Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * This is a maximally equidistributed combined Tausworthe generator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * based on code from GNU Scientific Library 1.5 (30 Jun 2004)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * lfsr113 version:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n <<  6) ^ s1_n) >> 13))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  * s2_{n+1} = (((s2_n & 4294967288) <<  2) ^ (((s2_n <<  2) ^ s2_n) >> 27))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  * s3_{n+1} = (((s3_n & 4294967280) <<  7) ^ (((s3_n << 13) ^ s3_n) >> 21))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  * s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n <<  3) ^ s4_n) >> 12))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  * The period of this generator is about 2^113 (see erratum paper).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  * From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  * Generators", Mathematics of Computation, 65, 213 (1996), 203--213:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19)  * http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20)  * ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22)  * There is an erratum in the paper "Tables of Maximally Equidistributed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23)  * Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)  * 261--269: http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)  *      ... the k_j most significant bits of z_j must be non-zero,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  *      for each j. (Note: this restriction also applies to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  *      computer code given in [4], but was mistakenly not mentioned
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  *      in that paper.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  * This affects the seeding procedure by imposing the requirement
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)  * s1 > 1, s2 > 7, s3 > 15, s4 > 127.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) #include <linux/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) #include <linux/percpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) #include <linux/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) #include <linux/jiffies.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #include <linux/random.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) #include <linux/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #include <linux/bitops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) #include <asm/unaligned.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) #include <trace/events/random.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46)  *	prandom_u32_state - seeded pseudo-random number generator.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47)  *	@state: pointer to state structure holding seeded state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49)  *	This is used for pseudo-randomness with no outside seeding.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)  *	For more random results, use prandom_u32().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) u32 prandom_u32_state(struct rnd_state *state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) #define TAUSWORTHE(s, a, b, c, d) ((s & c) << d) ^ (((s << a) ^ s) >> b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 	state->s1 = TAUSWORTHE(state->s1,  6U, 13U, 4294967294U, 18U);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 	state->s2 = TAUSWORTHE(state->s2,  2U, 27U, 4294967288U,  2U);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U,  7U);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	state->s4 = TAUSWORTHE(state->s4,  3U, 12U, 4294967168U, 13U);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) EXPORT_SYMBOL(prandom_u32_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65)  *	prandom_bytes_state - get the requested number of pseudo-random bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)  *	@state: pointer to state structure holding seeded state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68)  *	@buf: where to copy the pseudo-random bytes to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69)  *	@bytes: the requested number of bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71)  *	This is used for pseudo-randomness with no outside seeding.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72)  *	For more random results, use prandom_bytes().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) void prandom_bytes_state(struct rnd_state *state, void *buf, size_t bytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	u8 *ptr = buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	while (bytes >= sizeof(u32)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 		put_unaligned(prandom_u32_state(state), (u32 *) ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 		ptr += sizeof(u32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 		bytes -= sizeof(u32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	if (bytes > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 		u32 rem = prandom_u32_state(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 		do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 			*ptr++ = (u8) rem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 			bytes--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 			rem >>= BITS_PER_BYTE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 		} while (bytes > 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) EXPORT_SYMBOL(prandom_bytes_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) static void prandom_warmup(struct rnd_state *state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	/* Calling RNG ten times to satisfy recurrence condition */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	prandom_u32_state(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	prandom_u32_state(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	prandom_u32_state(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	prandom_u32_state(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	prandom_u32_state(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	prandom_u32_state(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	prandom_u32_state(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	prandom_u32_state(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	prandom_u32_state(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	prandom_u32_state(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	for_each_possible_cpu(i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 		struct rnd_state *state = per_cpu_ptr(pcpu_state, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 		u32 seeds[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 		get_random_bytes(&seeds, sizeof(seeds));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 		state->s1 = __seed(seeds[0],   2U);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 		state->s2 = __seed(seeds[1],   8U);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 		state->s3 = __seed(seeds[2],  16U);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 		state->s4 = __seed(seeds[3], 128U);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 		prandom_warmup(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) EXPORT_SYMBOL(prandom_seed_full_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) #ifdef CONFIG_RANDOM32_SELFTEST
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) static struct prandom_test1 {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	u32 seed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	u32 result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) } test1[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	{ 1U, 3484351685U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	{ 2U, 2623130059U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	{ 3U, 3125133893U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	{ 4U,  984847254U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) static struct prandom_test2 {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	u32 seed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	u32 iteration;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	u32 result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) } test2[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	/* Test cases against taus113 from GSL library. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	{  931557656U, 959U, 2975593782U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	{ 1339693295U, 876U, 3887776532U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	{ 1545556285U, 961U, 1615538833U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	{  601730776U, 723U, 1776162651U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	{ 1027516047U, 687U,  511983079U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	{  416526298U, 700U,  916156552U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	{ 1395522032U, 652U, 2222063676U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	{  366221443U, 617U, 2992857763U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	{ 1539836965U, 714U, 3783265725U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	{  556206671U, 994U,  799626459U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	{  684907218U, 799U,  367789491U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	{ 2121230701U, 931U, 2115467001U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	{ 1668516451U, 644U, 3620590685U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	{  768046066U, 883U, 2034077390U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	{ 1989159136U, 833U, 1195767305U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	{  536585145U, 996U, 3577259204U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	{ 1008129373U, 642U, 1478080776U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	{ 1740775604U, 939U, 1264980372U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	{ 1967883163U, 508U,   10734624U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	{ 1923019697U, 730U, 3821419629U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	{  442079932U, 560U, 3440032343U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	{ 1961302714U, 845U,  841962572U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	{ 2030205964U, 962U, 1325144227U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	{ 1160407529U, 507U,  240940858U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	{  635482502U, 779U, 4200489746U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	{ 1252788931U, 699U,  867195434U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	{ 1961817131U, 719U,  668237657U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	{ 1071468216U, 983U,  917876630U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	{ 1281848367U, 932U, 1003100039U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	{  582537119U, 780U, 1127273778U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	{ 1973672777U, 853U, 1071368872U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	{ 1896756996U, 762U, 1127851055U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	{  847917054U, 500U, 1717499075U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	{ 1240520510U, 951U, 2849576657U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	{ 1685071682U, 567U, 1961810396U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	{ 1516232129U, 557U,    3173877U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	{ 1208118903U, 612U, 1613145022U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	{ 1817269927U, 693U, 4279122573U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	{ 1510091701U, 717U,  638191229U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	{  365916850U, 807U,  600424314U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	{  399324359U, 702U, 1803598116U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	{ 1318480274U, 779U, 2074237022U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	{  697758115U, 840U, 1483639402U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	{ 1696507773U, 840U,  577415447U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	{ 2081979121U, 981U, 3041486449U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	{  955646687U, 742U, 3846494357U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	{ 1250683506U, 749U,  836419859U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	{  595003102U, 534U,  366794109U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	{   47485338U, 558U, 3521120834U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	{  619433479U, 610U, 3991783875U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	{  704096520U, 518U, 4139493852U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	{ 1712224984U, 606U, 2393312003U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	{ 1318233152U, 922U, 3880361134U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	{  855572992U, 761U, 1472974787U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	{   64721421U, 703U,  683860550U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	{  678931758U, 840U,  380616043U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	{  692711973U, 778U, 1382361947U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	{  677703619U, 530U, 2826914161U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	{   92393223U, 586U, 1522128471U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	{ 1222592920U, 743U, 3466726667U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	{  358288986U, 695U, 1091956998U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	{ 1935056945U, 958U,  514864477U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	{  735675993U, 990U, 1294239989U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	{ 1560089402U, 897U, 2238551287U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	{   70616361U, 829U,   22483098U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	{  368234700U, 731U, 2913875084U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	{   20221190U, 879U, 1564152970U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	{  539444654U, 682U, 1835141259U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	{ 1314987297U, 840U, 1801114136U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	{ 2019295544U, 645U, 3286438930U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	{  469023838U, 716U, 1637918202U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	{ 1843754496U, 653U, 2562092152U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	{  400672036U, 809U, 4264212785U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	{  404722249U, 965U, 2704116999U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	{  600702209U, 758U,  584979986U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	{  519953954U, 667U, 2574436237U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	{ 1658071126U, 694U, 2214569490U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	{  420480037U, 749U, 3430010866U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	{  690103647U, 969U, 3700758083U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	{ 1029424799U, 937U, 3787746841U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	{ 2012608669U, 506U, 3362628973U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	{ 1535432887U, 998U,   42610943U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 	{ 1330635533U, 857U, 3040806504U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	{ 1223800550U, 539U, 3954229517U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	{ 1322411537U, 680U, 3223250324U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	{ 1877847898U, 945U, 2915147143U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	{ 1646356099U, 874U,  965988280U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	{  805687536U, 744U, 4032277920U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	{ 1948093210U, 633U, 1346597684U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	{  392609744U, 783U, 1636083295U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	{  690241304U, 770U, 1201031298U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	{ 1360302965U, 696U, 1665394461U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	{ 1220090946U, 780U, 1316922812U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	{  447092251U, 500U, 3438743375U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	{ 1613868791U, 592U,  828546883U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	{  523430951U, 548U, 2552392304U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	{  726692899U, 810U, 1656872867U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	{ 1364340021U, 836U, 3710513486U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	{ 1986257729U, 931U,  935013962U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	{  407983964U, 921U,  728767059U },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) static u32 __extract_hwseed(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	unsigned int val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	(void)(arch_get_random_seed_int(&val) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	       arch_get_random_int(&val));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	return val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) static void prandom_seed_early(struct rnd_state *state, u32 seed,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 			       bool mix_with_hwseed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) #define LCG(x)	 ((x) * 69069U)	/* super-duper LCG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) #define HWSEED() (mix_with_hwseed ? __extract_hwseed() : 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	state->s1 = __seed(HWSEED() ^ LCG(seed),        2U);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	state->s2 = __seed(HWSEED() ^ LCG(state->s1),   8U);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	state->s3 = __seed(HWSEED() ^ LCG(state->s2),  16U);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	state->s4 = __seed(HWSEED() ^ LCG(state->s3), 128U);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) static int __init prandom_state_selftest(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	int i, j, errors = 0, runs = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	bool error = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	for (i = 0; i < ARRAY_SIZE(test1); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 		struct rnd_state state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 		prandom_seed_early(&state, test1[i].seed, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 		prandom_warmup(&state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 		if (test1[i].result != prandom_u32_state(&state))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 			error = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 		pr_warn("prandom: seed boundary self test failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 		pr_info("prandom: seed boundary self test passed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	for (i = 0; i < ARRAY_SIZE(test2); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 		struct rnd_state state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 		prandom_seed_early(&state, test2[i].seed, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 		prandom_warmup(&state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 		for (j = 0; j < test2[i].iteration - 1; j++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 			prandom_u32_state(&state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 		if (test2[i].result != prandom_u32_state(&state))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 			errors++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 		runs++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 		cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 	if (errors)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 		pr_warn("prandom: %d/%d self tests failed\n", errors, runs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 		pr_info("prandom: %d self tests passed\n", runs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) core_initcall(prandom_state_selftest);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315)  * The prandom_u32() implementation is now completely separate from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316)  * prandom_state() functions, which are retained (for now) for compatibility.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318)  * Because of (ab)use in the networking code for choosing random TCP/UDP port
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319)  * numbers, which open DoS possibilities if guessable, we want something
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320)  * stronger than a standard PRNG.  But the performance requirements of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321)  * the network code do not allow robust crypto for this application.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323)  * So this is a homebrew Junior Spaceman implementation, based on the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324)  * lowest-latency trustworthy crypto primitive available, SipHash.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325)  * (The authors of SipHash have not been consulted about this abuse of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326)  * their work.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328)  * Standard SipHash-2-4 uses 2n+4 rounds to hash n words of input to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329)  * one word of output.  This abbreviated version uses 2 rounds per word
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330)  * of output.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) struct siprand_state {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	unsigned long v0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	unsigned long v1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	unsigned long v2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	unsigned long v3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) static DEFINE_PER_CPU(struct siprand_state, net_rand_state) __latent_entropy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) DEFINE_PER_CPU(unsigned long, net_rand_noise);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) EXPORT_PER_CPU_SYMBOL(net_rand_noise);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345)  * This is the core CPRNG function.  As "pseudorandom", this is not used
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346)  * for truly valuable things, just intended to be a PITA to guess.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347)  * For maximum speed, we do just two SipHash rounds per word.  This is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348)  * the same rate as 4 rounds per 64 bits that SipHash normally uses,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349)  * so hopefully it's reasonably secure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351)  * There are two changes from the official SipHash finalization:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352)  * - We omit some constants XORed with v2 in the SipHash spec as irrelevant;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353)  *   they are there only to make the output rounds distinct from the input
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354)  *   rounds, and this application has no input rounds.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355)  * - Rather than returning v0^v1^v2^v3, return v1+v3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356)  *   If you look at the SipHash round, the last operation on v3 is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357)  *   "v3 ^= v0", so "v0 ^ v3" just undoes that, a waste of time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358)  *   Likewise "v1 ^= v2".  (The rotate of v2 makes a difference, but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359)  *   it still cancels out half of the bits in v2 for no benefit.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360)  *   Second, since the last combining operation was xor, continue the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361)  *   pattern of alternating xor/add for a tiny bit of extra non-linearity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) static inline u32 siprand_u32(struct siprand_state *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	unsigned long v0 = s->v0, v1 = s->v1, v2 = s->v2, v3 = s->v3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	unsigned long n = raw_cpu_read(net_rand_noise);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	v3 ^= n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	PRND_SIPROUND(v0, v1, v2, v3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 	PRND_SIPROUND(v0, v1, v2, v3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 	v0 ^= n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	s->v0 = v0;  s->v1 = v1;  s->v2 = v2;  s->v3 = v3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	return v1 + v3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378)  *	prandom_u32 - pseudo random number generator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380)  *	A 32 bit pseudo-random number is generated using a fast
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381)  *	algorithm suitable for simulation. This algorithm is NOT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382)  *	considered safe for cryptographic use.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) u32 prandom_u32(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	struct siprand_state *state = get_cpu_ptr(&net_rand_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	u32 res = siprand_u32(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	trace_prandom_u32(res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 	put_cpu_ptr(&net_rand_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	return res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) EXPORT_SYMBOL(prandom_u32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396)  *	prandom_bytes - get the requested number of pseudo-random bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397)  *	@buf: where to copy the pseudo-random bytes to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398)  *	@bytes: the requested number of bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) void prandom_bytes(void *buf, size_t bytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 	struct siprand_state *state = get_cpu_ptr(&net_rand_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	u8 *ptr = buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	while (bytes >= sizeof(u32)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 		put_unaligned(siprand_u32(state), (u32 *)ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 		ptr += sizeof(u32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 		bytes -= sizeof(u32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 	if (bytes > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 		u32 rem = siprand_u32(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 		do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 			*ptr++ = (u8)rem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 			rem >>= BITS_PER_BYTE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 		} while (--bytes > 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 	put_cpu_ptr(&net_rand_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) EXPORT_SYMBOL(prandom_bytes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424)  *	prandom_seed - add entropy to pseudo random number generator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425)  *	@entropy: entropy value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427)  *	Add some additional seed material to the prandom pool.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428)  *	The "entropy" is actually our IP address (the only caller is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429)  *	the network code), not for unpredictability, but to ensure that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430)  *	different machines are initialized differently.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) void prandom_seed(u32 entropy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 	add_device_randomness(&entropy, sizeof(entropy));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 	for_each_possible_cpu(i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 		struct siprand_state *state = per_cpu_ptr(&net_rand_state, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 		unsigned long v0 = state->v0, v1 = state->v1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 		unsigned long v2 = state->v2, v3 = state->v3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 		do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 			v3 ^= entropy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 			PRND_SIPROUND(v0, v1, v2, v3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 			PRND_SIPROUND(v0, v1, v2, v3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 			v0 ^= entropy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 		} while (unlikely(!v0 || !v1 || !v2 || !v3));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 		WRITE_ONCE(state->v0, v0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 		WRITE_ONCE(state->v1, v1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 		WRITE_ONCE(state->v2, v2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 		WRITE_ONCE(state->v3, v3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) EXPORT_SYMBOL(prandom_seed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459)  *	Generate some initially weak seeding values to allow
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460)  *	the prandom_u32() engine to be started.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) static int __init prandom_init_early(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 	unsigned long v0, v1, v2, v3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	if (!arch_get_random_long(&v0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 		v0 = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 	if (!arch_get_random_long(&v1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 		v1 = random_get_entropy();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 	v2 = v0 ^ PRND_K0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 	v3 = v1 ^ PRND_K1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 	for_each_possible_cpu(i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 		struct siprand_state *state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 		v3 ^= i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 		PRND_SIPROUND(v0, v1, v2, v3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 		PRND_SIPROUND(v0, v1, v2, v3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 		v0 ^= i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 		state = per_cpu_ptr(&net_rand_state, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 		state->v0 = v0;  state->v1 = v1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 		state->v2 = v2;  state->v3 = v3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) core_initcall(prandom_init_early);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) /* Stronger reseeding when available, and periodically thereafter. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) static void prandom_reseed(struct timer_list *unused);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) static DEFINE_TIMER(seed_timer, prandom_reseed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) static void prandom_reseed(struct timer_list *unused)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 	unsigned long expires;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 	 * Reinitialize each CPU's PRNG with 128 bits of key.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 	 * No locking on the CPUs, but then somewhat random results are,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 	 * well, expected.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 	for_each_possible_cpu(i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 		struct siprand_state *state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 		unsigned long v0 = get_random_long(), v2 = v0 ^ PRND_K0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 		unsigned long v1 = get_random_long(), v3 = v1 ^ PRND_K1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) #if BITS_PER_LONG == 32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 		int j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 		 * On 32-bit machines, hash in two extra words to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 		 * approximate 128-bit key length.  Not that the hash
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 		 * has that much security, but this prevents a trivial
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 		 * 64-bit brute force.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 		for (j = 0; j < 2; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 			unsigned long m = get_random_long();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 			v3 ^= m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 			PRND_SIPROUND(v0, v1, v2, v3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 			PRND_SIPROUND(v0, v1, v2, v3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 			v0 ^= m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 		 * Probably impossible in practice, but there is a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 		 * theoretical risk that a race between this reseeding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 		 * and the target CPU writing its state back could
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 		 * create the all-zero SipHash fixed point.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 		 * To ensure that never happens, ensure the state
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 		 * we write contains no zero words.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 		state = per_cpu_ptr(&net_rand_state, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 		WRITE_ONCE(state->v0, v0 ? v0 : -1ul);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 		WRITE_ONCE(state->v1, v1 ? v1 : -1ul);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 		WRITE_ONCE(state->v2, v2 ? v2 : -1ul);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 		WRITE_ONCE(state->v3, v3 ? v3 : -1ul);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 	/* reseed every ~60 seconds, in [40 .. 80) interval with slack */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 	expires = round_jiffies(jiffies + 40 * HZ + prandom_u32_max(40 * HZ));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 	mod_timer(&seed_timer, expires);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551)  * The random ready callback can be called from almost any interrupt.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552)  * To avoid worrying about whether it's safe to delay that interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553)  * long enough to seed all CPUs, just schedule an immediate timer event.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) static void prandom_timer_start(struct random_ready_callback *unused)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 	mod_timer(&seed_timer, jiffies);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) #ifdef CONFIG_RANDOM32_SELFTEST
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) /* Principle: True 32-bit random numbers will all have 16 differing bits on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562)  * average. For each 32-bit number, there are 601M numbers differing by 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563)  * bits, and 89% of the numbers differ by at least 12 bits. Note that more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564)  * than 16 differing bits also implies a correlation with inverted bits. Thus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565)  * we take 1024 random numbers and compare each of them to the other ones,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566)  * counting the deviation of correlated bits to 16. Constants report 32,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567)  * counters 32-log2(TEST_SIZE), and pure randoms, around 6 or lower. With the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568)  * u32 total, TEST_SIZE may be as large as 4096 samples.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) #define TEST_SIZE 1024
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) static int __init prandom32_state_selftest(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 	unsigned int x, y, bits, samples;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 	u32 xor, flip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 	u32 total;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 	u32 *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 	data = kmalloc(sizeof(*data) * TEST_SIZE, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 	if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 	for (samples = 0; samples < TEST_SIZE; samples++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 		data[samples] = prandom_u32();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 	flip = total = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 	for (x = 0; x < samples; x++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 		for (y = 0; y < samples; y++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 			if (x == y)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 			xor = data[x] ^ data[y];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 			flip |= xor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 			bits = hweight32(xor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 			total += (bits - 16) * (bits - 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 	/* We'll return the average deviation as 2*sqrt(corr/samples), which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 	 * is also sqrt(4*corr/samples) which provides a better resolution.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 	bits = int_sqrt(total / (samples * (samples - 1)) * 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 	if (bits > 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 		pr_warn("prandom32: self test failed (at least %u bits"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 			" correlated, fixed_mask=%#x fixed_value=%#x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 			bits, ~flip, data[0] & ~flip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 		pr_info("prandom32: self test passed (less than %u bits"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 			" correlated)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 			bits+1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 	kfree(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) core_initcall(prandom32_state_selftest);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) #endif /*  CONFIG_RANDOM32_SELFTEST */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616)  * Start periodic full reseeding as soon as strong
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617)  * random numbers are available.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) static int __init prandom_init_late(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 	static struct random_ready_callback random_ready = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 		.func = prandom_timer_start
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) 	int ret = add_random_ready_callback(&random_ready);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) 	if (ret == -EALREADY) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 		prandom_timer_start(&random_ready);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) 		ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) late_initcall(prandom_init_late);