Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Generic sched_clock() support, to extend low level hardware time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * counters to full 64-bit ns values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) #include <linux/clocksource.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) #include <linux/jiffies.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/ktime.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/moduleparam.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/sched/clock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/syscore_ops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/hrtimer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/sched_clock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/seqlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/bitops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <trace/hooks/epoch.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include "timekeeping.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)  * struct clock_data - all data needed for sched_clock() (including
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25)  *                     registration of a new clock source)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  * @seq:		Sequence counter for protecting updates. The lowest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  *			bit is the index for @read_data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  * @read_data:		Data required to read from sched_clock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  * @wrap_kt:		Duration for which clock can run before wrapping.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  * @rate:		Tick rate of the registered clock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)  * @actual_read_sched_clock: Registered hardware level clock read function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)  * The ordering of this structure has been chosen to optimize cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35)  * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36)  * into a single 64-byte cache line.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) struct clock_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 	seqcount_latch_t	seq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 	struct clock_read_data	read_data[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	ktime_t			wrap_kt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	unsigned long		rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	u64 (*actual_read_sched_clock)(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) static struct hrtimer sched_clock_timer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) static int irqtime = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) core_param(irqtime, irqtime, int, 0400);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) static u64 notrace jiffy_sched_clock_read(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 	 * We don't need to use get_jiffies_64 on 32-bit arches here
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 	 * because we register with BITS_PER_LONG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	return (u64)(jiffies - INITIAL_JIFFIES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) static struct clock_data cd ____cacheline_aligned = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	.read_data[0] = { .mult = NSEC_PER_SEC / HZ,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 			  .read_sched_clock = jiffy_sched_clock_read, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	.actual_read_sched_clock = jiffy_sched_clock_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 	return (cyc * mult) >> shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) notrace struct clock_read_data *sched_clock_read_begin(unsigned int *seq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	*seq = raw_read_seqcount_latch(&cd.seq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	return cd.read_data + (*seq & 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) notrace int sched_clock_read_retry(unsigned int seq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	return read_seqcount_latch_retry(&cd.seq, seq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) unsigned long long notrace sched_clock(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	u64 cyc, res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	unsigned int seq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	struct clock_read_data *rd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 		rd = sched_clock_read_begin(&seq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 		cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 		      rd->sched_clock_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 		res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	} while (sched_clock_read_retry(seq));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	return res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)  * Updating the data required to read the clock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)  * sched_clock() will never observe mis-matched data even if called from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)  * an NMI. We do this by maintaining an odd/even copy of the data and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)  * steering sched_clock() to one or the other using a sequence counter.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)  * In order to preserve the data cache profile of sched_clock() as much
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)  * as possible the system reverts back to the even copy when the update
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)  * completes; the odd copy is used *only* during an update.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) static void update_clock_read_data(struct clock_read_data *rd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	/* update the backup (odd) copy with the new data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	cd.read_data[1] = *rd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	/* steer readers towards the odd copy */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	raw_write_seqcount_latch(&cd.seq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	/* now its safe for us to update the normal (even) copy */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	cd.read_data[0] = *rd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	/* switch readers back to the even copy */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	raw_write_seqcount_latch(&cd.seq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126)  * Atomically update the sched_clock() epoch.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) static void update_sched_clock(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	u64 cyc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	u64 ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	struct clock_read_data rd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	rd = cd.read_data[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	cyc = cd.actual_read_sched_clock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	rd.epoch_ns = ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	rd.epoch_cyc = cyc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	update_clock_read_data(&rd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	update_sched_clock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	hrtimer_forward_now(hrt, cd.wrap_kt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	return HRTIMER_RESTART;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) void sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	u64 res, wrap, new_mask, new_epoch, cyc, ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	u32 new_mult, new_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	unsigned long r, flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	char r_unit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	struct clock_read_data rd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	if (cd.rate > rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	/* Cannot register a sched_clock with interrupts on */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	local_irq_save(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	/* Calculate the mult/shift to convert counter ticks to ns. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	new_mask = CLOCKSOURCE_MASK(bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	cd.rate = rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	/* Calculate how many nanosecs until we risk wrapping */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	cd.wrap_kt = ns_to_ktime(wrap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	rd = cd.read_data[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	/* Update epoch for new counter and update 'epoch_ns' from old counter*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	new_epoch = read();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	cyc = cd.actual_read_sched_clock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	cd.actual_read_sched_clock = read;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	rd.read_sched_clock	= read;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	rd.sched_clock_mask	= new_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	rd.mult			= new_mult;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	rd.shift		= new_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	rd.epoch_cyc		= new_epoch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	rd.epoch_ns		= ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	update_clock_read_data(&rd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	if (sched_clock_timer.function != NULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 		/* update timeout for clock wrap */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 		hrtimer_start(&sched_clock_timer, cd.wrap_kt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 			      HRTIMER_MODE_REL_HARD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	r = rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	if (r >= 4000000) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 		r /= 1000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 		r_unit = 'M';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 		if (r >= 1000) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 			r /= 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 			r_unit = 'k';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 			r_unit = ' ';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	/* Calculate the ns resolution of this counter */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	res = cyc_to_ns(1ULL, new_mult, new_shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 		bits, r, r_unit, res, wrap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	/* Enable IRQ time accounting if we have a fast enough sched_clock() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 		enable_sched_clock_irqtime();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	local_irq_restore(flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	pr_debug("Registered %pS as sched_clock source\n", read);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) EXPORT_SYMBOL_GPL(sched_clock_register);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) void __init generic_sched_clock_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	 * If no sched_clock() function has been provided at that point,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	 * make it the final one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 		sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	update_sched_clock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	 * Start the timer to keep sched_clock() properly updated and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	 * sets the initial epoch.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	sched_clock_timer.function = sched_clock_poll;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)  * Clock read function for use when the clock is suspended.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)  * This function makes it appear to sched_clock() as if the clock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253)  * stopped counting at its last update.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)  * This function must only be called from the critical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256)  * section in sched_clock(). It relies on the read_seqcount_retry()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)  * at the end of the critical section to be sure we observe the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258)  * correct copy of 'epoch_cyc'.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) static u64 notrace suspended_sched_clock_read(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	unsigned int seq = raw_read_seqcount_latch(&cd.seq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	return cd.read_data[seq & 1].epoch_cyc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) int sched_clock_suspend(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	struct clock_read_data *rd = &cd.read_data[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	update_sched_clock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	hrtimer_cancel(&sched_clock_timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	rd->read_sched_clock = suspended_sched_clock_read;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	trace_android_vh_show_suspend_epoch_val(rd->epoch_ns, rd->epoch_cyc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) void sched_clock_resume(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	struct clock_read_data *rd = &cd.read_data[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	rd->epoch_cyc = cd.actual_read_sched_clock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	rd->read_sched_clock = cd.actual_read_sched_clock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	trace_android_vh_show_resume_epoch_val(rd->epoch_cyc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) static struct syscore_ops sched_clock_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	.suspend	= sched_clock_suspend,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	.resume		= sched_clock_resume,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) static int __init sched_clock_syscore_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	register_syscore_ops(&sched_clock_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) device_initcall(sched_clock_syscore_init);