncharge_page(struct page *page, struct uncharge_gather *ug)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6881) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6882) 	unsigned long nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6883) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6884) 	VM_BUG_ON_PAGE(PageLRU(page), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6885) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6886) 	if (!page->mem_cgroup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6887) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6888) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6889) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6890) 	 * Nobody should be changing or seriously looking at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6891) 	 * page->mem_cgroup at this point, we have fully
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6892) 	 * exclusive access to the page.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6893) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6894) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6895) 	if (ug->memcg != page->mem_cgroup) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6896) 		if (ug->memcg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6897) 			uncharge_batch(ug);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6898) 			uncharge_gather_clear(ug);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6899) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6900) 		ug->memcg = page->mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6901) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6902) 		/* pairs with css_put in uncharge_batch */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6903) 		css_get(&ug->memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6904) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6905) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6906) 	nr_pages = compound_nr(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6907) 	ug->nr_pages += nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6908) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6909) 	if (!PageKmemcg(page)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6910) 		ug->pgpgout++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6911) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6912) 		ug->nr_kmem += nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6913) 		__ClearPageKmemcg(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6914) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6915) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6916) 	ug->dummy_page = page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6917) 	page->mem_cgroup = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6918) 	css_put(&ug->memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6919) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6920) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6921) static void uncharge_list(struct list_head *page_list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6922) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6923) 	struct uncharge_gather ug;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6924) 	struct list_head *next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6925) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6926) 	uncharge_gather_clear(&ug);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6927) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6928) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6929) 	 * Note that the list can be a single page->lru; hence the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6930) 	 * do-while loop instead of a simple list_for_each_entry().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6931) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6932) 	next = page_list->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6933) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6934) 		struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6935) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6936) 		page = list_entry(next, struct page, lru);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6937) 		next = page->lru.next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6938) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6939) 		uncharge_page(page, &ug);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6940) 	} while (next != page_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6941) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6942) 	if (ug.memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6943) 		uncharge_batch(&ug);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6944) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6945) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6946) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6947)  * __mem_cgroup_uncharge - uncharge a page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6948)  * @page: page to uncharge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6949)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6950)  * Uncharge a page previously charged with __mem_cgroup_charge().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6951)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6952) void __mem_cgroup_uncharge(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6953) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6954) 	struct uncharge_gather ug;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6955) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6956) 	/* Don't touch page->lru of any random page, pre-check: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6957) 	if (!page->mem_cgroup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6958) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6959) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6960) 	uncharge_gather_clear(&ug);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6961) 	uncharge_page(page, &ug);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6962) 	uncharge_batch(&ug);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6963) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6964) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6965) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6966)  * __mem_cgroup_uncharge_list - uncharge a list of page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6967)  * @page_list: list of pages to uncharge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6968)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6969)  * Uncharge a list of pages previously charged with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6970)  * __mem_cgroup_charge().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6971)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6972) void __mem_cgroup_uncharge_list(struct list_head *page_list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6973) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6974) 	if (!list_empty(page_list))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6975) 		uncharge_list(page_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6976) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6977) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6978) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6979)  * mem_cgroup_migrate - charge a page's replacement
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6980)  * @oldpage: currently circulating page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6981)  * @newpage: replacement page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6982)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6983)  * Charge @newpage as a replacement page for @oldpage. @oldpage will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6984)  * be uncharged upon free.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6985)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6986)  * Both pages must be locked, @newpage->mapping must be set up.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6987)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6988) void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6989) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6990) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6991) 	unsigned int nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6992) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6993) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6994) 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6995) 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6996) 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6997) 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6998) 		       newpage);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6999) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7000) 	if (mem_cgroup_disabled())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7001) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7002) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7003) 	/* Page cache replacement: new page already charged? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7004) 	if (newpage->mem_cgroup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7005) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7006) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7007) 	/* Swapcache readahead pages can get replaced before being charged */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7008) 	memcg = oldpage->mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7009) 	if (!memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7010) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7011) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7012) 	/* Force-charge the new page. The old one will be freed soon */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7013) 	nr_pages = thp_nr_pages(newpage);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7014) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7015) 	page_counter_charge(&memcg->memory, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7016) 	if (do_memsw_account())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7017) 		page_counter_charge(&memcg->memsw, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7018) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7019) 	css_get(&memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7020) 	commit_charge(newpage, memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7021) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7022) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7023) 	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7024) 	memcg_check_events(memcg, newpage);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7025) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7026) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7027) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7028) DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7029) EXPORT_SYMBOL(memcg_sockets_enabled_key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7030) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7031) void mem_cgroup_sk_alloc(struct sock *sk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7032) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7033) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7034) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7035) 	if (!mem_cgroup_sockets_enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7036) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7037) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7038) 	/* Do not associate the sock with unrelated interrupted task's memcg. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7039) 	if (in_interrupt())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7040) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7041) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7042) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7043) 	memcg = mem_cgroup_from_task(current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7044) 	if (memcg == root_mem_cgroup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7045) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7046) 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7047) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7048) 	if (css_tryget(&memcg->css))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7049) 		sk->sk_memcg = memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7050) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7051) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7052) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7053) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7054) void mem_cgroup_sk_free(struct sock *sk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7055) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7056) 	if (sk->sk_memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7057) 		css_put(&sk->sk_memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7058) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7059) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7060) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7061)  * mem_cgroup_charge_skmem - charge socket memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7062)  * @memcg: memcg to charge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7063)  * @nr_pages: number of pages to charge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7064)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7065)  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7066)  * @memcg's configured limit, %false if the charge had to be forced.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7067)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7068) bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7069) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7070) 	gfp_t gfp_mask = GFP_KERNEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7071) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7072) 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7073) 		struct page_counter *fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7074) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7075) 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7076) 			memcg->tcpmem_pressure = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7077) 			return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7078) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7079) 		page_counter_charge(&memcg->tcpmem, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7080) 		memcg->tcpmem_pressure = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7081) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7082) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7083) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7084) 	/* Don't block in the packet receive path */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7085) 	if (in_softirq())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7086) 		gfp_mask = GFP_NOWAIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7087) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7088) 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7089) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7090) 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7091) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7092) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7093) 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7094) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7095) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7096) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7097) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7098)  * mem_cgroup_uncharge_skmem - uncharge socket memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7099)  * @memcg: memcg to uncharge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7100)  * @nr_pages: number of pages to uncharge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7101)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7102) void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7103) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7104) 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7105) 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7106) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7107) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7109) 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7111) 	refill_stock(memcg, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7112) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7114) static int __init cgroup_memory(char *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7115) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7116) 	char *token;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7118) 	while ((token = strsep(&s, ",")) != NULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7119) 		if (!*token)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7120) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7121) 		if (!strcmp(token, "nosocket"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7122) 			cgroup_memory_nosocket = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7123) 		if (!strcmp(token, "nokmem"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7124) 			cgroup_memory_nokmem = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7125) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7126) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7127) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7128) __setup("cgroup.memory=", cgroup_memory);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7130) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7131)  * subsys_initcall() for memory controller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7132)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7133)  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7134)  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7135)  * basically everything that doesn't depend on a specific mem_cgroup structure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7136)  * should be initialized from here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7137)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7138) static int __init mem_cgroup_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7139) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7140) 	int cpu, node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7142) 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7143) 				  memcg_hotplug_cpu_dead);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7145) 	for_each_possible_cpu(cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7146) 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7147) 			  drain_local_stock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7149) 	for_each_node(node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7150) 		struct mem_cgroup_tree_per_node *rtpn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7152) 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7153) 				    node_online(node) ? node : NUMA_NO_NODE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7155) 		rtpn->rb_root = RB_ROOT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7156) 		rtpn->rb_rightmost = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7157) 		spin_lock_init(&rtpn->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7158) 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7159) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7161) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7162) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7163) subsys_initcall(mem_cgroup_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7165) #ifdef CONFIG_MEMCG_SWAP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7166) static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7167) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7168) 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7169) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7170) 		 * The root cgroup cannot be destroyed, so it's refcount must
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7171) 		 * always be >= 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7172) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7173) 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7174) 			VM_BUG_ON(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7175) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7176) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7177) 		memcg = parent_mem_cgroup(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7178) 		if (!memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7179) 			memcg = root_mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7180) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7181) 	return memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7182) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7184) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7185)  * mem_cgroup_swapout - transfer a memsw charge to swap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7186)  * @page: page whose memsw charge to transfer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7187)  * @entry: swap entry to move the charge to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7188)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7189)  * Transfer the memsw charge of @page to @entry.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7190)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7191) void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7192) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7193) 	struct mem_cgroup *memcg, *swap_memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7194) 	unsigned int nr_entries;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7195) 	unsigned short oldid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7197) 	VM_BUG_ON_PAGE(PageLRU(page), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7198) 	VM_BUG_ON_PAGE(page_count(page), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7200) 	if (mem_cgroup_disabled())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7201) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7203) 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7204) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7206) 	memcg = page->mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7208) 	/* Readahead page, never charged */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7209) 	if (!memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7210) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7212) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7213) 	 * In case the memcg owning these pages has been offlined and doesn't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7214) 	 * have an ID allocated to it anymore, charge the closest online
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7215) 	 * ancestor for the swap instead and transfer the memory+swap charge.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7216) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7217) 	swap_memcg = mem_cgroup_id_get_online(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7218) 	nr_entries = thp_nr_pages(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7219) 	/* Get references for the tail pages, too */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7220) 	if (nr_entries > 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7221) 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7222) 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7223) 				   nr_entries);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7224) 	VM_BUG_ON_PAGE(oldid, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7225) 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7227) 	page->mem_cgroup = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7229) 	if (!mem_cgroup_is_root(memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7230) 		page_counter_uncharge(&memcg->memory, nr_entries);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7232) 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7233) 		if (!mem_cgroup_is_root(swap_memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7234) 			page_counter_charge(&swap_memcg->memsw, nr_entries);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7235) 		page_counter_uncharge(&memcg->memsw, nr_entries);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7236) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7238) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7239) 	 * Interrupts should be disabled here because the caller holds the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7240) 	 * i_pages lock which is taken with interrupts-off. It is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7241) 	 * important here to have the interrupts disabled because it is the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7242) 	 * only synchronisation we have for updating the per-CPU variables.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7243) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7244) 	VM_BUG_ON(!irqs_disabled());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7245) 	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7246) 	memcg_check_events(memcg, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7248) 	css_put(&memcg->css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7249) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7251) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7252)  * __mem_cgroup_try_charge_swap - try charging swap space for a page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7253)  * @page: page being added to swap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7254)  * @entry: swap entry to charge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7255)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7256)  * Try to charge @page's memcg for the swap space at @entry.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7257)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7258)  * Returns 0 on success, -ENOMEM on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7259)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7260) int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7261) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7262) 	unsigned int nr_pages = thp_nr_pages(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7263) 	struct page_counter *counter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7264) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7265) 	unsigned short oldid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7267) 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7268) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7270) 	memcg = page->mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7272) 	/* Readahead page, never charged */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7273) 	if (!memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7274) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7276) 	if (!entry.val) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7277) 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7278) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7279) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7281) 	memcg = mem_cgroup_id_get_online(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7283) 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7284) 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7285) 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7286) 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7287) 		mem_cgroup_id_put(memcg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7288) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7289) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7291) 	/* Get references for the tail pages, too */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7292) 	if (nr_pages > 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7293) 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7294) 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7295) 	VM_BUG_ON_PAGE(oldid, page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7296) 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7298) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7299) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7301) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7302)  * __mem_cgroup_uncharge_swap - uncharge swap space
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7303)  * @entry: swap entry to uncharge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7304)  * @nr_pages: the amount of swap space to uncharge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7305)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7306) void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7307) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7308) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7309) 	unsigned short id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7311) 	id = swap_cgroup_record(entry, 0, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7312) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7313) 	memcg = mem_cgroup_from_id(id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7314) 	if (memcg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7315) 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7316) 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7317) 				page_counter_uncharge(&memcg->swap, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7318) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7319) 				page_counter_uncharge(&memcg->memsw, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7320) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7321) 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7322) 		mem_cgroup_id_put_many(memcg, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7323) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7324) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7325) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7327) long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7328) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7329) 	long nr_swap_pages = get_nr_swap_pages();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7330) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7331) 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7332) 		return nr_swap_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7333) 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7334) 		nr_swap_pages = min_t(long, nr_swap_pages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7335) 				      READ_ONCE(memcg->swap.max) -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7336) 				      page_counter_read(&memcg->swap));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7337) 	return nr_swap_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7338) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7340) bool mem_cgroup_swap_full(struct page *page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7341) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7342) 	struct mem_cgroup *memcg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7344) 	VM_BUG_ON_PAGE(!PageLocked(page), page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7346) 	if (vm_swap_full())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7347) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7348) 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7349) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7351) 	memcg = page->mem_cgroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7352) 	if (!memcg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7353) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7354) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7355) 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7356) 		unsigned long usage = page_counter_read(&memcg->swap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7358) 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7359) 		    usage * 2 >= READ_ONCE(memcg->swap.max))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7360) 			return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7361) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7362) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7363) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7364) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7365) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7366) static int __init setup_swap_account(char *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7367) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7368) 	if (!strcmp(s, "1"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7369) 		cgroup_memory_noswap = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7370) 	else if (!strcmp(s, "0"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7371) 		cgroup_memory_noswap = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7372) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7373) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7374) __setup("swapaccount=", setup_swap_account);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7376) static u64 swap_current_read(struct cgroup_subsys_state *css,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7377) 			     struct cftype *cft)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7378) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7379) 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7381) 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7382) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7384) static int swap_high_show(struct seq_file *m, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7385) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7386) 	return seq_puts_memcg_tunable(m,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7387) 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7388) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7389) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7390) static ssize_t swap_high_write(struct kernfs_open_file *of,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7391) 			       char *buf, size_t nbytes, loff_t off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7392) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7393) 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7394) 	unsigned long high;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7395) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7397) 	buf = strstrip(buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7398) 	err = page_counter_memparse(buf, "max", &high);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7399) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7400) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7402) 	page_counter_set_high(&memcg->swap, high);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7403) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7404) 	return nbytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7405) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7407) static int swap_max_show(struct seq_file *m, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7408) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7409) 	return seq_puts_memcg_tunable(m,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7410) 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7411) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7413) static ssize_t swap_max_write(struct kernfs_open_file *of,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7414) 			      char *buf, size_t nbytes, loff_t off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7415) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7416) 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7417) 	unsigned long max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7418) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7419) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7420) 	buf = strstrip(buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7421) 	err = page_counter_memparse(buf, "max", &max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7422) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7423) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7425) 	xchg(&memcg->swap.max, max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7426) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7427) 	return nbytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7428) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7430) static int swap_events_show(struct seq_file *m, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7431) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7432) 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7434) 	seq_printf(m, "high %lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7435) 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7436) 	seq_printf(m, "max %lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7437) 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7438) 	seq_printf(m, "fail %lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7439) 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7440) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7441) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7442) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7443) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7444) static struct cftype swap_files[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7445) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7446) 		.name = "swap.current",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7447) 		.flags = CFTYPE_NOT_ON_ROOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7448) 		.read_u64 = swap_current_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7449) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7450) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7451) 		.name = "swap.high",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7452) 		.flags = CFTYPE_NOT_ON_ROOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7453) 		.seq_show = swap_high_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7454) 		.write = swap_high_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7455) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7456) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7457) 		.name = "swap.max",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7458) 		.flags = CFTYPE_NOT_ON_ROOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7459) 		.seq_show = swap_max_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7460) 		.write = swap_max_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7461) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7462) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7463) 		.name = "swap.events",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7464) 		.flags = CFTYPE_NOT_ON_ROOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7465) 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7466) 		.seq_show = swap_events_show,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7467) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7468) 	{ }	/* terminate */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7469) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7471) static struct cftype memsw_files[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7472) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7473) 		.name = "memsw.usage_in_bytes",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7474) 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7475) 		.read_u64 = mem_cgroup_read_u64,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7476) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7477) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7478) 		.name = "memsw.max_usage_in_bytes",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7479) 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7480) 		.write = mem_cgroup_reset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7481) 		.read_u64 = mem_cgroup_read_u64,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7482) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7483) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7484) 		.name = "memsw.limit_in_bytes",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7485) 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7486) 		.write = mem_cgroup_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7487) 		.read_u64 = mem_cgroup_read_u64,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7488) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7489) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7490) 		.name = "memsw.failcnt",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7491) 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7492) 		.write = mem_cgroup_reset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7493) 		.read_u64 = mem_cgroup_read_u64,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7494) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7495) 	{ },	/* terminate */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7496) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7497) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7498) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7499)  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7500)  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7501)  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7502)  * boot parameter. This may result in premature OOPS inside
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7503)  * mem_cgroup_get_nr_swap_pages() function in corner cases.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7504)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7505) static int __init mem_cgroup_swap_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7506) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7507) 	/* No memory control -> no swap control */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7508) 	if (mem_cgroup_disabled())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7509) 		cgroup_memory_noswap = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7511) 	if (cgroup_memory_noswap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7512) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7513) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7514) 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7515) 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7516) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7517) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7518) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7519) core_initcall(mem_cgroup_swap_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7520) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7521) #endif /* CONFIG_MEMCG_SWAP */