Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Alarmtimer interface
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * This interface provides a timer which is similarto hrtimers,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * but triggers a RTC alarm if the box is suspend.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * This interface is influenced by the Android RTC Alarm timer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  * interface.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  * Copyright (C) 2010 IBM Corperation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  * Author: John Stultz <john.stultz@linaro.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/hrtimer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/timerqueue.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/rtc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/sched/signal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/sched/debug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/alarmtimer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #include <linux/posix-timers.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #include <linux/workqueue.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #include <linux/freezer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #include <linux/compat.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #include <linux/time_namespace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #include "posix-timers.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define CREATE_TRACE_POINTS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #include <trace/events/alarmtimer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)  * struct alarm_base - Alarm timer bases
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)  * @lock:		Lock for syncrhonized access to the base
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39)  * @timerqueue:		Timerqueue head managing the list of events
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)  * @get_ktime:		Function to read the time correlating to the base
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)  * @get_timespec:	Function to read the namespace time correlating to the base
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)  * @base_clockid:	clockid for the base
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) static struct alarm_base {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	spinlock_t		lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	struct timerqueue_head	timerqueue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 	ktime_t			(*get_ktime)(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 	void			(*get_timespec)(struct timespec64 *tp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 	clockid_t		base_clockid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) } alarm_bases[ALARM_NUMTYPE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) /* freezer information to handle clock_nanosleep triggered wakeups */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) static enum alarmtimer_type freezer_alarmtype;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) static ktime_t freezer_expires;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) static ktime_t freezer_delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) static DEFINE_SPINLOCK(freezer_delta_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) #ifdef CONFIG_RTC_CLASS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) /* rtc timer and device for setting alarm wakeups at suspend */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) static struct rtc_timer		rtctimer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) static struct rtc_device	*rtcdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) static DEFINE_SPINLOCK(rtcdev_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)  * alarmtimer_get_rtcdev - Return selected rtcdevice
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69)  * This function returns the rtc device to use for wakealarms.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) struct rtc_device *alarmtimer_get_rtcdev(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	struct rtc_device *ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	spin_lock_irqsave(&rtcdev_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	ret = rtcdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	spin_unlock_irqrestore(&rtcdev_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) static int alarmtimer_rtc_add_device(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 				struct class_interface *class_intf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	struct rtc_device *rtc = to_rtc_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	struct platform_device *pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	if (rtcdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 		return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	if (!rtc->ops->set_alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	if (!device_may_wakeup(rtc->dev.parent))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	pdev = platform_device_register_data(dev, "alarmtimer",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 					     PLATFORM_DEVID_AUTO, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	if (!IS_ERR(pdev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 		device_init_wakeup(&pdev->dev, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	spin_lock_irqsave(&rtcdev_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	if (!IS_ERR(pdev) && !rtcdev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 		if (!try_module_get(rtc->owner)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 			ret = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 			goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 		rtcdev = rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 		/* hold a reference so it doesn't go away */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 		get_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 		pdev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 		ret = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	spin_unlock_irqrestore(&rtcdev_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	platform_device_unregister(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) static inline void alarmtimer_rtc_timer_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	rtc_timer_init(&rtctimer, NULL, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) static struct class_interface alarmtimer_rtc_interface = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	.add_dev = &alarmtimer_rtc_add_device,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) static int alarmtimer_rtc_interface_setup(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	alarmtimer_rtc_interface.class = rtc_class;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	return class_interface_register(&alarmtimer_rtc_interface);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) static void alarmtimer_rtc_interface_remove(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	class_interface_unregister(&alarmtimer_rtc_interface);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) static inline void alarmtimer_rtc_interface_remove(void) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) static inline void alarmtimer_rtc_timer_init(void) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)  * @base: pointer to the base where the timer is being run
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154)  * @alarm: pointer to alarm being enqueued.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)  * Adds alarm to a alarm_base timerqueue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)  * Must hold base->lock when calling.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 		timerqueue_del(&base->timerqueue, &alarm->node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	timerqueue_add(&base->timerqueue, &alarm->node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170)  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171)  * @base: pointer to the base where the timer is running
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)  * @alarm: pointer to alarm being removed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)  * Removes alarm to a alarm_base timerqueue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)  * Must hold base->lock when calling.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	timerqueue_del(&base->timerqueue, &alarm->node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189)  * alarmtimer_fired - Handles alarm hrtimer being fired.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190)  * @timer: pointer to hrtimer being run
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192)  * When a alarm timer fires, this runs through the timerqueue to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193)  * see which alarms expired, and runs those. If there are more alarm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194)  * timers queued for the future, we set the hrtimer to fire when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)  * the next future alarm timer expires.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	struct alarm *alarm = container_of(timer, struct alarm, timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	struct alarm_base *base = &alarm_bases[alarm->type];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	int ret = HRTIMER_NORESTART;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	int restart = ALARMTIMER_NORESTART;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	spin_lock_irqsave(&base->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	alarmtimer_dequeue(base, alarm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	spin_unlock_irqrestore(&base->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	if (alarm->function)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 		restart = alarm->function(alarm, base->get_ktime());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	spin_lock_irqsave(&base->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	if (restart != ALARMTIMER_NORESTART) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 		alarmtimer_enqueue(base, alarm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 		ret = HRTIMER_RESTART;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	spin_unlock_irqrestore(&base->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	trace_alarmtimer_fired(alarm, base->get_ktime());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) ktime_t alarm_expires_remaining(const struct alarm *alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	struct alarm_base *base = &alarm_bases[alarm->type];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 	return ktime_sub(alarm->node.expires, base->get_ktime());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) EXPORT_SYMBOL_GPL(alarm_expires_remaining);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) #ifdef CONFIG_RTC_CLASS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234)  * alarmtimer_suspend - Suspend time callback
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235)  * @dev: unused
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237)  * When we are going into suspend, we look through the bases
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238)  * to see which is the soonest timer to expire. We then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239)  * set an rtc timer to fire that far into the future, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240)  * will wake us from suspend.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) static int alarmtimer_suspend(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	ktime_t min, now, expires;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	int i, ret, type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 	struct rtc_device *rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 	struct rtc_time tm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	spin_lock_irqsave(&freezer_delta_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	min = freezer_delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	expires = freezer_expires;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	type = freezer_alarmtype;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	freezer_delta = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	rtc = alarmtimer_get_rtcdev();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	/* If we have no rtcdev, just return */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	if (!rtc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	/* Find the soonest timer to expire*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	for (i = 0; i < ALARM_NUMTYPE; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 		struct alarm_base *base = &alarm_bases[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 		struct timerqueue_node *next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 		ktime_t delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 		spin_lock_irqsave(&base->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 		next = timerqueue_getnext(&base->timerqueue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 		spin_unlock_irqrestore(&base->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 		if (!next)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 		delta = ktime_sub(next->expires, base->get_ktime());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 		if (!min || (delta < min)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 			expires = next->expires;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 			min = delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 			type = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	if (min == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 		pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 		return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	trace_alarmtimer_suspend(expires, type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	/* Setup an rtc timer to fire that far in the future */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	rtc_timer_cancel(rtc, &rtctimer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	rtc_read_time(rtc, &tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	now = rtc_tm_to_ktime(tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	now = ktime_add(now, min);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	/* Set alarm, if in the past reject suspend briefly to handle */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 	ret = rtc_timer_start(rtc, &rtctimer, now, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 		pm_wakeup_event(dev, MSEC_PER_SEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) static int alarmtimer_resume(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 	struct rtc_device *rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	rtc = alarmtimer_get_rtcdev();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	if (rtc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 		rtc_timer_cancel(rtc, &rtctimer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) static int alarmtimer_suspend(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) static int alarmtimer_resume(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	timerqueue_init(&alarm->node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	alarm->timer.function = alarmtimer_fired;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	alarm->function = function;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	alarm->type = type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	alarm->state = ALARMTIMER_STATE_INACTIVE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337)  * alarm_init - Initialize an alarm structure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338)  * @alarm: ptr to alarm to be initialized
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339)  * @type: the type of the alarm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340)  * @function: callback that is run when the alarm fires
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 		     HRTIMER_MODE_ABS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	__alarm_init(alarm, type, function);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) EXPORT_SYMBOL_GPL(alarm_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352)  * alarm_start - Sets an absolute alarm to fire
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353)  * @alarm: ptr to alarm to set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354)  * @start: time to run the alarm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) void alarm_start(struct alarm *alarm, ktime_t start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	struct alarm_base *base = &alarm_bases[alarm->type];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	spin_lock_irqsave(&base->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	alarm->node.expires = start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	alarmtimer_enqueue(base, alarm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	spin_unlock_irqrestore(&base->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	trace_alarmtimer_start(alarm, base->get_ktime());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) EXPORT_SYMBOL_GPL(alarm_start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372)  * alarm_start_relative - Sets a relative alarm to fire
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373)  * @alarm: ptr to alarm to set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374)  * @start: time relative to now to run the alarm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) void alarm_start_relative(struct alarm *alarm, ktime_t start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 	struct alarm_base *base = &alarm_bases[alarm->type];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	start = ktime_add_safe(start, base->get_ktime());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	alarm_start(alarm, start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) EXPORT_SYMBOL_GPL(alarm_start_relative);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) void alarm_restart(struct alarm *alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	struct alarm_base *base = &alarm_bases[alarm->type];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 	spin_lock_irqsave(&base->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	hrtimer_restart(&alarm->timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 	alarmtimer_enqueue(base, alarm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	spin_unlock_irqrestore(&base->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) EXPORT_SYMBOL_GPL(alarm_restart);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399)  * alarm_try_to_cancel - Tries to cancel an alarm timer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400)  * @alarm: ptr to alarm to be canceled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402)  * Returns 1 if the timer was canceled, 0 if it was not running,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403)  * and -1 if the callback was running
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) int alarm_try_to_cancel(struct alarm *alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	struct alarm_base *base = &alarm_bases[alarm->type];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 	spin_lock_irqsave(&base->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 	ret = hrtimer_try_to_cancel(&alarm->timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 	if (ret >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 		alarmtimer_dequeue(base, alarm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 	spin_unlock_irqrestore(&base->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 	trace_alarmtimer_cancel(alarm, base->get_ktime());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424)  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425)  * @alarm: ptr to alarm to be canceled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427)  * Returns 1 if the timer was canceled, 0 if it was not active.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) int alarm_cancel(struct alarm *alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	for (;;) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 		int ret = alarm_try_to_cancel(alarm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 		if (ret >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 		hrtimer_cancel_wait_running(&alarm->timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) EXPORT_SYMBOL_GPL(alarm_cancel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	u64 overrun = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	ktime_t delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	delta = ktime_sub(now, alarm->node.expires);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 	if (delta < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 	if (unlikely(delta >= interval)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 		s64 incr = ktime_to_ns(interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 		overrun = ktime_divns(delta, incr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 		alarm->node.expires = ktime_add_ns(alarm->node.expires,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 							incr*overrun);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 		if (alarm->node.expires > now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 			return overrun;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 		 * This (and the ktime_add() below) is the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 		 * correction for exact:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 		overrun++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 	alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 	return overrun;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) EXPORT_SYMBOL_GPL(alarm_forward);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 	struct alarm_base *base = &alarm_bases[alarm->type];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 	return alarm_forward(alarm, base->get_ktime(), interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) EXPORT_SYMBOL_GPL(alarm_forward_now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) #ifdef CONFIG_POSIX_TIMERS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 	struct alarm_base *base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 	ktime_t delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 	switch(type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 	case ALARM_REALTIME:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 		base = &alarm_bases[ALARM_REALTIME];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 		type = ALARM_REALTIME_FREEZER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 	case ALARM_BOOTTIME:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 		base = &alarm_bases[ALARM_BOOTTIME];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 		type = ALARM_BOOTTIME_FREEZER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 		WARN_ONCE(1, "Invalid alarm type: %d\n", type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 	delta = ktime_sub(absexp, base->get_ktime());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 	spin_lock_irqsave(&freezer_delta_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 	if (!freezer_delta || (delta < freezer_delta)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 		freezer_delta = delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 		freezer_expires = absexp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 		freezer_alarmtype = type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515)  * clock2alarm - helper that converts from clockid to alarmtypes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516)  * @clockid: clockid.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) static enum alarmtimer_type clock2alarm(clockid_t clockid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 	if (clockid == CLOCK_REALTIME_ALARM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 		return ALARM_REALTIME;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 	if (clockid == CLOCK_BOOTTIME_ALARM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 		return ALARM_BOOTTIME;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 	return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528)  * alarm_handle_timer - Callback for posix timers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529)  * @alarm: alarm that fired
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531)  * Posix timer callback for expired alarm timers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 							ktime_t now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 					    it.alarm.alarmtimer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 	int si_private = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 	spin_lock_irqsave(&ptr->it_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 	ptr->it_active = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 	if (ptr->it_interval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 		si_private = ++ptr->it_requeue_pending;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 	if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 		 * Handle ignored signals and rearm the timer. This will go
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 		 * away once we handle ignored signals proper.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 		ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 		++ptr->it_requeue_pending;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 		ptr->it_active = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 		result = ALARMTIMER_RESTART;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 	spin_unlock_irqrestore(&ptr->it_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 	return result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564)  * alarm_timer_rearm - Posix timer callback for rearming timer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565)  * @timr:	Pointer to the posixtimer data struct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) static void alarm_timer_rearm(struct k_itimer *timr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 	timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 	alarm_start(alarm, alarm->node.expires);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576)  * alarm_timer_forward - Posix timer callback for forwarding timer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577)  * @timr:	Pointer to the posixtimer data struct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578)  * @now:	Current time to forward the timer against
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 	return alarm_forward(alarm, timr->it_interval, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588)  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589)  * @timr:	Pointer to the posixtimer data struct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590)  * @now:	Current time to calculate against
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 	return ktime_sub(alarm->node.expires, now);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600)  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601)  * @timr:	Pointer to the posixtimer data struct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) static int alarm_timer_try_to_cancel(struct k_itimer *timr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 	return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609)  * alarm_timer_wait_running - Posix timer callback to wait for a timer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610)  * @timr:	Pointer to the posixtimer data struct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612)  * Called from the core code when timer cancel detected that the callback
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613)  * is running. @timr is unlocked and rcu read lock is held to prevent it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614)  * from being freed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) static void alarm_timer_wait_running(struct k_itimer *timr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) 	hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622)  * alarm_timer_arm - Posix timer callback to arm a timer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623)  * @timr:	Pointer to the posixtimer data struct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624)  * @expires:	The new expiry time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625)  * @absolute:	Expiry value is absolute time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626)  * @sigev_none:	Posix timer does not deliver signals
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) 			    bool absolute, bool sigev_none)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) 	struct alarm *alarm = &timr->it.alarm.alarmtimer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) 	struct alarm_base *base = &alarm_bases[alarm->type];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 	if (!absolute)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 		expires = ktime_add_safe(expires, base->get_ktime());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 	if (sigev_none)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) 		alarm->node.expires = expires;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) 		alarm_start(&timr->it.alarm.alarmtimer, expires);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643)  * alarm_clock_getres - posix getres interface
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644)  * @which_clock: clockid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645)  * @tp: timespec to fill
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647)  * Returns the granularity of underlying alarm base clock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) 	if (!alarmtimer_get_rtcdev())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) 	tp->tv_sec = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) 	tp->tv_nsec = hrtimer_resolution;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660)  * alarm_clock_get_timespec - posix clock_get_timespec interface
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661)  * @which_clock: clockid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662)  * @tp: timespec to fill.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664)  * Provides the underlying alarm base time in a tasks time namespace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) 	if (!alarmtimer_get_rtcdev())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 	base->get_timespec(tp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679)  * alarm_clock_get_ktime - posix clock_get_ktime interface
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680)  * @which_clock: clockid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682)  * Provides the underlying alarm base time in the root namespace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) 	if (!alarmtimer_get_rtcdev())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 	return base->get_ktime();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695)  * alarm_timer_create - posix timer_create interface
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696)  * @new_timer: k_itimer pointer to manage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698)  * Initializes the k_itimer structure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) static int alarm_timer_create(struct k_itimer *new_timer)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) 	enum  alarmtimer_type type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) 	if (!alarmtimer_get_rtcdev())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) 		return -EOPNOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) 	if (!capable(CAP_WAKE_ALARM))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) 		return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) 	type = clock2alarm(new_timer->it_clock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) 	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716)  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717)  * @alarm: ptr to alarm that fired
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719)  * Wakes up the task that set the alarmtimer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) 								ktime_t now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) 	struct task_struct *task = (struct task_struct *)alarm->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) 	alarm->data = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) 	if (task)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) 		wake_up_process(task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) 	return ALARMTIMER_NORESTART;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733)  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734)  * @alarm: ptr to alarmtimer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735)  * @absexp: absolute expiration time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737)  * Sets the alarm timer and sleeps until it is fired or interrupted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) 				enum alarmtimer_type type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) 	struct restart_block *restart;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) 	alarm->data = (void *)current;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) 		set_current_state(TASK_INTERRUPTIBLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) 		alarm_start(alarm, absexp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) 		if (likely(alarm->data))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) 			schedule();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) 		alarm_cancel(alarm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) 	} while (alarm->data && !signal_pending(current));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) 	__set_current_state(TASK_RUNNING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) 	destroy_hrtimer_on_stack(&alarm->timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) 	if (!alarm->data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) 	if (freezing(current))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) 		alarmtimer_freezerset(absexp, type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) 	restart = &current->restart_block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) 	if (restart->nanosleep.type != TT_NONE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) 		struct timespec64 rmt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) 		ktime_t rem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) 		rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) 		if (rem <= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) 		rmt = ktime_to_timespec64(rem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) 		return nanosleep_copyout(restart, &rmt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) 	return -ERESTART_RESTARTBLOCK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) 		    enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) 	hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) 			      HRTIMER_MODE_ABS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) 	__alarm_init(alarm, type, function);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788)  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789)  * @restart: ptr to restart block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791)  * Handles restarted clock_nanosleep calls
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) 	enum  alarmtimer_type type = restart->nanosleep.clockid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) 	ktime_t exp = restart->nanosleep.expires;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) 	struct alarm alarm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) 	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) 	return alarmtimer_do_nsleep(&alarm, exp, type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805)  * alarm_timer_nsleep - alarmtimer nanosleep
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806)  * @which_clock: clockid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807)  * @flags: determins abstime or relative
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808)  * @tsreq: requested sleep time (abs or rel)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809)  * @rmtp: remaining sleep time saved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811)  * Handles clock_nanosleep calls against _ALARM clockids
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) 			      const struct timespec64 *tsreq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) 	enum  alarmtimer_type type = clock2alarm(which_clock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) 	struct restart_block *restart = &current->restart_block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) 	struct alarm alarm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) 	ktime_t exp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) 	if (!alarmtimer_get_rtcdev())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) 		return -EOPNOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) 	if (flags & ~TIMER_ABSTIME)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) 	if (!capable(CAP_WAKE_ALARM))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) 		return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) 	alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) 	exp = timespec64_to_ktime(*tsreq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) 	/* Convert (if necessary) to absolute time */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) 	if (flags != TIMER_ABSTIME) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) 		ktime_t now = alarm_bases[type].get_ktime();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) 		exp = ktime_add_safe(now, exp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) 		exp = timens_ktime_to_host(which_clock, exp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) 	ret = alarmtimer_do_nsleep(&alarm, exp, type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) 	if (ret != -ERESTART_RESTARTBLOCK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) 	/* abs timers don't set remaining time or restart */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) 	if (flags == TIMER_ABSTIME)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) 		return -ERESTARTNOHAND;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) 	restart->nanosleep.clockid = type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) 	restart->nanosleep.expires = exp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) 	set_restart_fn(restart, alarm_timer_nsleep_restart);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) const struct k_clock alarm_clock = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) 	.clock_getres		= alarm_clock_getres,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) 	.clock_get_ktime	= alarm_clock_get_ktime,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) 	.clock_get_timespec	= alarm_clock_get_timespec,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) 	.timer_create		= alarm_timer_create,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) 	.timer_set		= common_timer_set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) 	.timer_del		= common_timer_del,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) 	.timer_get		= common_timer_get,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) 	.timer_arm		= alarm_timer_arm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) 	.timer_rearm		= alarm_timer_rearm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) 	.timer_forward		= alarm_timer_forward,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) 	.timer_remaining	= alarm_timer_remaining,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) 	.timer_try_to_cancel	= alarm_timer_try_to_cancel,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) 	.timer_wait_running	= alarm_timer_wait_running,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) 	.nsleep			= alarm_timer_nsleep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) #endif /* CONFIG_POSIX_TIMERS */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) /* Suspend hook structures */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) static const struct dev_pm_ops alarmtimer_pm_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) 	.suspend = alarmtimer_suspend,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) 	.resume = alarmtimer_resume,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) static struct platform_driver alarmtimer_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) 		.name = "alarmtimer",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) 		.pm = &alarmtimer_pm_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) static void get_boottime_timespec(struct timespec64 *tp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) 	ktime_get_boottime_ts64(tp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) 	timens_add_boottime(tp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896)  * alarmtimer_init - Initialize alarm timer code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898)  * This function initializes the alarm bases and registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899)  * the posix clock ids.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) static int __init alarmtimer_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) 	int error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) 	alarmtimer_rtc_timer_init();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) 	/* Initialize alarm bases */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) 	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) 	alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) 	alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912) 	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) 	alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) 	alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) 	for (i = 0; i < ALARM_NUMTYPE; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916) 		timerqueue_init_head(&alarm_bases[i].timerqueue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) 		spin_lock_init(&alarm_bases[i].lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) 	error = alarmtimer_rtc_interface_setup();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921) 	if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922) 		return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) 	error = platform_driver_register(&alarmtimer_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925) 	if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926) 		goto out_if;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929) out_if:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930) 	alarmtimer_rtc_interface_remove();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931) 	return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) device_initcall(alarmtimer_init);