^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Author: Andrei Vagin <avagin@openvz.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * Author: Dmitry Safonov <dima@arista.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) #include <linux/time_namespace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) #include <linux/user_namespace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/sched/signal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/sched/task.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/clocksource.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/seq_file.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/proc_ns.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/cred.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <vdso/datapage.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) ktime_t do_timens_ktime_to_host(clockid_t clockid, ktime_t tim,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) struct timens_offsets *ns_offsets)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) ktime_t offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) switch (clockid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) case CLOCK_MONOTONIC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) offset = timespec64_to_ktime(ns_offsets->monotonic);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) case CLOCK_BOOTTIME:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) case CLOCK_BOOTTIME_ALARM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) offset = timespec64_to_ktime(ns_offsets->boottime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) return tim;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) * Check that @tim value is in [offset, KTIME_MAX + offset]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) * and subtract offset.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) if (tim < offset) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) * User can specify @tim *absolute* value - if it's lesser than
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) * the time namespace's offset - it's already expired.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) tim = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) tim = ktime_sub(tim, offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) if (unlikely(tim > KTIME_MAX))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) tim = KTIME_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) return tim;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) static struct ucounts *inc_time_namespaces(struct user_namespace *ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) return inc_ucount(ns, current_euid(), UCOUNT_TIME_NAMESPACES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) static void dec_time_namespaces(struct ucounts *ucounts)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) dec_ucount(ucounts, UCOUNT_TIME_NAMESPACES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) * clone_time_ns - Clone a time namespace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) * @user_ns: User namespace which owns a new namespace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) * @old_ns: Namespace to clone
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) * Clone @old_ns and set the clone refcount to 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) * Return: The new namespace or ERR_PTR.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) static struct time_namespace *clone_time_ns(struct user_namespace *user_ns,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) struct time_namespace *old_ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) struct time_namespace *ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) struct ucounts *ucounts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) err = -ENOSPC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) ucounts = inc_time_namespaces(user_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) if (!ucounts)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) err = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) ns = kmalloc(sizeof(*ns), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) if (!ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) goto fail_dec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) kref_init(&ns->kref);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) ns->vvar_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) if (!ns->vvar_page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) goto fail_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) err = ns_alloc_inum(&ns->ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) goto fail_free_page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) ns->ucounts = ucounts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) ns->ns.ops = &timens_operations;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) ns->user_ns = get_user_ns(user_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) ns->offsets = old_ns->offsets;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) ns->frozen_offsets = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) return ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) fail_free_page:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) __free_page(ns->vvar_page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) fail_free:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) kfree(ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) fail_dec:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) dec_time_namespaces(ucounts);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) return ERR_PTR(err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) * copy_time_ns - Create timens_for_children from @old_ns
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) * @flags: Cloning flags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) * @user_ns: User namespace which owns a new namespace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) * @old_ns: Namespace to clone
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) * If CLONE_NEWTIME specified in @flags, creates a new timens_for_children;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) * adds a refcounter to @old_ns otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) * Return: timens_for_children namespace or ERR_PTR.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) struct time_namespace *copy_time_ns(unsigned long flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) struct user_namespace *user_ns, struct time_namespace *old_ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) if (!(flags & CLONE_NEWTIME))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) return get_time_ns(old_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) return clone_time_ns(user_ns, old_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) static struct timens_offset offset_from_ts(struct timespec64 off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) struct timens_offset ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) ret.sec = off.tv_sec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) ret.nsec = off.tv_nsec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) * A time namespace VVAR page has the same layout as the VVAR page which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) * contains the system wide VDSO data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) * For a normal task the VVAR pages are installed in the normal ordering:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) * VVAR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) * PVCLOCK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) * HVCLOCK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) * TIMENS <- Not really required
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) * Now for a timens task the pages are installed in the following order:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) * TIMENS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) * PVCLOCK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) * HVCLOCK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) * VVAR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) * The check for vdso_data->clock_mode is in the unlikely path of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) * the seq begin magic. So for the non-timens case most of the time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) * 'seq' is even, so the branch is not taken.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) * If 'seq' is odd, i.e. a concurrent update is in progress, the extra check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) * for vdso_data->clock_mode is a non-issue. The task is spin waiting for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) * update to finish and for 'seq' to become even anyway.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) * Timens page has vdso_data->clock_mode set to VDSO_CLOCKMODE_TIMENS which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) * enforces the time namespace handling path.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) static void timens_setup_vdso_data(struct vdso_data *vdata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) struct time_namespace *ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) struct timens_offset *offset = vdata->offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) struct timens_offset monotonic = offset_from_ts(ns->offsets.monotonic);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) struct timens_offset boottime = offset_from_ts(ns->offsets.boottime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) vdata->seq = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) vdata->clock_mode = VDSO_CLOCKMODE_TIMENS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) offset[CLOCK_MONOTONIC] = monotonic;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) offset[CLOCK_MONOTONIC_RAW] = monotonic;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) offset[CLOCK_MONOTONIC_COARSE] = monotonic;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) offset[CLOCK_BOOTTIME] = boottime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) offset[CLOCK_BOOTTIME_ALARM] = boottime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) * Protects possibly multiple offsets writers racing each other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) * and tasks entering the namespace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) static DEFINE_MUTEX(offset_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) static void timens_set_vvar_page(struct task_struct *task,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) struct time_namespace *ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) struct vdso_data *vdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) if (ns == &init_time_ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) /* Fast-path, taken by every task in namespace except the first. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) if (likely(ns->frozen_offsets))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) mutex_lock(&offset_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) /* Nothing to-do: vvar_page has been already initialized. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) if (ns->frozen_offsets)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) ns->frozen_offsets = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) vdata = arch_get_vdso_data(page_address(ns->vvar_page));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) for (i = 0; i < CS_BASES; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) timens_setup_vdso_data(&vdata[i], ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) mutex_unlock(&offset_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) void free_time_ns(struct kref *kref)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) struct time_namespace *ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) ns = container_of(kref, struct time_namespace, kref);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) dec_time_namespaces(ns->ucounts);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) put_user_ns(ns->user_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) ns_free_inum(&ns->ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) __free_page(ns->vvar_page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) kfree(ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) static struct time_namespace *to_time_ns(struct ns_common *ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) return container_of(ns, struct time_namespace, ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) static struct ns_common *timens_get(struct task_struct *task)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) struct time_namespace *ns = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) struct nsproxy *nsproxy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) task_lock(task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) nsproxy = task->nsproxy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) if (nsproxy) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) ns = nsproxy->time_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) get_time_ns(ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) task_unlock(task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) return ns ? &ns->ns : NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) static struct ns_common *timens_for_children_get(struct task_struct *task)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) struct time_namespace *ns = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) struct nsproxy *nsproxy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) task_lock(task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) nsproxy = task->nsproxy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) if (nsproxy) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) ns = nsproxy->time_ns_for_children;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) get_time_ns(ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) task_unlock(task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) return ns ? &ns->ns : NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) static void timens_put(struct ns_common *ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) put_time_ns(to_time_ns(ns));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) void timens_commit(struct task_struct *tsk, struct time_namespace *ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) timens_set_vvar_page(tsk, ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) vdso_join_timens(tsk, ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) static int timens_install(struct nsset *nsset, struct ns_common *new)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) struct nsproxy *nsproxy = nsset->nsproxy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) struct time_namespace *ns = to_time_ns(new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) if (!current_is_single_threaded())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) return -EUSERS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) get_time_ns(ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) put_time_ns(nsproxy->time_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) nsproxy->time_ns = ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) get_time_ns(ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) put_time_ns(nsproxy->time_ns_for_children);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) nsproxy->time_ns_for_children = ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) int timens_on_fork(struct nsproxy *nsproxy, struct task_struct *tsk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) struct ns_common *nsc = &nsproxy->time_ns_for_children->ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) struct time_namespace *ns = to_time_ns(nsc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) /* create_new_namespaces() already incremented the ref counter */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) if (nsproxy->time_ns == nsproxy->time_ns_for_children)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) get_time_ns(ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) put_time_ns(nsproxy->time_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) nsproxy->time_ns = ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) timens_commit(tsk, ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) static struct user_namespace *timens_owner(struct ns_common *ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) return to_time_ns(ns)->user_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) static void show_offset(struct seq_file *m, int clockid, struct timespec64 *ts)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) char *clock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) switch (clockid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) case CLOCK_BOOTTIME:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) clock = "boottime";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) case CLOCK_MONOTONIC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) clock = "monotonic";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) clock = "unknown";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) seq_printf(m, "%-10s %10lld %9ld\n", clock, ts->tv_sec, ts->tv_nsec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) void proc_timens_show_offsets(struct task_struct *p, struct seq_file *m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) struct ns_common *ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) struct time_namespace *time_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) ns = timens_for_children_get(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) if (!ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) time_ns = to_time_ns(ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) show_offset(m, CLOCK_MONOTONIC, &time_ns->offsets.monotonic);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) show_offset(m, CLOCK_BOOTTIME, &time_ns->offsets.boottime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) put_time_ns(time_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) int proc_timens_set_offset(struct file *file, struct task_struct *p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) struct proc_timens_offset *offsets, int noffsets)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) struct ns_common *ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) struct time_namespace *time_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) struct timespec64 tp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) int i, err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) ns = timens_for_children_get(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) if (!ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) return -ESRCH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) time_ns = to_time_ns(ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) if (!file_ns_capable(file, time_ns->user_ns, CAP_SYS_TIME)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) put_time_ns(time_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) for (i = 0; i < noffsets; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) struct proc_timens_offset *off = &offsets[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) switch (off->clockid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) case CLOCK_MONOTONIC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) ktime_get_ts64(&tp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) case CLOCK_BOOTTIME:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) ktime_get_boottime_ts64(&tp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) err = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) err = -ERANGE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) if (off->val.tv_sec > KTIME_SEC_MAX ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) off->val.tv_sec < -KTIME_SEC_MAX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) tp = timespec64_add(tp, off->val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) * KTIME_SEC_MAX is divided by 2 to be sure that KTIME_MAX is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) * still unreachable.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) if (tp.tv_sec < 0 || tp.tv_sec > KTIME_SEC_MAX / 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) mutex_lock(&offset_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) if (time_ns->frozen_offsets) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) err = -EACCES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) err = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) /* Don't report errors after this line */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) for (i = 0; i < noffsets; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) struct proc_timens_offset *off = &offsets[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) struct timespec64 *offset = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) switch (off->clockid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) case CLOCK_MONOTONIC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) offset = &time_ns->offsets.monotonic;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) case CLOCK_BOOTTIME:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) offset = &time_ns->offsets.boottime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) *offset = off->val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) out_unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) mutex_unlock(&offset_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) put_time_ns(time_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) const struct proc_ns_operations timens_operations = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) .name = "time",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) .type = CLONE_NEWTIME,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) .get = timens_get,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) .put = timens_put,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) .install = timens_install,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) .owner = timens_owner,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) const struct proc_ns_operations timens_for_children_operations = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) .name = "time_for_children",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) .real_ns_name = "time",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) .type = CLONE_NEWTIME,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) .get = timens_for_children_get,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) .put = timens_put,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) .install = timens_install,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) .owner = timens_owner,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) struct time_namespace init_time_ns = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) .kref = KREF_INIT(3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) .user_ns = &init_user_ns,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) .ns.inum = PROC_TIME_INIT_INO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) .ns.ops = &timens_operations,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) .frozen_offsets = true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) static int __init time_ns_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) subsys_initcall(time_ns_init);