^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * SHA1 routine optimized to do word accesses rather than byte accesses,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * and to avoid unnecessary copies into the context array.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * This was based on the git SHA1 implementation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/bitops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <crypto/sha.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <asm/unaligned.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) * If you have 32 registers or more, the compiler can (and should)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) * try to change the array[] accesses into registers. However, on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) * machines with less than ~25 registers, that won't really work,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) * and at least gcc will make an unholy mess of it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) * So to avoid that mess which just slows things down, we force
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) * the stores to memory to actually happen (we might be better off
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) * suggested by Artur Skawina - that will also make gcc unable to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) * try to do the silly "optimize away loads" part because it won't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) * see what the value will be).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) * Ben Herrenschmidt reports that on PPC, the C version comes close
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) * to the optimized asm with this (ie on PPC you don't want that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) * 'volatile', since there are lots of registers).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) * On ARM we get the best code generation by forcing a full memory barrier
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) * between each SHA_ROUND, otherwise gcc happily get wild with spilling and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) * the stack frame size simply explode and performance goes down the drain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #ifdef CONFIG_X86
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) #define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #elif defined(CONFIG_ARM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) #define setW(x, val) (W(x) = (val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) /* This "rolls" over the 512-bit array */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) #define W(x) (array[(x)&15])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) * Where do we get the source from? The first 16 iterations get it from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) * the input data, the next mix it from the 512-bit array.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) #define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) #define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) #define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) __u32 TEMP = input(t); setW(t, TEMP); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) E += TEMP + rol32(A,5) + (fn) + (constant); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) B = ror32(B, 2); } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) #define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) #define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) #define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) #define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) #define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) * sha1_transform - single block SHA1 transform (deprecated)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) * @digest: 160 bit digest to update
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) * @data: 512 bits of data to hash
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) * @array: 16 words of workspace (see note)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) * This function executes SHA-1's internal compression function. It updates the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) * 160-bit internal state (@digest) with a single 512-bit data block (@data).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) * Don't use this function. SHA-1 is no longer considered secure. And even if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) * you do have to use SHA-1, this isn't the correct way to hash something with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) * SHA-1 as this doesn't handle padding and finalization.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) * Note: If the hash is security sensitive, the caller should be sure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) * to clear the workspace. This is left to the caller to avoid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) * unnecessary clears between chained hashing operations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) void sha1_transform(__u32 *digest, const char *data, __u32 *array)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) __u32 A, B, C, D, E;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) A = digest[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) B = digest[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) C = digest[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) D = digest[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) E = digest[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) /* Round 1 - iterations 0-16 take their input from 'data' */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) T_0_15( 0, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) T_0_15( 1, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) T_0_15( 2, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) T_0_15( 3, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) T_0_15( 4, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) T_0_15( 5, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) T_0_15( 6, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) T_0_15( 7, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) T_0_15( 8, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) T_0_15( 9, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) T_0_15(10, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) T_0_15(11, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) T_0_15(12, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) T_0_15(13, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) T_0_15(14, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) T_0_15(15, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) /* Round 1 - tail. Input from 512-bit mixing array */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) T_16_19(16, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) T_16_19(17, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) T_16_19(18, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) T_16_19(19, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) /* Round 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) T_20_39(20, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) T_20_39(21, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) T_20_39(22, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) T_20_39(23, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) T_20_39(24, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) T_20_39(25, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) T_20_39(26, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) T_20_39(27, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) T_20_39(28, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) T_20_39(29, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) T_20_39(30, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) T_20_39(31, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) T_20_39(32, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) T_20_39(33, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) T_20_39(34, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) T_20_39(35, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) T_20_39(36, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) T_20_39(37, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) T_20_39(38, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) T_20_39(39, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) /* Round 3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) T_40_59(40, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) T_40_59(41, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) T_40_59(42, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) T_40_59(43, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) T_40_59(44, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) T_40_59(45, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) T_40_59(46, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) T_40_59(47, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) T_40_59(48, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) T_40_59(49, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) T_40_59(50, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) T_40_59(51, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) T_40_59(52, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) T_40_59(53, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) T_40_59(54, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) T_40_59(55, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) T_40_59(56, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) T_40_59(57, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) T_40_59(58, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) T_40_59(59, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) /* Round 4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) T_60_79(60, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) T_60_79(61, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) T_60_79(62, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) T_60_79(63, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) T_60_79(64, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) T_60_79(65, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) T_60_79(66, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) T_60_79(67, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) T_60_79(68, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) T_60_79(69, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) T_60_79(70, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) T_60_79(71, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) T_60_79(72, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) T_60_79(73, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) T_60_79(74, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) T_60_79(75, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) T_60_79(76, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) T_60_79(77, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) T_60_79(78, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) T_60_79(79, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) digest[0] += A;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) digest[1] += B;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) digest[2] += C;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) digest[3] += D;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) digest[4] += E;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) EXPORT_SYMBOL(sha1_transform);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) * sha1_init - initialize the vectors for a SHA1 digest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) * @buf: vector to initialize
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) void sha1_init(__u32 *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) buf[0] = 0x67452301;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) buf[1] = 0xefcdab89;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) buf[2] = 0x98badcfe;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) buf[3] = 0x10325476;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) buf[4] = 0xc3d2e1f0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) EXPORT_SYMBOL(sha1_init);