^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) * Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * cleaned up code to current version of sparse and added the slicing-by-8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * algorithm to the closely similar existing slicing-by-4 algorithm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks!
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * Code was from the public domain, copyright abandoned. Code was
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * subsequently included in the kernel, thus was re-licensed under the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) * GNU GPL v2.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) * Same crc32 function was used in 5 other places in the kernel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) * I made one version, and deleted the others.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) * There are various incantations of crc32(). Some use a seed of 0 or ~0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) * Some xor at the end with ~0. The generic crc32() function takes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) * seed as an argument, and doesn't xor at the end. Then individual
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) * users can do whatever they need.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) * drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) * fs/jffs2 uses seed 0, doesn't xor with ~0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) * fs/partitions/efi.c uses seed ~0, xor's with ~0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) * This source code is licensed under the GNU General Public License,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) * Version 2. See the file COPYING for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) /* see: Documentation/staging/crc32.rst for a description of algorithms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #include <linux/crc32.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #include <linux/crc32poly.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #include <linux/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #include <linux/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #include "crc32defs.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #if CRC_LE_BITS > 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) # define tole(x) ((__force u32) cpu_to_le32(x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) # define tole(x) (x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) #if CRC_BE_BITS > 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) # define tobe(x) ((__force u32) cpu_to_be32(x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) # define tobe(x) (x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) #include "crc32table.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) MODULE_DESCRIPTION("Various CRC32 calculations");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) #if CRC_LE_BITS > 8 || CRC_BE_BITS > 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) /* implements slicing-by-4 or slicing-by-8 algorithm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) static inline u32 __pure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) # ifdef __LITTLE_ENDIAN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) # define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) # define DO_CRC4 (t3[(q) & 255] ^ t2[(q >> 8) & 255] ^ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) t1[(q >> 16) & 255] ^ t0[(q >> 24) & 255])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) # define DO_CRC8 (t7[(q) & 255] ^ t6[(q >> 8) & 255] ^ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) t5[(q >> 16) & 255] ^ t4[(q >> 24) & 255])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) # else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) # define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) # define DO_CRC4 (t0[(q) & 255] ^ t1[(q >> 8) & 255] ^ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) t2[(q >> 16) & 255] ^ t3[(q >> 24) & 255])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) # define DO_CRC8 (t4[(q) & 255] ^ t5[(q >> 8) & 255] ^ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) t6[(q >> 16) & 255] ^ t7[(q >> 24) & 255])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) # endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) const u32 *b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) size_t rem_len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) # ifdef CONFIG_X86
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) size_t i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) # endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) const u32 *t0=tab[0], *t1=tab[1], *t2=tab[2], *t3=tab[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) # if CRC_LE_BITS != 32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) const u32 *t4 = tab[4], *t5 = tab[5], *t6 = tab[6], *t7 = tab[7];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) # endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) u32 q;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) /* Align it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) if (unlikely((long)buf & 3 && len)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) DO_CRC(*buf++);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) } while ((--len) && ((long)buf)&3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) # if CRC_LE_BITS == 32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) rem_len = len & 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) len = len >> 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) # else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) rem_len = len & 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) len = len >> 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) # endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) b = (const u32 *)buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) # ifdef CONFIG_X86
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) --b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) for (i = 0; i < len; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) # else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) for (--b; len; --len) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) # endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) q = crc ^ *++b; /* use pre increment for speed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) # if CRC_LE_BITS == 32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) crc = DO_CRC4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) # else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) crc = DO_CRC8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) q = *++b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) crc ^= DO_CRC4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) # endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) len = rem_len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) /* And the last few bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) if (len) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) u8 *p = (u8 *)(b + 1) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) # ifdef CONFIG_X86
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) for (i = 0; i < len; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) DO_CRC(*++p); /* use pre increment for speed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) # else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) DO_CRC(*++p); /* use pre increment for speed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) } while (--len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) # endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) return crc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) #undef DO_CRC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) #undef DO_CRC4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) #undef DO_CRC8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) * crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) * CRC32/CRC32C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) * uses, or the previous crc32/crc32c value if computing incrementally.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) * @p: pointer to buffer over which CRC32/CRC32C is run
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) * @len: length of buffer @p
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) * @tab: little-endian Ethernet table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) * @polynomial: CRC32/CRC32c LE polynomial
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) static inline u32 __pure crc32_le_generic(u32 crc, unsigned char const *p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) size_t len, const u32 (*tab)[256],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) u32 polynomial)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) #if CRC_LE_BITS == 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) while (len--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) crc ^= *p++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) for (i = 0; i < 8; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) # elif CRC_LE_BITS == 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) while (len--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) crc ^= *p++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) crc = (crc >> 2) ^ tab[0][crc & 3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) crc = (crc >> 2) ^ tab[0][crc & 3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) crc = (crc >> 2) ^ tab[0][crc & 3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) crc = (crc >> 2) ^ tab[0][crc & 3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) # elif CRC_LE_BITS == 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) while (len--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) crc ^= *p++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) crc = (crc >> 4) ^ tab[0][crc & 15];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) crc = (crc >> 4) ^ tab[0][crc & 15];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) # elif CRC_LE_BITS == 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) /* aka Sarwate algorithm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) while (len--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) crc ^= *p++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) crc = (crc >> 8) ^ tab[0][crc & 255];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) # else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) crc = (__force u32) __cpu_to_le32(crc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) crc = crc32_body(crc, p, len, tab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) crc = __le32_to_cpu((__force __le32)crc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) return crc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) #if CRC_LE_BITS == 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) u32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) return crc32_le_generic(crc, p, len, NULL, CRC32_POLY_LE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) u32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) return crc32_le_generic(crc, p, len, NULL, CRC32C_POLY_LE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) u32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) return crc32_le_generic(crc, p, len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) (const u32 (*)[256])crc32table_le, CRC32_POLY_LE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) u32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) return crc32_le_generic(crc, p, len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) (const u32 (*)[256])crc32ctable_le, CRC32C_POLY_LE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) EXPORT_SYMBOL(crc32_le);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) EXPORT_SYMBOL(__crc32c_le);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) u32 __pure crc32_le_base(u32, unsigned char const *, size_t) __alias(crc32_le);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) u32 __pure __crc32c_le_base(u32, unsigned char const *, size_t) __alias(__crc32c_le);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) * This multiplies the polynomials x and y modulo the given modulus.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) * This follows the "little-endian" CRC convention that the lsbit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) * represents the highest power of x, and the msbit represents x^0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) static u32 __attribute_const__ gf2_multiply(u32 x, u32 y, u32 modulus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) u32 product = x & 1 ? y : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) for (i = 0; i < 31; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) product = (product >> 1) ^ (product & 1 ? modulus : 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) x >>= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) product ^= x & 1 ? y : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) return product;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) * crc32_generic_shift - Append @len 0 bytes to crc, in logarithmic time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) * @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) * @len: The number of bytes. @crc is multiplied by x^(8*@len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) * @polynomial: The modulus used to reduce the result to 32 bits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) * It's possible to parallelize CRC computations by computing a CRC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) * over separate ranges of a buffer, then summing them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) * This shifts the given CRC by 8*len bits (i.e. produces the same effect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) * as appending len bytes of zero to the data), in time proportional
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) * to log(len).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) static u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) u32 polynomial)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) u32 power = polynomial; /* CRC of x^32 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) /* Shift up to 32 bits in the simple linear way */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) for (i = 0; i < 8 * (int)(len & 3); i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) len >>= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) if (!len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) return crc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) for (;;) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) /* "power" is x^(2^i), modulo the polynomial */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) if (len & 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) crc = gf2_multiply(crc, power, polynomial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) len >>= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) if (!len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) /* Square power, advancing to x^(2^(i+1)) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) power = gf2_multiply(power, power, polynomial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) return crc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) u32 __attribute_const__ crc32_le_shift(u32 crc, size_t len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) return crc32_generic_shift(crc, len, CRC32_POLY_LE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) u32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) return crc32_generic_shift(crc, len, CRC32C_POLY_LE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) EXPORT_SYMBOL(crc32_le_shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) EXPORT_SYMBOL(__crc32c_le_shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) * crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) * other uses, or the previous crc32 value if computing incrementally.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) * @p: pointer to buffer over which CRC32 is run
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) * @len: length of buffer @p
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) * @tab: big-endian Ethernet table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) * @polynomial: CRC32 BE polynomial
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) static inline u32 __pure crc32_be_generic(u32 crc, unsigned char const *p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) size_t len, const u32 (*tab)[256],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) u32 polynomial)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) #if CRC_BE_BITS == 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) while (len--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) crc ^= *p++ << 24;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) for (i = 0; i < 8; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) crc =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) (crc << 1) ^ ((crc & 0x80000000) ? polynomial :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) # elif CRC_BE_BITS == 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) while (len--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) crc ^= *p++ << 24;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) crc = (crc << 2) ^ tab[0][crc >> 30];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) crc = (crc << 2) ^ tab[0][crc >> 30];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) crc = (crc << 2) ^ tab[0][crc >> 30];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) crc = (crc << 2) ^ tab[0][crc >> 30];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) # elif CRC_BE_BITS == 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) while (len--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) crc ^= *p++ << 24;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) crc = (crc << 4) ^ tab[0][crc >> 28];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) crc = (crc << 4) ^ tab[0][crc >> 28];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) # elif CRC_BE_BITS == 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) while (len--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) crc ^= *p++ << 24;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) crc = (crc << 8) ^ tab[0][crc >> 24];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) # else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) crc = (__force u32) __cpu_to_be32(crc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) crc = crc32_body(crc, p, len, tab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) crc = __be32_to_cpu((__force __be32)crc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) # endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) return crc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) #if CRC_BE_BITS == 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) return crc32_be_generic(crc, p, len, NULL, CRC32_POLY_BE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) return crc32_be_generic(crc, p, len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) (const u32 (*)[256])crc32table_be, CRC32_POLY_BE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) EXPORT_SYMBOL(crc32_be);