Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0+
/*
* 2002-10-15 Posix Clocks & timers
* by George Anzinger george@mvista.com
* Copyright (C) 2002 2003 by MontaVista Software.
*
* 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
* Copyright (C) 2004 Boris Hu
*
* These are all the functions necessary to implement POSIX clocks & timers
*/
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/mutex.h>
#include <linux/sched/task.h>
#include <linux/uaccess.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/compiler.h>
#include <linux/hash.h>
#include <linux/posix-clock.h>
#include <linux/posix-timers.h>
#include <linux/syscalls.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
#include <linux/export.h>
#include <linux/hashtable.h>
#include <linux/compat.h>
#include <linux/nospec.h>
#include <linux/time_namespace.h>
#include "timekeeping.h"
#include "posix-timers.h"
/*
* Management arrays for POSIX timers. Timers are now kept in static hash table
* with 512 entries.
* Timer ids are allocated by local routine, which selects proper hash head by
* key, constructed from current->signal address and per signal struct counter.
* This keeps timer ids unique per process, but now they can intersect between
* processes.
*/
/*
* Lets keep our timers in a slab cache :-)
*/
static struct kmem_cache *posix_timers_cache;
static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
static DEFINE_SPINLOCK(hash_lock);
static const struct k_clock * const posix_clocks[];
static const struct k_clock *clockid_to_kclock(const clockid_t id);
static const struct k_clock clock_realtime, clock_monotonic;
/*
* we assume that the new SIGEV_THREAD_ID shares no bits with the other
* SIGEV values. Here we put out an error if this assumption fails.
*/
#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
#endif
/*
* The timer ID is turned into a timer address by idr_find().
* Verifying a valid ID consists of:
*
* a) checking that idr_find() returns other than -1.
* b) checking that the timer id matches the one in the timer itself.
* c) that the timer owner is in the callers thread group.
*/
/*
* CLOCKs: The POSIX standard calls for a couple of clocks and allows us
* to implement others. This structure defines the various
* clocks.
*
* RESOLUTION: Clock resolution is used to round up timer and interval
* times, NOT to report clock times, which are reported with as
* much resolution as the system can muster. In some cases this
* resolution may depend on the underlying clock hardware and
* may not be quantifiable until run time, and only then is the
* necessary code is written. The standard says we should say
* something about this issue in the documentation...
*
* FUNCTIONS: The CLOCKs structure defines possible functions to
* handle various clock functions.
*
* The standard POSIX timer management code assumes the
* following: 1.) The k_itimer struct (sched.h) is used for
* the timer. 2.) The list, it_lock, it_clock, it_id and
* it_pid fields are not modified by timer code.
*
* Permissions: It is assumed that the clock_settime() function defined
* for each clock will take care of permission checks. Some
* clocks may be set able by any user (i.e. local process
* clocks) others not. Currently the only set able clock we
* have is CLOCK_REALTIME and its high res counter part, both of
* which we beg off on and pass to do_sys_settimeofday().
*/
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
#define lock_timer(tid, flags) \
({ struct k_itimer *__timr; \
<------>__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
<------>__timr; \
})
static int hash(struct signal_struct *sig, unsigned int nr)
{
<------>return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
}
static struct k_itimer *__posix_timers_find(struct hlist_head *head,
<------><------><------><------><------> struct signal_struct *sig,
<------><------><------><------><------> timer_t id)
{
<------>struct k_itimer *timer;
<------>hlist_for_each_entry_rcu(timer, head, t_hash,
<------><------><------><------> lockdep_is_held(&hash_lock)) {
<------><------>if ((timer->it_signal == sig) && (timer->it_id == id))
<------><------><------>return timer;
<------>}
<------>return NULL;
}
static struct k_itimer *posix_timer_by_id(timer_t id)
{
<------>struct signal_struct *sig = current->signal;
<------>struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
<------>return __posix_timers_find(head, sig, id);
}
static int posix_timer_add(struct k_itimer *timer)
{
<------>struct signal_struct *sig = current->signal;
<------>int first_free_id = sig->posix_timer_id;
<------>struct hlist_head *head;
<------>int ret = -ENOENT;
<------>do {
<------><------>spin_lock(&hash_lock);
<------><------>head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
<------><------>if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
<------><------><------>hlist_add_head_rcu(&timer->t_hash, head);
<------><------><------>ret = sig->posix_timer_id;
<------><------>}
<------><------>if (++sig->posix_timer_id < 0)
<------><------><------>sig->posix_timer_id = 0;
<------><------>if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
<------><------><------>/* Loop over all possible ids completed */
<------><------><------>ret = -EAGAIN;
<------><------>spin_unlock(&hash_lock);
<------>} while (ret == -ENOENT);
<------>return ret;
}
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
{
<------>spin_unlock_irqrestore(&timr->it_lock, flags);
}
/* Get clock_realtime */
static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
{
<------>ktime_get_real_ts64(tp);
<------>return 0;
}
static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
{
<------>return ktime_get_real();
}
/* Set clock_realtime */
static int posix_clock_realtime_set(const clockid_t which_clock,
<------><------><------><------> const struct timespec64 *tp)
{
<------>return do_sys_settimeofday64(tp, NULL);
}
static int posix_clock_realtime_adj(const clockid_t which_clock,
<------><------><------><------> struct __kernel_timex *t)
{
<------>return do_adjtimex(t);
}
/*
* Get monotonic time for posix timers
*/
static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
{
<------>ktime_get_ts64(tp);
<------>timens_add_monotonic(tp);
<------>return 0;
}
static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
{
<------>return ktime_get();
}
/*
* Get monotonic-raw time for posix timers
*/
static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
{
<------>ktime_get_raw_ts64(tp);
<------>timens_add_monotonic(tp);
<------>return 0;
}
static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
{
<------>ktime_get_coarse_real_ts64(tp);
<------>return 0;
}
static int posix_get_monotonic_coarse(clockid_t which_clock,
<------><------><------><------><------><------>struct timespec64 *tp)
{
<------>ktime_get_coarse_ts64(tp);
<------>timens_add_monotonic(tp);
<------>return 0;
}
static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
{
<------>*tp = ktime_to_timespec64(KTIME_LOW_RES);
<------>return 0;
}
static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
{
<------>ktime_get_boottime_ts64(tp);
<------>timens_add_boottime(tp);
<------>return 0;
}
static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
{
<------>return ktime_get_boottime();
}
static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
{
<------>ktime_get_clocktai_ts64(tp);
<------>return 0;
}
static ktime_t posix_get_tai_ktime(clockid_t which_clock)
{
<------>return ktime_get_clocktai();
}
static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
{
<------>tp->tv_sec = 0;
<------>tp->tv_nsec = hrtimer_resolution;
<------>return 0;
}
/*
* Initialize everything, well, just everything in Posix clocks/timers ;)
*/
static __init int init_posix_timers(void)
{
<------>posix_timers_cache = kmem_cache_create("posix_timers_cache",
<------><------><------><------><------>sizeof (struct k_itimer), 0, SLAB_PANIC,
<------><------><------><------><------>NULL);
<------>return 0;
}
__initcall(init_posix_timers);
/*
* The siginfo si_overrun field and the return value of timer_getoverrun(2)
* are of type int. Clamp the overrun value to INT_MAX
*/
static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
{
<------>s64 sum = timr->it_overrun_last + (s64)baseval;
<------>return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
}
static void common_hrtimer_rearm(struct k_itimer *timr)
{
<------>struct hrtimer *timer = &timr->it.real.timer;
<------>timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
<------><------><------><------><------> timr->it_interval);
<------>hrtimer_restart(timer);
}
/*
* This function is exported for use by the signal deliver code. It is
* called just prior to the info block being released and passes that
* block to us. It's function is to update the overrun entry AND to
* restart the timer. It should only be called if the timer is to be
* restarted (i.e. we have flagged this in the sys_private entry of the
* info block).
*
* To protect against the timer going away while the interrupt is queued,
* we require that the it_requeue_pending flag be set.
*/
void posixtimer_rearm(struct kernel_siginfo *info)
{
<------>struct k_itimer *timr;
<------>unsigned long flags;
<------>timr = lock_timer(info->si_tid, &flags);
<------>if (!timr)
<------><------>return;
<------>if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
<------><------>timr->kclock->timer_rearm(timr);
<------><------>timr->it_active = 1;
<------><------>timr->it_overrun_last = timr->it_overrun;
<------><------>timr->it_overrun = -1LL;
<------><------>++timr->it_requeue_pending;
<------><------>info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
<------>}
<------>unlock_timer(timr, flags);
}
int posix_timer_event(struct k_itimer *timr, int si_private)
{
<------>enum pid_type type;
<------>int ret = -1;
<------>/*
<------> * FIXME: if ->sigq is queued we can race with
<------> * dequeue_signal()->posixtimer_rearm().
<------> *
<------> * If dequeue_signal() sees the "right" value of
<------> * si_sys_private it calls posixtimer_rearm().
<------> * We re-queue ->sigq and drop ->it_lock().
<------> * posixtimer_rearm() locks the timer
<------> * and re-schedules it while ->sigq is pending.
<------> * Not really bad, but not that we want.
<------> */
<------>timr->sigq->info.si_sys_private = si_private;
<------>type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
<------>ret = send_sigqueue(timr->sigq, timr->it_pid, type);
<------>/* If we failed to send the signal the timer stops. */
<------>return ret > 0;
}
/*
* This function gets called when a POSIX.1b interval timer expires. It
* is used as a callback from the kernel internal timer. The
* run_timer_list code ALWAYS calls with interrupts on.
* This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
*/
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
{
<------>struct k_itimer *timr;
<------>unsigned long flags;
<------>int si_private = 0;
<------>enum hrtimer_restart ret = HRTIMER_NORESTART;
<------>timr = container_of(timer, struct k_itimer, it.real.timer);
<------>spin_lock_irqsave(&timr->it_lock, flags);
<------>timr->it_active = 0;
<------>if (timr->it_interval != 0)
<------><------>si_private = ++timr->it_requeue_pending;
<------>if (posix_timer_event(timr, si_private)) {
<------><------>/*
<------><------> * signal was not sent because of sig_ignor
<------><------> * we will not get a call back to restart it AND
<------><------> * it should be restarted.
<------><------> */
<------><------>if (timr->it_interval != 0) {
<------><------><------>ktime_t now = hrtimer_cb_get_time(timer);
<------><------><------>/*
<------><------><------> * FIXME: What we really want, is to stop this
<------><------><------> * timer completely and restart it in case the
<------><------><------> * SIG_IGN is removed. This is a non trivial
<------><------><------> * change which involves sighand locking
<------><------><------> * (sigh !), which we don't want to do late in
<------><------><------> * the release cycle.
<------><------><------> *
<------><------><------> * For now we just let timers with an interval
<------><------><------> * less than a jiffie expire every jiffie to
<------><------><------> * avoid softirq starvation in case of SIG_IGN
<------><------><------> * and a very small interval, which would put
<------><------><------> * the timer right back on the softirq pending
<------><------><------> * list. By moving now ahead of time we trick
<------><------><------> * hrtimer_forward() to expire the timer
<------><------><------> * later, while we still maintain the overrun
<------><------><------> * accuracy, but have some inconsistency in
<------><------><------> * the timer_gettime() case. This is at least
<------><------><------> * better than a starved softirq. A more
<------><------><------> * complex fix which solves also another related
<------><------><------> * inconsistency is already in the pipeline.
<------><------><------> */
#ifdef CONFIG_HIGH_RES_TIMERS
<------><------><------>{
<------><------><------><------>ktime_t kj = NSEC_PER_SEC / HZ;
<------><------><------><------>if (timr->it_interval < kj)
<------><------><------><------><------>now = ktime_add(now, kj);
<------><------><------>}
#endif
<------><------><------>timr->it_overrun += hrtimer_forward(timer, now,
<------><------><------><------><------><------><------> timr->it_interval);
<------><------><------>ret = HRTIMER_RESTART;
<------><------><------>++timr->it_requeue_pending;
<------><------><------>timr->it_active = 1;
<------><------>}
<------>}
<------>unlock_timer(timr, flags);
<------>return ret;
}
static struct pid *good_sigevent(sigevent_t * event)
{
<------>struct pid *pid = task_tgid(current);
<------>struct task_struct *rtn;
<------>switch (event->sigev_notify) {
<------>case SIGEV_SIGNAL | SIGEV_THREAD_ID:
<------><------>pid = find_vpid(event->sigev_notify_thread_id);
<------><------>rtn = pid_task(pid, PIDTYPE_PID);
<------><------>if (!rtn || !same_thread_group(rtn, current))
<------><------><------>return NULL;
<------><------>fallthrough;
<------>case SIGEV_SIGNAL:
<------>case SIGEV_THREAD:
<------><------>if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
<------><------><------>return NULL;
<------><------>fallthrough;
<------>case SIGEV_NONE:
<------><------>return pid;
<------>default:
<------><------>return NULL;
<------>}
}
static struct k_itimer * alloc_posix_timer(void)
{
<------>struct k_itimer *tmr;
<------>tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
<------>if (!tmr)
<------><------>return tmr;
<------>if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
<------><------>kmem_cache_free(posix_timers_cache, tmr);
<------><------>return NULL;
<------>}
<------>clear_siginfo(&tmr->sigq->info);
<------>return tmr;
}
static void k_itimer_rcu_free(struct rcu_head *head)
{
<------>struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
<------>kmem_cache_free(posix_timers_cache, tmr);
}
#define IT_ID_SET 1
#define IT_ID_NOT_SET 0
static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
{
<------>if (it_id_set) {
<------><------>unsigned long flags;
<------><------>spin_lock_irqsave(&hash_lock, flags);
<------><------>hlist_del_rcu(&tmr->t_hash);
<------><------>spin_unlock_irqrestore(&hash_lock, flags);
<------>}
<------>put_pid(tmr->it_pid);
<------>sigqueue_free(tmr->sigq);
<------>call_rcu(&tmr->rcu, k_itimer_rcu_free);
}
static int common_timer_create(struct k_itimer *new_timer)
{
<------>hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
<------>return 0;
}
/* Create a POSIX.1b interval timer. */
static int do_timer_create(clockid_t which_clock, struct sigevent *event,
<------><------><------> timer_t __user *created_timer_id)
{
<------>const struct k_clock *kc = clockid_to_kclock(which_clock);
<------>struct k_itimer *new_timer;
<------>int error, new_timer_id;
<------>int it_id_set = IT_ID_NOT_SET;
<------>if (!kc)
<------><------>return -EINVAL;
<------>if (!kc->timer_create)
<------><------>return -EOPNOTSUPP;
<------>new_timer = alloc_posix_timer();
<------>if (unlikely(!new_timer))
<------><------>return -EAGAIN;
<------>spin_lock_init(&new_timer->it_lock);
<------>new_timer_id = posix_timer_add(new_timer);
<------>if (new_timer_id < 0) {
<------><------>error = new_timer_id;
<------><------>goto out;
<------>}
<------>it_id_set = IT_ID_SET;
<------>new_timer->it_id = (timer_t) new_timer_id;
<------>new_timer->it_clock = which_clock;
<------>new_timer->kclock = kc;
<------>new_timer->it_overrun = -1LL;
<------>if (event) {
<------><------>rcu_read_lock();
<------><------>new_timer->it_pid = get_pid(good_sigevent(event));
<------><------>rcu_read_unlock();
<------><------>if (!new_timer->it_pid) {
<------><------><------>error = -EINVAL;
<------><------><------>goto out;
<------><------>}
<------><------>new_timer->it_sigev_notify = event->sigev_notify;
<------><------>new_timer->sigq->info.si_signo = event->sigev_signo;
<------><------>new_timer->sigq->info.si_value = event->sigev_value;
<------>} else {
<------><------>new_timer->it_sigev_notify = SIGEV_SIGNAL;
<------><------>new_timer->sigq->info.si_signo = SIGALRM;
<------><------>memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
<------><------>new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
<------><------>new_timer->it_pid = get_pid(task_tgid(current));
<------>}
<------>new_timer->sigq->info.si_tid = new_timer->it_id;
<------>new_timer->sigq->info.si_code = SI_TIMER;
<------>if (copy_to_user(created_timer_id,
<------><------><------> &new_timer_id, sizeof (new_timer_id))) {
<------><------>error = -EFAULT;
<------><------>goto out;
<------>}
<------>error = kc->timer_create(new_timer);
<------>if (error)
<------><------>goto out;
<------>spin_lock_irq(&current->sighand->siglock);
<------>new_timer->it_signal = current->signal;
<------>list_add(&new_timer->list, &current->signal->posix_timers);
<------>spin_unlock_irq(&current->sighand->siglock);
<------>return 0;
<------>/*
<------> * In the case of the timer belonging to another task, after
<------> * the task is unlocked, the timer is owned by the other task
<------> * and may cease to exist at any time. Don't use or modify
<------> * new_timer after the unlock call.
<------> */
out:
<------>release_posix_timer(new_timer, it_id_set);
<------>return error;
}
SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
<------><------>struct sigevent __user *, timer_event_spec,
<------><------>timer_t __user *, created_timer_id)
{
<------>if (timer_event_spec) {
<------><------>sigevent_t event;
<------><------>if (copy_from_user(&event, timer_event_spec, sizeof (event)))
<------><------><------>return -EFAULT;
<------><------>return do_timer_create(which_clock, &event, created_timer_id);
<------>}
<------>return do_timer_create(which_clock, NULL, created_timer_id);
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
<------><------> struct compat_sigevent __user *, timer_event_spec,
<------><------> timer_t __user *, created_timer_id)
{
<------>if (timer_event_spec) {
<------><------>sigevent_t event;
<------><------>if (get_compat_sigevent(&event, timer_event_spec))
<------><------><------>return -EFAULT;
<------><------>return do_timer_create(which_clock, &event, created_timer_id);
<------>}
<------>return do_timer_create(which_clock, NULL, created_timer_id);
}
#endif
/*
* Locking issues: We need to protect the result of the id look up until
* we get the timer locked down so it is not deleted under us. The
* removal is done under the idr spinlock so we use that here to bridge
* the find to the timer lock. To avoid a dead lock, the timer id MUST
* be release with out holding the timer lock.
*/
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
{
<------>struct k_itimer *timr;
<------>/*
<------> * timer_t could be any type >= int and we want to make sure any
<------> * @timer_id outside positive int range fails lookup.
<------> */
<------>if ((unsigned long long)timer_id > INT_MAX)
<------><------>return NULL;
<------>rcu_read_lock();
<------>timr = posix_timer_by_id(timer_id);
<------>if (timr) {
<------><------>spin_lock_irqsave(&timr->it_lock, *flags);
<------><------>if (timr->it_signal == current->signal) {
<------><------><------>rcu_read_unlock();
<------><------><------>return timr;
<------><------>}
<------><------>spin_unlock_irqrestore(&timr->it_lock, *flags);
<------>}
<------>rcu_read_unlock();
<------>return NULL;
}
static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
{
<------>struct hrtimer *timer = &timr->it.real.timer;
<------>return __hrtimer_expires_remaining_adjusted(timer, now);
}
static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
{
<------>struct hrtimer *timer = &timr->it.real.timer;
<------>return hrtimer_forward(timer, now, timr->it_interval);
}
/*
* Get the time remaining on a POSIX.1b interval timer. This function
* is ALWAYS called with spin_lock_irq on the timer, thus it must not
* mess with irq.
*
* We have a couple of messes to clean up here. First there is the case
* of a timer that has a requeue pending. These timers should appear to
* be in the timer list with an expiry as if we were to requeue them
* now.
*
* The second issue is the SIGEV_NONE timer which may be active but is
* not really ever put in the timer list (to save system resources).
* This timer may be expired, and if so, we will do it here. Otherwise
* it is the same as a requeue pending timer WRT to what we should
* report.
*/
void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
{
<------>const struct k_clock *kc = timr->kclock;
<------>ktime_t now, remaining, iv;
<------>bool sig_none;
<------>sig_none = timr->it_sigev_notify == SIGEV_NONE;
<------>iv = timr->it_interval;
<------>/* interval timer ? */
<------>if (iv) {
<------><------>cur_setting->it_interval = ktime_to_timespec64(iv);
<------>} else if (!timr->it_active) {
<------><------>/*
<------><------> * SIGEV_NONE oneshot timers are never queued. Check them
<------><------> * below.
<------><------> */
<------><------>if (!sig_none)
<------><------><------>return;
<------>}
<------>now = kc->clock_get_ktime(timr->it_clock);
<------>/*
<------> * When a requeue is pending or this is a SIGEV_NONE timer move the
<------> * expiry time forward by intervals, so expiry is > now.
<------> */
<------>if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
<------><------>timr->it_overrun += kc->timer_forward(timr, now);
<------>remaining = kc->timer_remaining(timr, now);
<------>/* Return 0 only, when the timer is expired and not pending */
<------>if (remaining <= 0) {
<------><------>/*
<------><------> * A single shot SIGEV_NONE timer must return 0, when
<------><------> * it is expired !
<------><------> */
<------><------>if (!sig_none)
<------><------><------>cur_setting->it_value.tv_nsec = 1;
<------>} else {
<------><------>cur_setting->it_value = ktime_to_timespec64(remaining);
<------>}
}
/* Get the time remaining on a POSIX.1b interval timer. */
static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
{
<------>struct k_itimer *timr;
<------>const struct k_clock *kc;
<------>unsigned long flags;
<------>int ret = 0;
<------>timr = lock_timer(timer_id, &flags);
<------>if (!timr)
<------><------>return -EINVAL;
<------>memset(setting, 0, sizeof(*setting));
<------>kc = timr->kclock;
<------>if (WARN_ON_ONCE(!kc || !kc->timer_get))
<------><------>ret = -EINVAL;
<------>else
<------><------>kc->timer_get(timr, setting);
<------>unlock_timer(timr, flags);
<------>return ret;
}
/* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
<------><------>struct __kernel_itimerspec __user *, setting)
{
<------>struct itimerspec64 cur_setting;
<------>int ret = do_timer_gettime(timer_id, &cur_setting);
<------>if (!ret) {
<------><------>if (put_itimerspec64(&cur_setting, setting))
<------><------><------>ret = -EFAULT;
<------>}
<------>return ret;
}
#ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
<------><------>struct old_itimerspec32 __user *, setting)
{
<------>struct itimerspec64 cur_setting;
<------>int ret = do_timer_gettime(timer_id, &cur_setting);
<------>if (!ret) {
<------><------>if (put_old_itimerspec32(&cur_setting, setting))
<------><------><------>ret = -EFAULT;
<------>}
<------>return ret;
}
#endif
/*
* Get the number of overruns of a POSIX.1b interval timer. This is to
* be the overrun of the timer last delivered. At the same time we are
* accumulating overruns on the next timer. The overrun is frozen when
* the signal is delivered, either at the notify time (if the info block
* is not queued) or at the actual delivery time (as we are informed by
* the call back to posixtimer_rearm(). So all we need to do is
* to pick up the frozen overrun.
*/
SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
{
<------>struct k_itimer *timr;
<------>int overrun;
<------>unsigned long flags;
<------>timr = lock_timer(timer_id, &flags);
<------>if (!timr)
<------><------>return -EINVAL;
<------>overrun = timer_overrun_to_int(timr, 0);
<------>unlock_timer(timr, flags);
<------>return overrun;
}
static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
<------><------><------> bool absolute, bool sigev_none)
{
<------>struct hrtimer *timer = &timr->it.real.timer;
<------>enum hrtimer_mode mode;
<------>mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
<------>/*
<------> * Posix magic: Relative CLOCK_REALTIME timers are not affected by
<------> * clock modifications, so they become CLOCK_MONOTONIC based under the
<------> * hood. See hrtimer_init(). Update timr->kclock, so the generic
<------> * functions which use timr->kclock->clock_get_*() work.
<------> *
<------> * Note: it_clock stays unmodified, because the next timer_set() might
<------> * use ABSTIME, so it needs to switch back.
<------> */
<------>if (timr->it_clock == CLOCK_REALTIME)
<------><------>timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
<------>hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
<------>timr->it.real.timer.function = posix_timer_fn;
<------>if (!absolute)
<------><------>expires = ktime_add_safe(expires, timer->base->get_time());
<------>hrtimer_set_expires(timer, expires);
<------>if (!sigev_none)
<------><------>hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
}
static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
{
<------>return hrtimer_try_to_cancel(&timr->it.real.timer);
}
static void common_timer_wait_running(struct k_itimer *timer)
{
<------>hrtimer_cancel_wait_running(&timer->it.real.timer);
}
/*
* On PREEMPT_RT this prevent priority inversion against softirq kthread in
* case it gets preempted while executing a timer callback. See comments in
* hrtimer_cancel_wait_running. For PREEMPT_RT=n this just results in a
* cpu_relax().
*/
static struct k_itimer *timer_wait_running(struct k_itimer *timer,
<------><------><------><------><------> unsigned long *flags)
{
<------>const struct k_clock *kc = READ_ONCE(timer->kclock);
<------>timer_t timer_id = READ_ONCE(timer->it_id);
<------>/* Prevent kfree(timer) after dropping the lock */
<------>rcu_read_lock();
<------>unlock_timer(timer, *flags);
<------>if (!WARN_ON_ONCE(!kc->timer_wait_running))
<------><------>kc->timer_wait_running(timer);
<------>rcu_read_unlock();
<------>/* Relock the timer. It might be not longer hashed. */
<------>return lock_timer(timer_id, flags);
}
/* Set a POSIX.1b interval timer. */
int common_timer_set(struct k_itimer *timr, int flags,
<------><------> struct itimerspec64 *new_setting,
<------><------> struct itimerspec64 *old_setting)
{
<------>const struct k_clock *kc = timr->kclock;
<------>bool sigev_none;
<------>ktime_t expires;
<------>if (old_setting)
<------><------>common_timer_get(timr, old_setting);
<------>/* Prevent rearming by clearing the interval */
<------>timr->it_interval = 0;
<------>/*
<------> * Careful here. On SMP systems the timer expiry function could be
<------> * active and spinning on timr->it_lock.
<------> */
<------>if (kc->timer_try_to_cancel(timr) < 0)
<------><------>return TIMER_RETRY;
<------>timr->it_active = 0;
<------>timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
<------><------>~REQUEUE_PENDING;
<------>timr->it_overrun_last = 0;
<------>/* Switch off the timer when it_value is zero */
<------>if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
<------><------>return 0;
<------>timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
<------>expires = timespec64_to_ktime(new_setting->it_value);
<------>if (flags & TIMER_ABSTIME)
<------><------>expires = timens_ktime_to_host(timr->it_clock, expires);
<------>sigev_none = timr->it_sigev_notify == SIGEV_NONE;
<------>kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
<------>timr->it_active = !sigev_none;
<------>return 0;
}
static int do_timer_settime(timer_t timer_id, int tmr_flags,
<------><------><------> struct itimerspec64 *new_spec64,
<------><------><------> struct itimerspec64 *old_spec64)
{
<------>const struct k_clock *kc;
<------>struct k_itimer *timr;
<------>unsigned long flags;
<------>int error = 0;
<------>if (!timespec64_valid(&new_spec64->it_interval) ||
<------> !timespec64_valid(&new_spec64->it_value))
<------><------>return -EINVAL;
<------>if (old_spec64)
<------><------>memset(old_spec64, 0, sizeof(*old_spec64));
<------>timr = lock_timer(timer_id, &flags);
retry:
<------>if (!timr)
<------><------>return -EINVAL;
<------>kc = timr->kclock;
<------>if (WARN_ON_ONCE(!kc || !kc->timer_set))
<------><------>error = -EINVAL;
<------>else
<------><------>error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
<------>if (error == TIMER_RETRY) {
<------><------>// We already got the old time...
<------><------>old_spec64 = NULL;
<------><------>/* Unlocks and relocks the timer if it still exists */
<------><------>timr = timer_wait_running(timr, &flags);
<------><------>goto retry;
<------>}
<------>unlock_timer(timr, flags);
<------>return error;
}
/* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
<------><------>const struct __kernel_itimerspec __user *, new_setting,
<------><------>struct __kernel_itimerspec __user *, old_setting)
{
<------>struct itimerspec64 new_spec, old_spec;
<------>struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
<------>int error = 0;
<------>if (!new_setting)
<------><------>return -EINVAL;
<------>if (get_itimerspec64(&new_spec, new_setting))
<------><------>return -EFAULT;
<------>error = do_timer_settime(timer_id, flags, &new_spec, rtn);
<------>if (!error && old_setting) {
<------><------>if (put_itimerspec64(&old_spec, old_setting))
<------><------><------>error = -EFAULT;
<------>}
<------>return error;
}
#ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
<------><------>struct old_itimerspec32 __user *, new,
<------><------>struct old_itimerspec32 __user *, old)
{
<------>struct itimerspec64 new_spec, old_spec;
<------>struct itimerspec64 *rtn = old ? &old_spec : NULL;
<------>int error = 0;
<------>if (!new)
<------><------>return -EINVAL;
<------>if (get_old_itimerspec32(&new_spec, new))
<------><------>return -EFAULT;
<------>error = do_timer_settime(timer_id, flags, &new_spec, rtn);
<------>if (!error && old) {
<------><------>if (put_old_itimerspec32(&old_spec, old))
<------><------><------>error = -EFAULT;
<------>}
<------>return error;
}
#endif
int common_timer_del(struct k_itimer *timer)
{
<------>const struct k_clock *kc = timer->kclock;
<------>timer->it_interval = 0;
<------>if (kc->timer_try_to_cancel(timer) < 0)
<------><------>return TIMER_RETRY;
<------>timer->it_active = 0;
<------>return 0;
}
static inline int timer_delete_hook(struct k_itimer *timer)
{
<------>const struct k_clock *kc = timer->kclock;
<------>if (WARN_ON_ONCE(!kc || !kc->timer_del))
<------><------>return -EINVAL;
<------>return kc->timer_del(timer);
}
/* Delete a POSIX.1b interval timer. */
SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
{
<------>struct k_itimer *timer;
<------>unsigned long flags;
<------>timer = lock_timer(timer_id, &flags);
retry_delete:
<------>if (!timer)
<------><------>return -EINVAL;
<------>if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
<------><------>/* Unlocks and relocks the timer if it still exists */
<------><------>timer = timer_wait_running(timer, &flags);
<------><------>goto retry_delete;
<------>}
<------>spin_lock(&current->sighand->siglock);
<------>list_del(&timer->list);
<------>spin_unlock(&current->sighand->siglock);
<------>/*
<------> * This keeps any tasks waiting on the spin lock from thinking
<------> * they got something (see the lock code above).
<------> */
<------>timer->it_signal = NULL;
<------>unlock_timer(timer, flags);
<------>release_posix_timer(timer, IT_ID_SET);
<------>return 0;
}
/*
* return timer owned by the process, used by exit_itimers
*/
static void itimer_delete(struct k_itimer *timer)
{
retry_delete:
<------>spin_lock_irq(&timer->it_lock);
<------>if (timer_delete_hook(timer) == TIMER_RETRY) {
<------><------>spin_unlock_irq(&timer->it_lock);
<------><------>goto retry_delete;
<------>}
<------>list_del(&timer->list);
<------>spin_unlock_irq(&timer->it_lock);
<------>release_posix_timer(timer, IT_ID_SET);
}
/*
* This is called by do_exit or de_thread, only when there are no more
* references to the shared signal_struct.
*/
void exit_itimers(struct signal_struct *sig)
{
<------>struct k_itimer *tmr;
<------>while (!list_empty(&sig->posix_timers)) {
<------><------>tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
<------><------>itimer_delete(tmr);
<------>}
}
SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
<------><------>const struct __kernel_timespec __user *, tp)
{
<------>const struct k_clock *kc = clockid_to_kclock(which_clock);
<------>struct timespec64 new_tp;
<------>if (!kc || !kc->clock_set)
<------><------>return -EINVAL;
<------>if (get_timespec64(&new_tp, tp))
<------><------>return -EFAULT;
<------>return kc->clock_set(which_clock, &new_tp);
}
SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
<------><------>struct __kernel_timespec __user *, tp)
{
<------>const struct k_clock *kc = clockid_to_kclock(which_clock);
<------>struct timespec64 kernel_tp;
<------>int error;
<------>if (!kc)
<------><------>return -EINVAL;
<------>error = kc->clock_get_timespec(which_clock, &kernel_tp);
<------>if (!error && put_timespec64(&kernel_tp, tp))
<------><------>error = -EFAULT;
<------>return error;
}
int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
{
<------>const struct k_clock *kc = clockid_to_kclock(which_clock);
<------>if (!kc)
<------><------>return -EINVAL;
<------>if (!kc->clock_adj)
<------><------>return -EOPNOTSUPP;
<------>return kc->clock_adj(which_clock, ktx);
}
SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
<------><------>struct __kernel_timex __user *, utx)
{
<------>struct __kernel_timex ktx;
<------>int err;
<------>if (copy_from_user(&ktx, utx, sizeof(ktx)))
<------><------>return -EFAULT;
<------>err = do_clock_adjtime(which_clock, &ktx);
<------>if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
<------><------>return -EFAULT;
<------>return err;
}
SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
<------><------>struct __kernel_timespec __user *, tp)
{
<------>const struct k_clock *kc = clockid_to_kclock(which_clock);
<------>struct timespec64 rtn_tp;
<------>int error;
<------>if (!kc)
<------><------>return -EINVAL;
<------>error = kc->clock_getres(which_clock, &rtn_tp);
<------>if (!error && tp && put_timespec64(&rtn_tp, tp))
<------><------>error = -EFAULT;
<------>return error;
}
#ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
<------><------>struct old_timespec32 __user *, tp)
{
<------>const struct k_clock *kc = clockid_to_kclock(which_clock);
<------>struct timespec64 ts;
<------>if (!kc || !kc->clock_set)
<------><------>return -EINVAL;
<------>if (get_old_timespec32(&ts, tp))
<------><------>return -EFAULT;
<------>return kc->clock_set(which_clock, &ts);
}
SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
<------><------>struct old_timespec32 __user *, tp)
{
<------>const struct k_clock *kc = clockid_to_kclock(which_clock);
<------>struct timespec64 ts;
<------>int err;
<------>if (!kc)
<------><------>return -EINVAL;
<------>err = kc->clock_get_timespec(which_clock, &ts);
<------>if (!err && put_old_timespec32(&ts, tp))
<------><------>err = -EFAULT;
<------>return err;
}
SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
<------><------>struct old_timex32 __user *, utp)
{
<------>struct __kernel_timex ktx;
<------>int err;
<------>err = get_old_timex32(&ktx, utp);
<------>if (err)
<------><------>return err;
<------>err = do_clock_adjtime(which_clock, &ktx);
<------>if (err >= 0 && put_old_timex32(utp, &ktx))
<------><------>return -EFAULT;
<------>return err;
}
SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
<------><------>struct old_timespec32 __user *, tp)
{
<------>const struct k_clock *kc = clockid_to_kclock(which_clock);
<------>struct timespec64 ts;
<------>int err;
<------>if (!kc)
<------><------>return -EINVAL;
<------>err = kc->clock_getres(which_clock, &ts);
<------>if (!err && tp && put_old_timespec32(&ts, tp))
<------><------>return -EFAULT;
<------>return err;
}
#endif
/*
* nanosleep for monotonic and realtime clocks
*/
static int common_nsleep(const clockid_t which_clock, int flags,
<------><------><------> const struct timespec64 *rqtp)
{
<------>ktime_t texp = timespec64_to_ktime(*rqtp);
<------>return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
<------><------><------><------> HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
<------><------><------><------> which_clock);
}
static int common_nsleep_timens(const clockid_t which_clock, int flags,
<------><------><------> const struct timespec64 *rqtp)
{
<------>ktime_t texp = timespec64_to_ktime(*rqtp);
<------>if (flags & TIMER_ABSTIME)
<------><------>texp = timens_ktime_to_host(which_clock, texp);
<------>return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
<------><------><------><------> HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
<------><------><------><------> which_clock);
}
SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
<------><------>const struct __kernel_timespec __user *, rqtp,
<------><------>struct __kernel_timespec __user *, rmtp)
{
<------>const struct k_clock *kc = clockid_to_kclock(which_clock);
<------>struct timespec64 t;
<------>if (!kc)
<------><------>return -EINVAL;
<------>if (!kc->nsleep)
<------><------>return -EOPNOTSUPP;
<------>if (get_timespec64(&t, rqtp))
<------><------>return -EFAULT;
<------>if (!timespec64_valid(&t))
<------><------>return -EINVAL;
<------>if (flags & TIMER_ABSTIME)
<------><------>rmtp = NULL;
<------>current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
<------>current->restart_block.nanosleep.rmtp = rmtp;
<------>return kc->nsleep(which_clock, flags, &t);
}
#ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
<------><------>struct old_timespec32 __user *, rqtp,
<------><------>struct old_timespec32 __user *, rmtp)
{
<------>const struct k_clock *kc = clockid_to_kclock(which_clock);
<------>struct timespec64 t;
<------>if (!kc)
<------><------>return -EINVAL;
<------>if (!kc->nsleep)
<------><------>return -EOPNOTSUPP;
<------>if (get_old_timespec32(&t, rqtp))
<------><------>return -EFAULT;
<------>if (!timespec64_valid(&t))
<------><------>return -EINVAL;
<------>if (flags & TIMER_ABSTIME)
<------><------>rmtp = NULL;
<------>current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
<------>current->restart_block.nanosleep.compat_rmtp = rmtp;
<------>return kc->nsleep(which_clock, flags, &t);
}
#endif
static const struct k_clock clock_realtime = {
<------>.clock_getres = posix_get_hrtimer_res,
<------>.clock_get_timespec = posix_get_realtime_timespec,
<------>.clock_get_ktime = posix_get_realtime_ktime,
<------>.clock_set = posix_clock_realtime_set,
<------>.clock_adj = posix_clock_realtime_adj,
<------>.nsleep = common_nsleep,
<------>.timer_create = common_timer_create,
<------>.timer_set = common_timer_set,
<------>.timer_get = common_timer_get,
<------>.timer_del = common_timer_del,
<------>.timer_rearm = common_hrtimer_rearm,
<------>.timer_forward = common_hrtimer_forward,
<------>.timer_remaining = common_hrtimer_remaining,
<------>.timer_try_to_cancel = common_hrtimer_try_to_cancel,
<------>.timer_wait_running = common_timer_wait_running,
<------>.timer_arm = common_hrtimer_arm,
};
static const struct k_clock clock_monotonic = {
<------>.clock_getres = posix_get_hrtimer_res,
<------>.clock_get_timespec = posix_get_monotonic_timespec,
<------>.clock_get_ktime = posix_get_monotonic_ktime,
<------>.nsleep = common_nsleep_timens,
<------>.timer_create = common_timer_create,
<------>.timer_set = common_timer_set,
<------>.timer_get = common_timer_get,
<------>.timer_del = common_timer_del,
<------>.timer_rearm = common_hrtimer_rearm,
<------>.timer_forward = common_hrtimer_forward,
<------>.timer_remaining = common_hrtimer_remaining,
<------>.timer_try_to_cancel = common_hrtimer_try_to_cancel,
<------>.timer_wait_running = common_timer_wait_running,
<------>.timer_arm = common_hrtimer_arm,
};
static const struct k_clock clock_monotonic_raw = {
<------>.clock_getres = posix_get_hrtimer_res,
<------>.clock_get_timespec = posix_get_monotonic_raw,
};
static const struct k_clock clock_realtime_coarse = {
<------>.clock_getres = posix_get_coarse_res,
<------>.clock_get_timespec = posix_get_realtime_coarse,
};
static const struct k_clock clock_monotonic_coarse = {
<------>.clock_getres = posix_get_coarse_res,
<------>.clock_get_timespec = posix_get_monotonic_coarse,
};
static const struct k_clock clock_tai = {
<------>.clock_getres = posix_get_hrtimer_res,
<------>.clock_get_ktime = posix_get_tai_ktime,
<------>.clock_get_timespec = posix_get_tai_timespec,
<------>.nsleep = common_nsleep,
<------>.timer_create = common_timer_create,
<------>.timer_set = common_timer_set,
<------>.timer_get = common_timer_get,
<------>.timer_del = common_timer_del,
<------>.timer_rearm = common_hrtimer_rearm,
<------>.timer_forward = common_hrtimer_forward,
<------>.timer_remaining = common_hrtimer_remaining,
<------>.timer_try_to_cancel = common_hrtimer_try_to_cancel,
<------>.timer_wait_running = common_timer_wait_running,
<------>.timer_arm = common_hrtimer_arm,
};
static const struct k_clock clock_boottime = {
<------>.clock_getres = posix_get_hrtimer_res,
<------>.clock_get_ktime = posix_get_boottime_ktime,
<------>.clock_get_timespec = posix_get_boottime_timespec,
<------>.nsleep = common_nsleep_timens,
<------>.timer_create = common_timer_create,
<------>.timer_set = common_timer_set,
<------>.timer_get = common_timer_get,
<------>.timer_del = common_timer_del,
<------>.timer_rearm = common_hrtimer_rearm,
<------>.timer_forward = common_hrtimer_forward,
<------>.timer_remaining = common_hrtimer_remaining,
<------>.timer_try_to_cancel = common_hrtimer_try_to_cancel,
<------>.timer_wait_running = common_timer_wait_running,
<------>.timer_arm = common_hrtimer_arm,
};
static const struct k_clock * const posix_clocks[] = {
<------>[CLOCK_REALTIME] = &clock_realtime,
<------>[CLOCK_MONOTONIC] = &clock_monotonic,
<------>[CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
<------>[CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
<------>[CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
<------>[CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
<------>[CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
<------>[CLOCK_BOOTTIME] = &clock_boottime,
<------>[CLOCK_REALTIME_ALARM] = &alarm_clock,
<------>[CLOCK_BOOTTIME_ALARM] = &alarm_clock,
<------>[CLOCK_TAI] = &clock_tai,
};
static const struct k_clock *clockid_to_kclock(const clockid_t id)
{
<------>clockid_t idx = id;
<------>if (id < 0) {
<------><------>return (id & CLOCKFD_MASK) == CLOCKFD ?
<------><------><------>&clock_posix_dynamic : &clock_posix_cpu;
<------>}
<------>if (id >= ARRAY_SIZE(posix_clocks))
<------><------>return NULL;
<------>return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
}