Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2)  * Generic binary BCH encoding/decoding library
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  * This program is free software; you can redistribute it and/or modify it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * under the terms of the GNU General Public License version 2 as published by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  * the Free Software Foundation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  * This program is distributed in the hope that it will be useful, but WITHOUT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11)  * more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13)  * You should have received a copy of the GNU General Public License along with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14)  * this program; if not, write to the Free Software Foundation, Inc., 51
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15)  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17)  * Copyright © 2011 Parrot S.A.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19)  * Author: Ivan Djelic <ivan.djelic@parrot.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21)  * Description:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23)  * This library provides runtime configurable encoding/decoding of binary
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24)  * Bose-Chaudhuri-Hocquenghem (BCH) codes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26)  * Call bch_init to get a pointer to a newly allocated bch_control structure for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27)  * the given m (Galois field order), t (error correction capability) and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28)  * (optional) primitive polynomial parameters.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30)  * Call bch_encode to compute and store ecc parity bytes to a given buffer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31)  * Call bch_decode to detect and locate errors in received data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33)  * On systems supporting hw BCH features, intermediate results may be provided
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34)  * to bch_decode in order to skip certain steps. See bch_decode() documentation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35)  * for details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37)  * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38)  * parameters m and t; thus allowing extra compiler optimizations and providing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39)  * better (up to 2x) encoding performance. Using this option makes sense when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40)  * (m,t) are fixed and known in advance, e.g. when using BCH error correction
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41)  * on a particular NAND flash device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43)  * Algorithmic details:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45)  * Encoding is performed by processing 32 input bits in parallel, using 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46)  * remainder lookup tables.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48)  * The final stage of decoding involves the following internal steps:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49)  * a. Syndrome computation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50)  * b. Error locator polynomial computation using Berlekamp-Massey algorithm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51)  * c. Error locator root finding (by far the most expensive step)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53)  * In this implementation, step c is not performed using the usual Chien search.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54)  * Instead, an alternative approach described in [1] is used. It consists in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55)  * factoring the error locator polynomial using the Berlekamp Trace algorithm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56)  * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57)  * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58)  * much better performance than Chien search for usual (m,t) values (typically
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59)  * m >= 13, t < 32, see [1]).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61)  * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62)  * of characteristic 2, in: Western European Workshop on Research in Cryptology
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63)  * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64)  * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65)  * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) #include <linux/errno.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) #include <linux/bitops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) #include <asm/byteorder.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) #include <linux/bch.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) #if defined(CONFIG_BCH_CONST_PARAMS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) #define GF_M(_p)               (CONFIG_BCH_CONST_M)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) #define GF_T(_p)               (CONFIG_BCH_CONST_T)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) #define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) #define BCH_MAX_M              (CONFIG_BCH_CONST_M)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) #define BCH_MAX_T	       (CONFIG_BCH_CONST_T)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) #define GF_M(_p)               ((_p)->m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) #define GF_T(_p)               ((_p)->t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) #define GF_N(_p)               ((_p)->n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) #define BCH_MAX_M              15 /* 2KB */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) #define BCH_MAX_T              64 /* 64 bit correction */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) #define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) #define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) #define BCH_ECC_MAX_WORDS      DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) #ifndef dbg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) #define dbg(_fmt, args...)     do {} while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101)  * represent a polynomial over GF(2^m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) struct gf_poly {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) 	unsigned int deg;    /* polynomial degree */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) 	unsigned int c[];   /* polynomial terms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) /* given its degree, compute a polynomial size in bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) /* polynomial of degree 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) struct gf_poly_deg1 {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 	struct gf_poly poly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) 	unsigned int   c[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) static u8 swap_bits_table[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) 	0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) 	0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 	0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) 	0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) 	0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 	0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) 	0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) 	0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 	0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) 	0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 	0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 	0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) 	0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 	0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) 	0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 	0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 	0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) 	0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 	0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 	0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) 	0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 	0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 	0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 	0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) 	0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 	0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) 	0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 	0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) 	0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) 	0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) 	0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 	0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) static u8 swap_bits(struct bch_control *bch, u8 in)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) 	if (!bch->swap_bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) 		return in;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 	return swap_bits_table[in];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161)  * same as bch_encode(), but process input data one byte at a time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) static void bch_encode_unaligned(struct bch_control *bch,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 				 const unsigned char *data, unsigned int len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 				 uint32_t *ecc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) 	const uint32_t *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 	const int l = BCH_ECC_WORDS(bch)-1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) 	while (len--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 		u8 tmp = swap_bits(bch, *data++);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) 		p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(tmp)) & 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 		for (i = 0; i < l; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 			ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 		ecc[l] = (ecc[l] << 8)^(*p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184)  * convert ecc bytes to aligned, zero-padded 32-bit ecc words
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) static void load_ecc8(struct bch_control *bch, uint32_t *dst,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 		      const uint8_t *src)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 	uint8_t pad[4] = {0, 0, 0, 0};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 	for (i = 0; i < nwords; i++, src += 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 		dst[i] = ((u32)swap_bits(bch, src[0]) << 24) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 			((u32)swap_bits(bch, src[1]) << 16) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 			((u32)swap_bits(bch, src[2]) << 8) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) 			swap_bits(bch, src[3]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 	memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 	dst[nwords] = ((u32)swap_bits(bch, pad[0]) << 24) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) 		((u32)swap_bits(bch, pad[1]) << 16) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 		((u32)swap_bits(bch, pad[2]) << 8) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 		swap_bits(bch, pad[3]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206)  * convert 32-bit ecc words to ecc bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) static void store_ecc8(struct bch_control *bch, uint8_t *dst,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 		       const uint32_t *src)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 	uint8_t pad[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 	for (i = 0; i < nwords; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 		*dst++ = swap_bits(bch, src[i] >> 24);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 		*dst++ = swap_bits(bch, src[i] >> 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 		*dst++ = swap_bits(bch, src[i] >> 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 		*dst++ = swap_bits(bch, src[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 	pad[0] = swap_bits(bch, src[nwords] >> 24);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) 	pad[1] = swap_bits(bch, src[nwords] >> 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 	pad[2] = swap_bits(bch, src[nwords] >> 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 	pad[3] = swap_bits(bch, src[nwords]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 	memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228)  * bch_encode - calculate BCH ecc parity of data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229)  * @bch:   BCH control structure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230)  * @data:  data to encode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231)  * @len:   data length in bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232)  * @ecc:   ecc parity data, must be initialized by caller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234)  * The @ecc parity array is used both as input and output parameter, in order to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235)  * allow incremental computations. It should be of the size indicated by member
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236)  * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238)  * The exact number of computed ecc parity bits is given by member @ecc_bits of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239)  * @bch; it may be less than m*t for large values of t.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) void bch_encode(struct bch_control *bch, const uint8_t *data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 		unsigned int len, uint8_t *ecc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 	const unsigned int l = BCH_ECC_WORDS(bch)-1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 	unsigned int i, mlen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 	unsigned long m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 	uint32_t w, r[BCH_ECC_MAX_WORDS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 	const size_t r_bytes = BCH_ECC_WORDS(bch) * sizeof(*r);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 	const uint32_t * const tab0 = bch->mod8_tab;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 	const uint32_t * const tab1 = tab0 + 256*(l+1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 	const uint32_t * const tab2 = tab1 + 256*(l+1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 	const uint32_t * const tab3 = tab2 + 256*(l+1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) 	const uint32_t *pdata, *p0, *p1, *p2, *p3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) 	if (WARN_ON(r_bytes > sizeof(r)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 	if (ecc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 		/* load ecc parity bytes into internal 32-bit buffer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 		load_ecc8(bch, bch->ecc_buf, ecc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 		memset(bch->ecc_buf, 0, r_bytes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 	/* process first unaligned data bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 	m = ((unsigned long)data) & 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 	if (m) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 		mlen = (len < (4-m)) ? len : 4-m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) 		bch_encode_unaligned(bch, data, mlen, bch->ecc_buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 		data += mlen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 		len  -= mlen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 	/* process 32-bit aligned data words */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 	pdata = (uint32_t *)data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 	mlen  = len/4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 	data += 4*mlen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 	len  -= 4*mlen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 	memcpy(r, bch->ecc_buf, r_bytes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 	 * split each 32-bit word into 4 polynomials of weight 8 as follows:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) 	 * 31 ...24  23 ...16  15 ... 8  7 ... 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 	 *                               tttttttt  mod g = r0 (precomputed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 	 *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 	 *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 	 * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) 	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 	while (mlen--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 		/* input data is read in big-endian format */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 		w = cpu_to_be32(*pdata++);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 		if (bch->swap_bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 			w = (u32)swap_bits(bch, w) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 			    ((u32)swap_bits(bch, w >> 8) << 8) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 			    ((u32)swap_bits(bch, w >> 16) << 16) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 			    ((u32)swap_bits(bch, w >> 24) << 24);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 		w ^= r[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 		p0 = tab0 + (l+1)*((w >>  0) & 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 		p1 = tab1 + (l+1)*((w >>  8) & 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 		p2 = tab2 + (l+1)*((w >> 16) & 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 		p3 = tab3 + (l+1)*((w >> 24) & 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 		for (i = 0; i < l; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 			r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 		r[l] = p0[l]^p1[l]^p2[l]^p3[l];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 	memcpy(bch->ecc_buf, r, r_bytes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 	/* process last unaligned bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 	if (len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 		bch_encode_unaligned(bch, data, len, bch->ecc_buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 	/* store ecc parity bytes into original parity buffer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 	if (ecc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 		store_ecc8(bch, ecc, bch->ecc_buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) EXPORT_SYMBOL_GPL(bch_encode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) static inline int modulo(struct bch_control *bch, unsigned int v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 	const unsigned int n = GF_N(bch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 	while (v >= n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 		v -= n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 		v = (v & n) + (v >> GF_M(bch));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 	return v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334)  * shorter and faster modulo function, only works when v < 2N.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) static inline int mod_s(struct bch_control *bch, unsigned int v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 	const unsigned int n = GF_N(bch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 	return (v < n) ? v : v-n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) static inline int deg(unsigned int poly)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 	/* polynomial degree is the most-significant bit index */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 	return fls(poly)-1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) static inline int parity(unsigned int x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 	 * public domain code snippet, lifted from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 	 * http://www-graphics.stanford.edu/~seander/bithacks.html
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 	x ^= x >> 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 	x ^= x >> 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 	x = (x & 0x11111111U) * 0x11111111U;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 	return (x >> 28) & 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) /* Galois field basic operations: multiply, divide, inverse, etc. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 				  unsigned int b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 	return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 					       bch->a_log_tab[b])] : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 	return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 				  unsigned int b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 	return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 					GF_N(bch)-bch->a_log_tab[b])] : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 	return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) static inline unsigned int a_pow(struct bch_control *bch, int i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 	return bch->a_pow_tab[modulo(bch, i)];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) static inline int a_log(struct bch_control *bch, unsigned int x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 	return bch->a_log_tab[x];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) static inline int a_ilog(struct bch_control *bch, unsigned int x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 	return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402)  * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 			      unsigned int *syn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 	int i, j, s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 	unsigned int m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 	uint32_t poly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 	const int t = GF_T(bch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 	s = bch->ecc_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 	/* make sure extra bits in last ecc word are cleared */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 	m = ((unsigned int)s) & 31;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 	if (m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 		ecc[s/32] &= ~((1u << (32-m))-1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 	memset(syn, 0, 2*t*sizeof(*syn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 	/* compute v(a^j) for j=1 .. 2t-1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 		poly = *ecc++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 		s -= 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 		while (poly) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 			i = deg(poly);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 			for (j = 0; j < 2*t; j += 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 				syn[j] ^= a_pow(bch, (j+1)*(i+s));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 			poly ^= (1 << i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 	} while (s > 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 	/* v(a^(2j)) = v(a^j)^2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 	for (j = 0; j < t; j++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 		syn[2*j+1] = gf_sqr(bch, syn[j]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 	memcpy(dst, src, GF_POLY_SZ(src->deg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) static int compute_error_locator_polynomial(struct bch_control *bch,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 					    const unsigned int *syn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 	const unsigned int t = GF_T(bch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 	const unsigned int n = GF_N(bch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 	unsigned int i, j, tmp, l, pd = 1, d = syn[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 	struct gf_poly *elp = bch->elp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 	struct gf_poly *pelp = bch->poly_2t[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 	struct gf_poly *elp_copy = bch->poly_2t[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 	int k, pp = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 	memset(pelp, 0, GF_POLY_SZ(2*t));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 	memset(elp, 0, GF_POLY_SZ(2*t));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 	pelp->deg = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 	pelp->c[0] = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 	elp->deg = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 	elp->c[0] = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 	/* use simplified binary Berlekamp-Massey algorithm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 	for (i = 0; (i < t) && (elp->deg <= t); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 		if (d) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 			k = 2*i-pp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 			gf_poly_copy(elp_copy, elp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 			/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 			tmp = a_log(bch, d)+n-a_log(bch, pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 			for (j = 0; j <= pelp->deg; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 				if (pelp->c[j]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 					l = a_log(bch, pelp->c[j]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 					elp->c[j+k] ^= a_pow(bch, tmp+l);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 			/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 			tmp = pelp->deg+k;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 			if (tmp > elp->deg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 				elp->deg = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 				gf_poly_copy(pelp, elp_copy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 				pd = d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 				pp = 2*i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 		/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 		if (i < t-1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 			d = syn[2*i+2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 			for (j = 1; j <= elp->deg; j++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 				d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 	dbg("elp=%s\n", gf_poly_str(elp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 	return (elp->deg > t) ? -1 : (int)elp->deg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496)  * solve a m x m linear system in GF(2) with an expected number of solutions,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497)  * and return the number of found solutions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 			       unsigned int *sol, int nsol)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 	const int m = GF_M(bch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 	unsigned int tmp, mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 	int rem, c, r, p, k, param[BCH_MAX_M];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 	k = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 	mask = 1 << m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 	/* Gaussian elimination */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 	for (c = 0; c < m; c++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 		rem = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 		p = c-k;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 		/* find suitable row for elimination */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 		for (r = p; r < m; r++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 			if (rows[r] & mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 				if (r != p) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 					tmp = rows[r];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 					rows[r] = rows[p];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 					rows[p] = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 				rem = r+1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 		if (rem) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 			/* perform elimination on remaining rows */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 			tmp = rows[p];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 			for (r = rem; r < m; r++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 				if (rows[r] & mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 					rows[r] ^= tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 			/* elimination not needed, store defective row index */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 			param[k++] = c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 		mask >>= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 	/* rewrite system, inserting fake parameter rows */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 	if (k > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 		p = k;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 		for (r = m-1; r >= 0; r--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 			if ((r > m-1-k) && rows[r])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 				/* system has no solution */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 				return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 			rows[r] = (p && (r == param[p-1])) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 				p--, 1u << (m-r) : rows[r-p];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 	if (nsol != (1 << k))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 		/* unexpected number of solutions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 	for (p = 0; p < nsol; p++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 		/* set parameters for p-th solution */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 		for (c = 0; c < k; c++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 			rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 		/* compute unique solution */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 		tmp = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 		for (r = m-1; r >= 0; r--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 			mask = rows[r] & (tmp|1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 			tmp |= parity(mask) << (m-r);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 		sol[p] = tmp >> 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 	return nsol;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572)  * this function builds and solves a linear system for finding roots of a degree
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573)  * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) static int find_affine4_roots(struct bch_control *bch, unsigned int a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 			      unsigned int b, unsigned int c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 			      unsigned int *roots)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 	int i, j, k;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 	const int m = GF_M(bch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 	unsigned int mask = 0xff, t, rows[16] = {0,};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 	j = a_log(bch, b);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) 	k = a_log(bch, a);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 	rows[0] = c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 	/* buid linear system to solve X^4+aX^2+bX+c = 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 	for (i = 0; i < m; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 		rows[i+1] = bch->a_pow_tab[4*i]^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) 			(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 			(b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 		j++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 		k += 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 	 * transpose 16x16 matrix before passing it to linear solver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 	 * warning: this code assumes m < 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 	for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 		for (k = 0; k < 16; k = (k+j+1) & ~j) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 			t = ((rows[k] >> j)^rows[k+j]) & mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 			rows[k] ^= (t << j);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 			rows[k+j] ^= t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 	return solve_linear_system(bch, rows, roots, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610)  * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 				unsigned int *roots)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 	int n = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 	if (poly->c[0])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 		/* poly[X] = bX+c with c!=0, root=c/b */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 		roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 				   bch->a_log_tab[poly->c[1]]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 	return n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625)  * compute roots of a degree 2 polynomial over GF(2^m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 				unsigned int *roots)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 	int n = 0, i, l0, l1, l2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 	unsigned int u, v, r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 	if (poly->c[0] && poly->c[1]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 		l0 = bch->a_log_tab[poly->c[0]];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 		l1 = bch->a_log_tab[poly->c[1]];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 		l2 = bch->a_log_tab[poly->c[2]];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 		/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 		u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 		 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 		 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 		 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 		 * i.e. r and r+1 are roots iff Tr(u)=0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 		r = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 		v = u;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 		while (v) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 			i = deg(v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 			r ^= bch->xi_tab[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 			v ^= (1 << i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 		/* verify root */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) 		if ((gf_sqr(bch, r)^r) == u) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 			/* reverse z=a/bX transformation and compute log(1/r) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 					    bch->a_log_tab[r]+l2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 					    bch->a_log_tab[r^1]+l2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 	return n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667)  * compute roots of a degree 3 polynomial over GF(2^m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 				unsigned int *roots)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 	int i, n = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 	unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 	if (poly->c[0]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 		/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 		e3 = poly->c[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 		c2 = gf_div(bch, poly->c[0], e3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 		b2 = gf_div(bch, poly->c[1], e3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 		a2 = gf_div(bch, poly->c[2], e3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 		/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 		c = gf_mul(bch, a2, c2);           /* c = a2c2      */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 		b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 		a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 		/* find the 4 roots of this affine polynomial */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 		if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 			/* remove a2 from final list of roots */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 			for (i = 0; i < 4; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 				if (tmp[i] != a2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 					roots[n++] = a_ilog(bch, tmp[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 	return n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700)  * compute roots of a degree 4 polynomial over GF(2^m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 				unsigned int *roots)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 	int i, l, n = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 	unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 	if (poly->c[0] == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 	/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 	e4 = poly->c[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 	d = gf_div(bch, poly->c[0], e4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 	c = gf_div(bch, poly->c[1], e4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 	b = gf_div(bch, poly->c[2], e4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 	a = gf_div(bch, poly->c[3], e4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 	/* use Y=1/X transformation to get an affine polynomial */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 	if (a) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 		/* first, eliminate cX by using z=X+e with ae^2+c=0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 		if (c) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 			/* compute e such that e^2 = c/a */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 			f = gf_div(bch, c, a);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 			l = a_log(bch, f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 			l += (l & 1) ? GF_N(bch) : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 			e = a_pow(bch, l/2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 			 * use transformation z=X+e:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 			 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 			 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 			 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 			 * z^4 + az^3 +     b'z^2 + d'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 			d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 			b = gf_mul(bch, a, e)^b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 		/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 		if (d == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 			/* assume all roots have multiplicity 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 		c2 = gf_inv(bch, d);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 		b2 = gf_div(bch, a, d);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 		a2 = gf_div(bch, b, d);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 		/* polynomial is already affine */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 		c2 = d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 		b2 = c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 		a2 = b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 	/* find the 4 roots of this affine polynomial */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 	if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 		for (i = 0; i < 4; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 			/* post-process roots (reverse transformations) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 			f = a ? gf_inv(bch, roots[i]) : roots[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 			roots[i] = a_ilog(bch, f^e);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 		n = 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 	return n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764)  * build monic, log-based representation of a polynomial
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) static void gf_poly_logrep(struct bch_control *bch,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 			   const struct gf_poly *a, int *rep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 	int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 	/* represent 0 values with -1; warning, rep[d] is not set to 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 	for (i = 0; i < d; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 		rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777)  * compute polynomial Euclidean division remainder in GF(2^m)[X]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 			const struct gf_poly *b, int *rep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 	int la, p, m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 	unsigned int i, j, *c = a->c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 	const unsigned int d = b->deg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 	if (a->deg < d)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 	/* reuse or compute log representation of denominator */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 	if (!rep) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 		rep = bch->cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 		gf_poly_logrep(bch, b, rep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 	for (j = a->deg; j >= d; j--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 		if (c[j]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 			la = a_log(bch, c[j]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 			p = j-d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 			for (i = 0; i < d; i++, p++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 				m = rep[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 				if (m >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 					c[p] ^= bch->a_pow_tab[mod_s(bch,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 								     m+la)];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 	a->deg = d-1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 	while (!c[a->deg] && a->deg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 		a->deg--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813)  * compute polynomial Euclidean division quotient in GF(2^m)[X]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 			const struct gf_poly *b, struct gf_poly *q)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 	if (a->deg >= b->deg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 		q->deg = a->deg-b->deg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 		/* compute a mod b (modifies a) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 		gf_poly_mod(bch, a, b, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 		/* quotient is stored in upper part of polynomial a */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 		memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 		q->deg = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 		q->c[0] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831)  * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 				   struct gf_poly *b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 	struct gf_poly *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 	dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 	if (a->deg < b->deg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 		tmp = b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 		b = a;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 		a = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 	while (b->deg > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 		gf_poly_mod(bch, a, b, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 		tmp = b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 		b = a;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 		a = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 	dbg("%s\n", gf_poly_str(a));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 	return a;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859)  * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860)  * This is used in Berlekamp Trace algorithm for splitting polynomials
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) static void compute_trace_bk_mod(struct bch_control *bch, int k,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 				 const struct gf_poly *f, struct gf_poly *z,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 				 struct gf_poly *out)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 	const int m = GF_M(bch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 	int i, j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 	/* z contains z^2j mod f */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 	z->deg = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 	z->c[0] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 	z->c[1] = bch->a_pow_tab[k];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 	out->deg = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 	memset(out, 0, GF_POLY_SZ(f->deg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 	/* compute f log representation only once */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 	gf_poly_logrep(bch, f, bch->cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 	for (i = 0; i < m; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 		/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 		for (j = z->deg; j >= 0; j--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 			out->c[j] ^= z->c[j];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 			z->c[2*j] = gf_sqr(bch, z->c[j]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 			z->c[2*j+1] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 		if (z->deg > out->deg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 			out->deg = z->deg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 		if (i < m-1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 			z->deg *= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 			/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 			gf_poly_mod(bch, z, f, bch->cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 	while (!out->c[out->deg] && out->deg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 		out->deg--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 	dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903)  * factor a polynomial using Berlekamp Trace algorithm (BTA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 			      struct gf_poly **g, struct gf_poly **h)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 	struct gf_poly *f2 = bch->poly_2t[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 	struct gf_poly *q  = bch->poly_2t[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 	struct gf_poly *tk = bch->poly_2t[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 	struct gf_poly *z  = bch->poly_2t[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 	struct gf_poly *gcd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 	dbg("factoring %s...\n", gf_poly_str(f));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 	*g = f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 	*h = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 	/* tk = Tr(a^k.X) mod f */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 	compute_trace_bk_mod(bch, k, f, z, tk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 	if (tk->deg > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 		/* compute g = gcd(f, tk) (destructive operation) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 		gf_poly_copy(f2, f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 		gcd = gf_poly_gcd(bch, f2, tk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 		if (gcd->deg < f->deg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 			/* compute h=f/gcd(f,tk); this will modify f and q */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 			gf_poly_div(bch, f, gcd, q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 			/* store g and h in-place (clobbering f) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 			*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 			gf_poly_copy(*g, gcd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 			gf_poly_copy(*h, q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938)  * find roots of a polynomial, using BTZ algorithm; see the beginning of this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939)  * file for details
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) static int find_poly_roots(struct bch_control *bch, unsigned int k,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 			   struct gf_poly *poly, unsigned int *roots)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 	int cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 	struct gf_poly *f1, *f2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 	switch (poly->deg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 		/* handle low degree polynomials with ad hoc techniques */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 		cnt = find_poly_deg1_roots(bch, poly, roots);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 		cnt = find_poly_deg2_roots(bch, poly, roots);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 		cnt = find_poly_deg3_roots(bch, poly, roots);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 	case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 		cnt = find_poly_deg4_roots(bch, poly, roots);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 		/* factor polynomial using Berlekamp Trace Algorithm (BTA) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 		cnt = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 		if (poly->deg && (k <= GF_M(bch))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 			factor_polynomial(bch, k, poly, &f1, &f2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 			if (f1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 				cnt += find_poly_roots(bch, k+1, f1, roots);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 			if (f2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 				cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 	return cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) #if defined(USE_CHIEN_SEARCH)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978)  * exhaustive root search (Chien) implementation - not used, included only for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979)  * reference/comparison tests
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) static int chien_search(struct bch_control *bch, unsigned int len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 			struct gf_poly *p, unsigned int *roots)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 	int m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 	unsigned int i, j, syn, syn0, count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 	const unsigned int k = 8*len+bch->ecc_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 	/* use a log-based representation of polynomial */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 	gf_poly_logrep(bch, p, bch->cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 	bch->cache[p->deg] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 	syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 	for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 		/* compute elp(a^i) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 		for (j = 1, syn = syn0; j <= p->deg; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 			m = bch->cache[j];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 			if (m >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 				syn ^= a_pow(bch, m+j*i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 		if (syn == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 			roots[count++] = GF_N(bch)-i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 			if (count == p->deg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 	return (count == p->deg) ? count : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) #endif /* USE_CHIEN_SEARCH */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012)  * bch_decode - decode received codeword and find bit error locations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013)  * @bch:      BCH control structure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014)  * @data:     received data, ignored if @calc_ecc is provided
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015)  * @len:      data length in bytes, must always be provided
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016)  * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017)  * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018)  * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019)  * @errloc:   output array of error locations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021)  * Returns:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022)  *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023)  *  invalid parameters were provided
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025)  * Depending on the available hw BCH support and the need to compute @calc_ecc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026)  * separately (using bch_encode()), this function should be called with one of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027)  * the following parameter configurations -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029)  * by providing @data and @recv_ecc only:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030)  *   bch_decode(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032)  * by providing @recv_ecc and @calc_ecc:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033)  *   bch_decode(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035)  * by providing ecc = recv_ecc XOR calc_ecc:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036)  *   bch_decode(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038)  * by providing syndrome results @syn:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039)  *   bch_decode(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041)  * Once bch_decode() has successfully returned with a positive value, error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042)  * locations returned in array @errloc should be interpreted as follows -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044)  * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045)  * data correction)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047)  * if (errloc[n] < 8*len), then n-th error is located in data and can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048)  * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050)  * Note that this function does not perform any data correction by itself, it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051)  * merely indicates error locations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) int bch_decode(struct bch_control *bch, const uint8_t *data, unsigned int len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 	       const uint8_t *recv_ecc, const uint8_t *calc_ecc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 	       const unsigned int *syn, unsigned int *errloc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 	const unsigned int ecc_words = BCH_ECC_WORDS(bch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 	unsigned int nbits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 	int i, err, nroots;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 	uint32_t sum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 	/* sanity check: make sure data length can be handled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 	if (8*len > (bch->n-bch->ecc_bits))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 	/* if caller does not provide syndromes, compute them */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 	if (!syn) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 		if (!calc_ecc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 			/* compute received data ecc into an internal buffer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 			if (!data || !recv_ecc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 				return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 			bch_encode(bch, data, len, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 			/* load provided calculated ecc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 			load_ecc8(bch, bch->ecc_buf, calc_ecc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 		/* load received ecc or assume it was XORed in calc_ecc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 		if (recv_ecc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 			load_ecc8(bch, bch->ecc_buf2, recv_ecc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 			/* XOR received and calculated ecc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 			for (i = 0, sum = 0; i < (int)ecc_words; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 				bch->ecc_buf[i] ^= bch->ecc_buf2[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 				sum |= bch->ecc_buf[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 			if (!sum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 				/* no error found */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 				return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 		compute_syndromes(bch, bch->ecc_buf, bch->syn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 		syn = bch->syn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 	err = compute_error_locator_polynomial(bch, syn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 	if (err > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 		nroots = find_poly_roots(bch, 1, bch->elp, errloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 		if (err != nroots)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 			err = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 	if (err > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 		/* post-process raw error locations for easier correction */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 		nbits = (len*8)+bch->ecc_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 		for (i = 0; i < err; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 			if (errloc[i] >= nbits) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 				err = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 			errloc[i] = nbits-1-errloc[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 			if (!bch->swap_bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 				errloc[i] = (errloc[i] & ~7) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 					    (7-(errloc[i] & 7));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 	return (err >= 0) ? err : -EBADMSG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) EXPORT_SYMBOL_GPL(bch_decode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118)  * generate Galois field lookup tables
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) static int build_gf_tables(struct bch_control *bch, unsigned int poly)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 	unsigned int i, x = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 	const unsigned int k = 1 << deg(poly);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 	/* primitive polynomial must be of degree m */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 	if (k != (1u << GF_M(bch)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 	for (i = 0; i < GF_N(bch); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 		bch->a_pow_tab[i] = x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 		bch->a_log_tab[x] = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 		if (i && (x == 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 			return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 		x <<= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 		if (x & k)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 			x ^= poly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 	bch->a_pow_tab[GF_N(bch)] = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 	bch->a_log_tab[0] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146)  * compute generator polynomial remainder tables for fast encoding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 	int i, j, b, d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 	uint32_t data, hi, lo, *tab;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 	const int l = BCH_ECC_WORDS(bch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 	const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 	const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 	memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 	for (i = 0; i < 256; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 		/* p(X)=i is a small polynomial of weight <= 8 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 		for (b = 0; b < 4; b++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 			/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 			tab = bch->mod8_tab + (b*256+i)*l;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 			data = i << (8*b);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 			while (data) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 				d = deg(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 				/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 				data ^= g[0] >> (31-d);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 				for (j = 0; j < ecclen; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 					hi = (d < 31) ? g[j] << (d+1) : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 					lo = (j+1 < plen) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 						g[j+1] >> (31-d) : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 					tab[j] ^= hi|lo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180)  * build a base for factoring degree 2 polynomials
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) static int build_deg2_base(struct bch_control *bch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 	const int m = GF_M(bch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 	int i, j, r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 	unsigned int sum, x, y, remaining, ak = 0, xi[BCH_MAX_M];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 	/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 	for (i = 0; i < m; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 		for (j = 0, sum = 0; j < m; j++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 			sum ^= a_pow(bch, i*(1 << j));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 		if (sum) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 			ak = bch->a_pow_tab[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 	/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 	remaining = m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 	memset(xi, 0, sizeof(xi));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 	for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 		y = gf_sqr(bch, x)^x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 		for (i = 0; i < 2; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 			r = a_log(bch, y);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 			if (y && (r < m) && !xi[r]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 				bch->xi_tab[r] = x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 				xi[r] = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 				remaining--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 				dbg("x%d = %x\n", r, x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 			y ^= ak;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 	/* should not happen but check anyway */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 	return remaining ? -1 : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) static void *bch_alloc(size_t size, int *err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 	void *ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 	ptr = kmalloc(size, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 	if (ptr == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 		*err = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 	return ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231)  * compute generator polynomial for given (m,t) parameters.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) static uint32_t *compute_generator_polynomial(struct bch_control *bch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 	const unsigned int m = GF_M(bch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 	const unsigned int t = GF_T(bch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 	int n, err = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 	unsigned int i, j, nbits, r, word, *roots;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) 	struct gf_poly *g;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) 	uint32_t *genpoly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) 	g = bch_alloc(GF_POLY_SZ(m*t), &err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 	roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) 	genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) 		kfree(genpoly);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) 		genpoly = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 		goto finish;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) 	/* enumerate all roots of g(X) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 	memset(roots , 0, (bch->n+1)*sizeof(*roots));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 	for (i = 0; i < t; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) 		for (j = 0, r = 2*i+1; j < m; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 			roots[r] = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 			r = mod_s(bch, 2*r);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 	/* build generator polynomial g(X) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) 	g->deg = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 	g->c[0] = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) 	for (i = 0; i < GF_N(bch); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 		if (roots[i]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 			/* multiply g(X) by (X+root) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 			r = bch->a_pow_tab[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 			g->c[g->deg+1] = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 			for (j = g->deg; j > 0; j--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 				g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 			g->c[0] = gf_mul(bch, g->c[0], r);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 			g->deg++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 	/* store left-justified binary representation of g(X) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 	n = g->deg+1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 	i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 	while (n > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 		nbits = (n > 32) ? 32 : n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) 		for (j = 0, word = 0; j < nbits; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 			if (g->c[n-1-j])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) 				word |= 1u << (31-j);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 		genpoly[i++] = word;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 		n -= nbits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 	bch->ecc_bits = g->deg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) finish:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 	kfree(g);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) 	kfree(roots);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 	return genpoly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298)  * bch_init - initialize a BCH encoder/decoder
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299)  * @m:          Galois field order, should be in the range 5-15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300)  * @t:          maximum error correction capability, in bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301)  * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302)  * @swap_bits:  swap bits within data and syndrome bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304)  * Returns:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305)  *  a newly allocated BCH control structure if successful, NULL otherwise
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307)  * This initialization can take some time, as lookup tables are built for fast
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308)  * encoding/decoding; make sure not to call this function from a time critical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309)  * path. Usually, bch_init() should be called on module/driver init and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310)  * bch_free() should be called to release memory on exit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312)  * You may provide your own primitive polynomial of degree @m in argument
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313)  * @prim_poly, or let bch_init() use its default polynomial.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315)  * Once bch_init() has successfully returned a pointer to a newly allocated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316)  * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317)  * the structure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) struct bch_control *bch_init(int m, int t, unsigned int prim_poly,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 			     bool swap_bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 	int err = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 	unsigned int i, words;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 	uint32_t *genpoly;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 	struct bch_control *bch = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 	const int min_m = 5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 	/* default primitive polynomials */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 	static const unsigned int prim_poly_tab[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 		0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 		0x402b, 0x8003,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) #if defined(CONFIG_BCH_CONST_PARAMS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 	if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 		printk(KERN_ERR "bch encoder/decoder was configured to support "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 		       "parameters m=%d, t=%d only!\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 		       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 	if ((m < min_m) || (m > BCH_MAX_M))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 		 * values of m greater than 15 are not currently supported;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 		 * supporting m > 15 would require changing table base type
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 		 * (uint16_t) and a small patch in matrix transposition
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 	if (t > BCH_MAX_T)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 		 * we can support larger than 64 bits if necessary, at the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 		 * cost of higher stack usage.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 	/* sanity checks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 	if ((t < 1) || (m*t >= ((1 << m)-1)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 		/* invalid t value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 	/* select a primitive polynomial for generating GF(2^m) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 	if (prim_poly == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 		prim_poly = prim_poly_tab[m-min_m];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) 	bch = kzalloc(sizeof(*bch), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 	if (bch == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 	bch->m = m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 	bch->t = t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 	bch->n = (1 << m)-1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 	words  = DIV_ROUND_UP(m*t, 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 	bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) 	bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 	bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 	bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 	bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 	bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 	bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 	bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 	bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 	bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 	bch->swap_bits = swap_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) 	for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) 		bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 	err = build_gf_tables(bch, prim_poly);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 	/* use generator polynomial for computing encoding tables */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 	genpoly = compute_generator_polynomial(bch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 	if (genpoly == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 	build_mod8_tables(bch, genpoly);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 	kfree(genpoly);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 	err = build_deg2_base(bch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) 	return bch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) 	bch_free(bch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) EXPORT_SYMBOL_GPL(bch_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418)  *  bch_free - free the BCH control structure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419)  *  @bch:    BCH control structure to release
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) void bch_free(struct bch_control *bch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) 	if (bch) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 		kfree(bch->a_pow_tab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 		kfree(bch->a_log_tab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 		kfree(bch->mod8_tab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 		kfree(bch->ecc_buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 		kfree(bch->ecc_buf2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) 		kfree(bch->xi_tab);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) 		kfree(bch->syn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) 		kfree(bch->cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) 		kfree(bch->elp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) 		for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 			kfree(bch->poly_2t[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) 		kfree(bch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) EXPORT_SYMBOL_GPL(bch_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) MODULE_DESCRIPTION("Binary BCH encoder/decoder");