Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * tracing clocks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *  Copyright (C) 2009 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * Implements 3 trace clock variants, with differing scalability/precision
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * tradeoffs:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  *  -   local: CPU-local trace clock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  *  -  medium: scalable global clock with some jitter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  *  -  global: globally monotonic, serialized clock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  * Tracer plugins will chose a default from these clocks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/spinlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/irqflags.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/hardirq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/percpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <linux/sched/clock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include <linux/ktime.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #include <linux/trace_clock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  * trace_clock_local(): the simplest and least coherent tracing clock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  * Useful for tracing that does not cross to other CPUs nor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  * does it go through idle events.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) u64 notrace trace_clock_local(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 	u64 clock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 	 * sched_clock() is an architecture implemented, fast, scalable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 	 * lockless clock. It is not guaranteed to be coherent across
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 	 * CPUs, nor across CPU idle events.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	preempt_disable_notrace();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	clock = sched_clock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	preempt_enable_notrace();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	return clock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) EXPORT_SYMBOL_GPL(trace_clock_local);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)  * trace_clock(): 'between' trace clock. Not completely serialized,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51)  * but not completely incorrect when crossing CPUs either.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53)  * This is based on cpu_clock(), which will allow at most ~1 jiffy of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54)  * jitter between CPUs. So it's a pretty scalable clock, but there
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55)  * can be offsets in the trace data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) u64 notrace trace_clock(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	return local_clock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) EXPORT_SYMBOL_GPL(trace_clock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64)  * trace_jiffy_clock(): Simply use jiffies as a clock counter.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65)  * Note that this use of jiffies_64 is not completely safe on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66)  * 32-bit systems. But the window is tiny, and the effect if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)  * we are affected is that we will have an obviously bogus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68)  * timestamp on a trace event - i.e. not life threatening.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) u64 notrace trace_clock_jiffies(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	return jiffies_64_to_clock_t(jiffies_64 - INITIAL_JIFFIES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) EXPORT_SYMBOL_GPL(trace_clock_jiffies);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77)  * trace_clock_global(): special globally coherent trace clock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79)  * It has higher overhead than the other trace clocks but is still
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80)  * an order of magnitude faster than GTOD derived hardware clocks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82)  * Used by plugins that need globally coherent timestamps.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) /* keep prev_time and lock in the same cacheline. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) static struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	u64 prev_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	arch_spinlock_t lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) } trace_clock_struct ____cacheline_aligned_in_smp =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 		.lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) u64 notrace trace_clock_global(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	int this_cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	u64 now, prev_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	raw_local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	this_cpu = raw_smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	 * The global clock "guarantees" that the events are ordered
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	 * between CPUs. But if two events on two different CPUS call
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	 * trace_clock_global at roughly the same time, it really does
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	 * not matter which one gets the earlier time. Just make sure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	 * that the same CPU will always show a monotonic clock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	 * Use a read memory barrier to get the latest written
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	 * time that was recorded.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	smp_rmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	prev_time = READ_ONCE(trace_clock_struct.prev_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	now = sched_clock_cpu(this_cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	/* Make sure that now is always greater than or equal to prev_time */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	if ((s64)(now - prev_time) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 		now = prev_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	 * If in an NMI context then dont risk lockups and simply return
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	 * the current time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	if (unlikely(in_nmi()))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	/* Tracing can cause strange recursion, always use a try lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	if (arch_spin_trylock(&trace_clock_struct.lock)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 		/* Reread prev_time in case it was already updated */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		prev_time = READ_ONCE(trace_clock_struct.prev_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 		if ((s64)(now - prev_time) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 			now = prev_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 		trace_clock_struct.prev_time = now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 		/* The unlock acts as the wmb for the above rmb */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 		arch_spin_unlock(&trace_clock_struct.lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)  out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	raw_local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	return now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) EXPORT_SYMBOL_GPL(trace_clock_global);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) static atomic64_t trace_counter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)  * trace_clock_counter(): simply an atomic counter.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)  * Use the trace_counter "counter" for cases where you do not care
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)  * about timings, but are interested in strict ordering.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) u64 notrace trace_clock_counter(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	return atomic64_add_return(1, &trace_counter);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) }