Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * SHA1 routine optimized to do word accesses rather than byte accesses,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * and to avoid unnecessary copies into the context array.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * This was based on the git SHA1 implementation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/bitops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <crypto/sha.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <asm/unaligned.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  * If you have 32 registers or more, the compiler can (and should)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  * try to change the array[] accesses into registers. However, on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  * machines with less than ~25 registers, that won't really work,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19)  * and at least gcc will make an unholy mess of it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21)  * So to avoid that mess which just slows things down, we force
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22)  * the stores to memory to actually happen (we might be better off
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23)  * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)  * suggested by Artur Skawina - that will also make gcc unable to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25)  * try to do the silly "optimize away loads" part because it won't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)  * see what the value will be).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  * Ben Herrenschmidt reports that on PPC, the C version comes close
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  * to the optimized asm with this (ie on PPC you don't want that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  * 'volatile', since there are lots of registers).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)  * On ARM we get the best code generation by forcing a full memory barrier
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)  * between each SHA_ROUND, otherwise gcc happily get wild with spilling and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)  * the stack frame size simply explode and performance goes down the drain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) #ifdef CONFIG_X86
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)   #define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #elif defined(CONFIG_ARM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)   #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)   #define setW(x, val) (W(x) = (val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) /* This "rolls" over the 512-bit array */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) #define W(x) (array[(x)&15])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49)  * Where do we get the source from? The first 16 iterations get it from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)  * the input data, the next mix it from the 512-bit array.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) #define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) #define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 	__u32 TEMP = input(t); setW(t, TEMP); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	E += TEMP + rol32(A,5) + (fn) + (constant); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	B = ror32(B, 2); } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) #define T_0_15(t, A, B, C, D, E)  SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) #define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) #define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) #define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) #define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) ,  0xca62c1d6, A, B, C, D, E )
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)  * sha1_transform - single block SHA1 transform (deprecated)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69)  * @digest: 160 bit digest to update
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70)  * @data:   512 bits of data to hash
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71)  * @array:  16 words of workspace (see note)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73)  * This function executes SHA-1's internal compression function.  It updates the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74)  * 160-bit internal state (@digest) with a single 512-bit data block (@data).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76)  * Don't use this function.  SHA-1 is no longer considered secure.  And even if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77)  * you do have to use SHA-1, this isn't the correct way to hash something with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78)  * SHA-1 as this doesn't handle padding and finalization.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80)  * Note: If the hash is security sensitive, the caller should be sure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81)  * to clear the workspace. This is left to the caller to avoid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82)  * unnecessary clears between chained hashing operations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) void sha1_transform(__u32 *digest, const char *data, __u32 *array)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	__u32 A, B, C, D, E;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	A = digest[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	B = digest[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	C = digest[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	D = digest[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	E = digest[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	/* Round 1 - iterations 0-16 take their input from 'data' */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	T_0_15( 0, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	T_0_15( 1, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	T_0_15( 2, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	T_0_15( 3, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	T_0_15( 4, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	T_0_15( 5, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	T_0_15( 6, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	T_0_15( 7, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	T_0_15( 8, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	T_0_15( 9, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	T_0_15(10, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	T_0_15(11, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	T_0_15(12, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	T_0_15(13, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	T_0_15(14, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	T_0_15(15, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	/* Round 1 - tail. Input from 512-bit mixing array */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	T_16_19(16, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	T_16_19(17, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	T_16_19(18, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	T_16_19(19, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	/* Round 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	T_20_39(20, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	T_20_39(21, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	T_20_39(22, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	T_20_39(23, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	T_20_39(24, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	T_20_39(25, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	T_20_39(26, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	T_20_39(27, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	T_20_39(28, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	T_20_39(29, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	T_20_39(30, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	T_20_39(31, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	T_20_39(32, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	T_20_39(33, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	T_20_39(34, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	T_20_39(35, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	T_20_39(36, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	T_20_39(37, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	T_20_39(38, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	T_20_39(39, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	/* Round 3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	T_40_59(40, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	T_40_59(41, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	T_40_59(42, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	T_40_59(43, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	T_40_59(44, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	T_40_59(45, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	T_40_59(46, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	T_40_59(47, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	T_40_59(48, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	T_40_59(49, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	T_40_59(50, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	T_40_59(51, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	T_40_59(52, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	T_40_59(53, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	T_40_59(54, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	T_40_59(55, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	T_40_59(56, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	T_40_59(57, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	T_40_59(58, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	T_40_59(59, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	/* Round 4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	T_60_79(60, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	T_60_79(61, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	T_60_79(62, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	T_60_79(63, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	T_60_79(64, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	T_60_79(65, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	T_60_79(66, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	T_60_79(67, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	T_60_79(68, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	T_60_79(69, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	T_60_79(70, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	T_60_79(71, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	T_60_79(72, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	T_60_79(73, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	T_60_79(74, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	T_60_79(75, A, B, C, D, E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	T_60_79(76, E, A, B, C, D);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	T_60_79(77, D, E, A, B, C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	T_60_79(78, C, D, E, A, B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	T_60_79(79, B, C, D, E, A);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	digest[0] += A;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	digest[1] += B;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	digest[2] += C;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	digest[3] += D;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	digest[4] += E;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) EXPORT_SYMBOL(sha1_transform);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193)  * sha1_init - initialize the vectors for a SHA1 digest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194)  * @buf: vector to initialize
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) void sha1_init(__u32 *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	buf[0] = 0x67452301;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	buf[1] = 0xefcdab89;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	buf[2] = 0x98badcfe;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	buf[3] = 0x10325476;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	buf[4] = 0xc3d2e1f0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) EXPORT_SYMBOL(sha1_init);