Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0-only
#define pr_fmt(fmt) "prime numbers: " fmt
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/prime_numbers.h>
#include <linux/slab.h>
#define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long))
struct primes {
<------>struct rcu_head rcu;
<------>unsigned long last, sz;
<------>unsigned long primes[];
};
#if BITS_PER_LONG == 64
static const struct primes small_primes = {
<------>.last = 61,
<------>.sz = 64,
<------>.primes = {
<------><------>BIT(2) |
<------><------>BIT(3) |
<------><------>BIT(5) |
<------><------>BIT(7) |
<------><------>BIT(11) |
<------><------>BIT(13) |
<------><------>BIT(17) |
<------><------>BIT(19) |
<------><------>BIT(23) |
<------><------>BIT(29) |
<------><------>BIT(31) |
<------><------>BIT(37) |
<------><------>BIT(41) |
<------><------>BIT(43) |
<------><------>BIT(47) |
<------><------>BIT(53) |
<------><------>BIT(59) |
<------><------>BIT(61)
<------>}
};
#elif BITS_PER_LONG == 32
static const struct primes small_primes = {
<------>.last = 31,
<------>.sz = 32,
<------>.primes = {
<------><------>BIT(2) |
<------><------>BIT(3) |
<------><------>BIT(5) |
<------><------>BIT(7) |
<------><------>BIT(11) |
<------><------>BIT(13) |
<------><------>BIT(17) |
<------><------>BIT(19) |
<------><------>BIT(23) |
<------><------>BIT(29) |
<------><------>BIT(31)
<------>}
};
#else
#error "unhandled BITS_PER_LONG"
#endif
static DEFINE_MUTEX(lock);
static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes);
static unsigned long selftest_max;
static bool slow_is_prime_number(unsigned long x)
{
<------>unsigned long y = int_sqrt(x);
<------>while (y > 1) {
<------><------>if ((x % y) == 0)
<------><------><------>break;
<------><------>y--;
<------>}
<------>return y == 1;
}
static unsigned long slow_next_prime_number(unsigned long x)
{
<------>while (x < ULONG_MAX && !slow_is_prime_number(++x))
<------><------>;
<------>return x;
}
static unsigned long clear_multiples(unsigned long x,
<------><------><------><------> unsigned long *p,
<------><------><------><------> unsigned long start,
<------><------><------><------> unsigned long end)
{
<------>unsigned long m;
<------>m = 2 * x;
<------>if (m < start)
<------><------>m = roundup(start, x);
<------>while (m < end) {
<------><------>__clear_bit(m, p);
<------><------>m += x;
<------>}
<------>return x;
}
static bool expand_to_next_prime(unsigned long x)
{
<------>const struct primes *p;
<------>struct primes *new;
<------>unsigned long sz, y;
<------>/* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3,
<------> * there is always at least one prime p between n and 2n - 2.
<------> * Equivalently, if n > 1, then there is always at least one prime p
<------> * such that n < p < 2n.
<------> *
<------> * http://mathworld.wolfram.com/BertrandsPostulate.html
<------> * https://en.wikipedia.org/wiki/Bertrand's_postulate
<------> */
<------>sz = 2 * x;
<------>if (sz < x)
<------><------>return false;
<------>sz = round_up(sz, BITS_PER_LONG);
<------>new = kmalloc(sizeof(*new) + bitmap_size(sz),
<------><------> GFP_KERNEL | __GFP_NOWARN);
<------>if (!new)
<------><------>return false;
<------>mutex_lock(&lock);
<------>p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
<------>if (x < p->last) {
<------><------>kfree(new);
<------><------>goto unlock;
<------>}
<------>/* Where memory permits, track the primes using the
<------> * Sieve of Eratosthenes. The sieve is to remove all multiples of known
<------> * primes from the set, what remains in the set is therefore prime.
<------> */
<------>bitmap_fill(new->primes, sz);
<------>bitmap_copy(new->primes, p->primes, p->sz);
<------>for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1))
<------><------>new->last = clear_multiples(y, new->primes, p->sz, sz);
<------>new->sz = sz;
<------>BUG_ON(new->last <= x);
<------>rcu_assign_pointer(primes, new);
<------>if (p != &small_primes)
<------><------>kfree_rcu((struct primes *)p, rcu);
unlock:
<------>mutex_unlock(&lock);
<------>return true;
}
static void free_primes(void)
{
<------>const struct primes *p;
<------>mutex_lock(&lock);
<------>p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
<------>if (p != &small_primes) {
<------><------>rcu_assign_pointer(primes, &small_primes);
<------><------>kfree_rcu((struct primes *)p, rcu);
<------>}
<------>mutex_unlock(&lock);
}
/**
* next_prime_number - return the next prime number
* @x: the starting point for searching to test
*
* A prime number is an integer greater than 1 that is only divisible by
* itself and 1. The set of prime numbers is computed using the Sieve of
* Eratoshenes (on finding a prime, all multiples of that prime are removed
* from the set) enabling a fast lookup of the next prime number larger than
* @x. If the sieve fails (memory limitation), the search falls back to using
* slow trial-divison, up to the value of ULONG_MAX (which is reported as the
* final prime as a sentinel).
*
* Returns: the next prime number larger than @x
*/
unsigned long next_prime_number(unsigned long x)
{
<------>const struct primes *p;
<------>rcu_read_lock();
<------>p = rcu_dereference(primes);
<------>while (x >= p->last) {
<------><------>rcu_read_unlock();
<------><------>if (!expand_to_next_prime(x))
<------><------><------>return slow_next_prime_number(x);
<------><------>rcu_read_lock();
<------><------>p = rcu_dereference(primes);
<------>}
<------>x = find_next_bit(p->primes, p->last, x + 1);
<------>rcu_read_unlock();
<------>return x;
}
EXPORT_SYMBOL(next_prime_number);
/**
* is_prime_number - test whether the given number is prime
* @x: the number to test
*
* A prime number is an integer greater than 1 that is only divisible by
* itself and 1. Internally a cache of prime numbers is kept (to speed up
* searching for sequential primes, see next_prime_number()), but if the number
* falls outside of that cache, its primality is tested using trial-divison.
*
* Returns: true if @x is prime, false for composite numbers.
*/
bool is_prime_number(unsigned long x)
{
<------>const struct primes *p;
<------>bool result;
<------>rcu_read_lock();
<------>p = rcu_dereference(primes);
<------>while (x >= p->sz) {
<------><------>rcu_read_unlock();
<------><------>if (!expand_to_next_prime(x))
<------><------><------>return slow_is_prime_number(x);
<------><------>rcu_read_lock();
<------><------>p = rcu_dereference(primes);
<------>}
<------>result = test_bit(x, p->primes);
<------>rcu_read_unlock();
<------>return result;
}
EXPORT_SYMBOL(is_prime_number);
static void dump_primes(void)
{
<------>const struct primes *p;
<------>char *buf;
<------>buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
<------>rcu_read_lock();
<------>p = rcu_dereference(primes);
<------>if (buf)
<------><------>bitmap_print_to_pagebuf(true, buf, p->primes, p->sz);
<------>pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s\n",
<------><------>p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf);
<------>rcu_read_unlock();
<------>kfree(buf);
}
static int selftest(unsigned long max)
{
<------>unsigned long x, last;
<------>if (!max)
<------><------>return 0;
<------>for (last = 0, x = 2; x < max; x++) {
<------><------>bool slow = slow_is_prime_number(x);
<------><------>bool fast = is_prime_number(x);
<------><------>if (slow != fast) {
<------><------><------>pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!\n",
<------><------><------> x, slow ? "yes" : "no", fast ? "yes" : "no");
<------><------><------>goto err;
<------><------>}
<------><------>if (!slow)
<------><------><------>continue;
<------><------>if (next_prime_number(last) != x) {
<------><------><------>pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu\n",
<------><------><------> last, x, next_prime_number(last));
<------><------><------>goto err;
<------><------>}
<------><------>last = x;
<------>}
<------>pr_info("%s(%lu) passed, last prime was %lu\n", __func__, x, last);
<------>return 0;
err:
<------>dump_primes();
<------>return -EINVAL;
}
static int __init primes_init(void)
{
<------>return selftest(selftest_max);
}
static void __exit primes_exit(void)
{
<------>free_primes();
}
module_init(primes_init);
module_exit(primes_exit);
module_param_named(selftest, selftest_max, ulong, 0400);
MODULE_AUTHOR("Intel Corporation");
MODULE_LICENSE("GPL");