Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * Scheduler topology setup/handling methods
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5) #include "sched.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7) #include <trace/hooks/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9) DEFINE_MUTEX(sched_domains_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10) #ifdef CONFIG_LOCKDEP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11) EXPORT_SYMBOL_GPL(sched_domains_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) /* Protected by sched_domains_mutex: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) static cpumask_var_t sched_domains_tmpmask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) static cpumask_var_t sched_domains_tmpmask2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) #ifdef CONFIG_SCHED_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) static int __init sched_debug_setup(char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) 	sched_debug_enabled = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) early_param("sched_debug", sched_debug_setup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) static inline bool sched_debug(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) 	return sched_debug_enabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) const struct sd_flag_debug sd_flag_debug[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) #include <linux/sched/sd_flags.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) #undef SD_FLAG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) 				  struct cpumask *groupmask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) 	struct sched_group *group = sd->groups;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) 	unsigned long flags = sd->flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) 	unsigned int idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) 	cpumask_clear(groupmask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) 	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) 	printk(KERN_CONT "span=%*pbl level=%s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) 		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) 	if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) 		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) 		unsigned int flag = BIT(idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) 		unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) 		if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) 		    !(sd->child->flags & flag))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) 			printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) 			       sd_flag_debug[idx].name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) 		if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) 		    !(sd->parent->flags & flag))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) 			printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) 			       sd_flag_debug[idx].name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) 		if (!group) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) 			printk("\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) 			printk(KERN_ERR "ERROR: group is NULL\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) 		if (!cpumask_weight(sched_group_span(group))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) 			printk(KERN_CONT "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) 			printk(KERN_ERR "ERROR: empty group\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) 		if (!(sd->flags & SD_OVERLAP) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) 		    cpumask_intersects(groupmask, sched_group_span(group))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) 			printk(KERN_CONT "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) 			printk(KERN_ERR "ERROR: repeated CPUs\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) 		cpumask_or(groupmask, groupmask, sched_group_span(group));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) 		printk(KERN_CONT " %d:{ span=%*pbl",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) 				group->sgc->id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) 				cpumask_pr_args(sched_group_span(group)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) 		if ((sd->flags & SD_OVERLAP) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) 		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) 			printk(KERN_CONT " mask=%*pbl",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) 				cpumask_pr_args(group_balance_mask(group)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) 			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) 		if (group == sd->groups && sd->child &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) 		    !cpumask_equal(sched_domain_span(sd->child),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) 				   sched_group_span(group))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) 		printk(KERN_CONT " }");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) 		group = group->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 		if (group != sd->groups)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) 			printk(KERN_CONT ",");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 	} while (group != sd->groups);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) 	printk(KERN_CONT "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 	if (sd->parent &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) static void sched_domain_debug(struct sched_domain *sd, int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 	int level = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 	if (!sched_debug_enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) 	if (!sd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) 	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 	for (;;) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) 		level++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) 		sd = sd->parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) 		if (!sd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) #else /* !CONFIG_SCHED_DEBUG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) # define sched_debug_enabled 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) # define sched_domain_debug(sd, cpu) do { } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) static inline bool sched_debug(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) #endif /* CONFIG_SCHED_DEBUG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) static const unsigned int SD_DEGENERATE_GROUPS_MASK =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) #include <linux/sched/sd_flags.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) #undef SD_FLAG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) static int sd_degenerate(struct sched_domain *sd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 	if (cpumask_weight(sched_domain_span(sd)) == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 	/* Following flags need at least 2 groups */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) 	if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 	    (sd->groups != sd->groups->next))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) 	/* Following flags don't use groups */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 	if (sd->flags & (SD_WAKE_AFFINE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 	unsigned long cflags = sd->flags, pflags = parent->flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 	if (sd_degenerate(parent))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 	/* Flags needing groups don't count if only 1 group in parent */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 	if (parent->groups == parent->groups->next)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 		pflags &= ~SD_DEGENERATE_GROUPS_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 	if (~cflags & pflags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) DEFINE_STATIC_KEY_FALSE(sched_energy_present);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) unsigned int sysctl_sched_energy_aware = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) DEFINE_MUTEX(sched_energy_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) bool sched_energy_update;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) #ifdef CONFIG_PROC_SYSCTL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) int sched_energy_aware_handler(struct ctl_table *table, int write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) 		void *buffer, size_t *lenp, loff_t *ppos)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 	int ret, state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) 	if (write && !capable(CAP_SYS_ADMIN))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 		return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 	if (!ret && write) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 		state = static_branch_unlikely(&sched_energy_present);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 		if (state != sysctl_sched_energy_aware) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 			mutex_lock(&sched_energy_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) 			sched_energy_update = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 			rebuild_sched_domains();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 			sched_energy_update = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 			mutex_unlock(&sched_energy_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) static void free_pd(struct perf_domain *pd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 	struct perf_domain *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 	while (pd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 		tmp = pd->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 		kfree(pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 		pd = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) 	while (pd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 		if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 			return pd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 		pd = pd->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) static struct perf_domain *pd_init(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 	struct em_perf_domain *obj = em_cpu_get(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) 	struct perf_domain *pd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 	if (!obj) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 		if (sched_debug())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 			pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 	if (!pd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 	pd->em_pd = obj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 	return pd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) static void perf_domain_debug(const struct cpumask *cpu_map,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 						struct perf_domain *pd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 	if (!sched_debug() || !pd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 	printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 	while (pd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 		printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 				cpumask_first(perf_domain_span(pd)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 				cpumask_pr_args(perf_domain_span(pd)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 				em_pd_nr_perf_states(pd->em_pd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 		pd = pd->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 	printk(KERN_CONT "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) static void destroy_perf_domain_rcu(struct rcu_head *rp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 	struct perf_domain *pd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 	pd = container_of(rp, struct perf_domain, rcu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 	free_pd(pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) static void sched_energy_set(bool has_eas)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 	if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 		if (sched_debug())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 			pr_info("%s: stopping EAS\n", __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 		static_branch_disable_cpuslocked(&sched_energy_present);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 	} else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 		if (sched_debug())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 			pr_info("%s: starting EAS\n", __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 		static_branch_enable_cpuslocked(&sched_energy_present);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326)  * EAS can be used on a root domain if it meets all the following conditions:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327)  *    1. an Energy Model (EM) is available;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328)  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329)  *    3. no SMT is detected.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330)  *    4. the EM complexity is low enough to keep scheduling overheads low;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332)  * The complexity of the Energy Model is defined as:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334)  *              C = nr_pd * (nr_cpus + nr_ps)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336)  * with parameters defined as:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337)  *  - nr_pd:    the number of performance domains
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338)  *  - nr_cpus:  the number of CPUs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339)  *  - nr_ps:    the sum of the number of performance states of all performance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340)  *              domains (for example, on a system with 2 performance domains,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341)  *              with 10 performance states each, nr_ps = 2 * 10 = 20).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343)  * It is generally not a good idea to use such a model in the wake-up path on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344)  * very complex platforms because of the associated scheduling overheads. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345)  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346)  * with per-CPU DVFS and less than 8 performance states each, for example.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) #define EM_MAX_COMPLEXITY 2048
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) static bool build_perf_domains(const struct cpumask *cpu_map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 	int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 	struct perf_domain *pd = NULL, *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 	int cpu = cpumask_first(cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 	struct root_domain *rd = cpu_rq(cpu)->rd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 	bool eas_check = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 	if (!sysctl_sched_energy_aware)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 		goto free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 	 * EAS is enabled for asymmetric CPU capacity topologies.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 	 * Allow vendor to override if desired.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 	trace_android_rvh_build_perf_domains(&eas_check);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 	if (!per_cpu(sd_asym_cpucapacity, cpu) && !eas_check) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 		if (sched_debug()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 			pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 					cpumask_pr_args(cpu_map));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 		goto free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 	/* EAS definitely does *not* handle SMT */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 	if (sched_smt_active()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 		pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 			cpumask_pr_args(cpu_map));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 		goto free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 	for_each_cpu(i, cpu_map) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 		/* Skip already covered CPUs. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 		if (find_pd(pd, i))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 		/* Create the new pd and add it to the local list. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 		tmp = pd_init(i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 		if (!tmp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 			goto free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 		tmp->next = pd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 		pd = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 		 * Count performance domains and performance states for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 		 * complexity check.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 		nr_pd++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 		nr_ps += em_pd_nr_perf_states(pd->em_pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) 	/* Bail out if the Energy Model complexity is too high. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 	if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 		WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 						cpumask_pr_args(cpu_map));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 		goto free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 	perf_domain_debug(cpu_map, pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 	/* Attach the new list of performance domains to the root domain. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 	tmp = rd->pd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 	rcu_assign_pointer(rd->pd, pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 	if (tmp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 	return !!pd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) free:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 	free_pd(pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 	tmp = rd->pd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	rcu_assign_pointer(rd->pd, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 	if (tmp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 		call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) static void free_pd(struct perf_domain *pd) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) static void free_rootdomain(struct rcu_head *rcu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 	cpupri_cleanup(&rd->cpupri);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 	cpudl_cleanup(&rd->cpudl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 	free_cpumask_var(rd->dlo_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 	free_cpumask_var(rd->rto_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 	free_cpumask_var(rd->online);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 	free_cpumask_var(rd->span);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 	free_pd(rd->pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 	kfree(rd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) void rq_attach_root(struct rq *rq, struct root_domain *rd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 	struct root_domain *old_rd = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 	raw_spin_lock_irqsave(&rq->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 	if (rq->rd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 		old_rd = rq->rd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 			set_rq_offline(rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 		cpumask_clear_cpu(rq->cpu, old_rd->span);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 		 * If we dont want to free the old_rd yet then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 		 * set old_rd to NULL to skip the freeing later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 		 * in this function:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 		if (!atomic_dec_and_test(&old_rd->refcount))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 			old_rd = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 	atomic_inc(&rd->refcount);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 	rq->rd = rd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 	cpumask_set_cpu(rq->cpu, rd->span);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 		set_rq_online(rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 	raw_spin_unlock_irqrestore(&rq->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 	if (old_rd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 		call_rcu(&old_rd->rcu, free_rootdomain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) void sched_get_rd(struct root_domain *rd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 	atomic_inc(&rd->refcount);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) void sched_put_rd(struct root_domain *rd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 	if (!atomic_dec_and_test(&rd->refcount))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 	call_rcu(&rd->rcu, free_rootdomain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) static int init_rootdomain(struct root_domain *rd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 		goto free_span;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 		goto free_online;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 		goto free_dlo_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) #ifdef HAVE_RT_PUSH_IPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 	rd->rto_cpu = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 	raw_spin_lock_init(&rd->rto_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 	init_dl_bw(&rd->dl_bw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 	if (cpudl_init(&rd->cpudl) != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 		goto free_rto_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 	if (cpupri_init(&rd->cpupri) != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 		goto free_cpudl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) free_cpudl:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 	cpudl_cleanup(&rd->cpudl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) free_rto_mask:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 	free_cpumask_var(rd->rto_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) free_dlo_mask:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 	free_cpumask_var(rd->dlo_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) free_online:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 	free_cpumask_var(rd->online);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) free_span:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 	free_cpumask_var(rd->span);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 	return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535)  * By default the system creates a single root-domain with all CPUs as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536)  * members (mimicking the global state we have today).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) struct root_domain def_root_domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) void init_defrootdomain(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 	init_rootdomain(&def_root_domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 	atomic_set(&def_root_domain.refcount, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) static struct root_domain *alloc_rootdomain(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 	struct root_domain *rd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 	if (!rd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 	if (init_rootdomain(rd) != 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 		kfree(rd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 	return rd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) static void free_sched_groups(struct sched_group *sg, int free_sgc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 	struct sched_group *tmp, *first;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 	if (!sg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 	first = sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 		tmp = sg->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 			kfree(sg->sgc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 		if (atomic_dec_and_test(&sg->ref))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 			kfree(sg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 		sg = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 	} while (sg != first);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) static void destroy_sched_domain(struct sched_domain *sd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 	 * A normal sched domain may have multiple group references, an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 	 * overlapping domain, having private groups, only one.  Iterate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 	 * dropping group/capacity references, freeing where none remain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) 	free_sched_groups(sd->groups, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 		kfree(sd->shared);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 	kfree(sd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) static void destroy_sched_domains_rcu(struct rcu_head *rcu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 	while (sd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 		struct sched_domain *parent = sd->parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 		destroy_sched_domain(sd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 		sd = parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) static void destroy_sched_domains(struct sched_domain *sd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 	if (sd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615)  * Keep a special pointer to the highest sched_domain that has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616)  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617)  * allows us to avoid some pointer chasing select_idle_sibling().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619)  * Also keep a unique ID per domain (we use the first CPU number in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620)  * the cpumask of the domain), this allows us to quickly tell if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621)  * two CPUs are in the same cache domain, see cpus_share_cache().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) DEFINE_PER_CPU(int, sd_llc_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) DEFINE_PER_CPU(int, sd_llc_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) static void update_top_cache_domain(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 	struct sched_domain_shared *sds = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 	struct sched_domain *sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 	int id = cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 	int size = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 	if (sd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 		id = cpumask_first(sched_domain_span(sd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 		size = cpumask_weight(sched_domain_span(sd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 		sds = sd->shared;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 	per_cpu(sd_llc_size, cpu) = size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 	per_cpu(sd_llc_id, cpu) = id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 	sd = lowest_flag_domain(cpu, SD_NUMA);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) 	rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 	sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 	rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662)  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663)  * hold the hotplug lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 	struct rq *rq = cpu_rq(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 	struct sched_domain *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 	/* Remove the sched domains which do not contribute to scheduling. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 	for (tmp = sd; tmp; ) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 		struct sched_domain *parent = tmp->parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 		if (!parent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 		if (sd_parent_degenerate(tmp, parent)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 			tmp->parent = parent->parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 			if (parent->parent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 				parent->parent->child = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 			 * Transfer SD_PREFER_SIBLING down in case of a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 			 * degenerate parent; the spans match for this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 			 * so the property transfers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 			if (parent->flags & SD_PREFER_SIBLING)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 				tmp->flags |= SD_PREFER_SIBLING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 			destroy_sched_domain(parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 		} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 			tmp = tmp->parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 	if (sd && sd_degenerate(sd)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 		tmp = sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 		sd = sd->parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 		destroy_sched_domain(tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 		if (sd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 			sd->child = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 	sched_domain_debug(sd, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 	rq_attach_root(rq, rd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 	tmp = rq->sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 	rcu_assign_pointer(rq->sd, sd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 	dirty_sched_domain_sysctl(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 	destroy_sched_domains(tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 	update_top_cache_domain(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) struct s_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 	struct sched_domain * __percpu *sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 	struct root_domain	*rd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) enum s_alloc {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 	sa_rootdomain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 	sa_sd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 	sa_sd_storage,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 	sa_none,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725)  * Return the canonical balance CPU for this group, this is the first CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726)  * of this group that's also in the balance mask.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728)  * The balance mask are all those CPUs that could actually end up at this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729)  * group. See build_balance_mask().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731)  * Also see should_we_balance().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) int group_balance_cpu(struct sched_group *sg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 	return cpumask_first(group_balance_mask(sg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740)  * NUMA topology (first read the regular topology blurb below)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742)  * Given a node-distance table, for example:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744)  *   node   0   1   2   3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745)  *     0:  10  20  30  20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746)  *     1:  20  10  20  30
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747)  *     2:  30  20  10  20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748)  *     3:  20  30  20  10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750)  * which represents a 4 node ring topology like:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752)  *   0 ----- 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753)  *   |       |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754)  *   |       |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755)  *   |       |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756)  *   3 ----- 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758)  * We want to construct domains and groups to represent this. The way we go
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759)  * about doing this is to build the domains on 'hops'. For each NUMA level we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760)  * construct the mask of all nodes reachable in @level hops.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762)  * For the above NUMA topology that gives 3 levels:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764)  * NUMA-2	0-3		0-3		0-3		0-3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765)  *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767)  * NUMA-1	0-1,3		0-2		1-3		0,2-3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768)  *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770)  * NUMA-0	0		1		2		3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773)  * As can be seen; things don't nicely line up as with the regular topology.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774)  * When we iterate a domain in child domain chunks some nodes can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775)  * represented multiple times -- hence the "overlap" naming for this part of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776)  * the topology.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778)  * In order to minimize this overlap, we only build enough groups to cover the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779)  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781)  * Because:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783)  *  - the first group of each domain is its child domain; this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784)  *    gets us the first 0-1,3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785)  *  - the only uncovered node is 2, who's child domain is 1-3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787)  * However, because of the overlap, computing a unique CPU for each group is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788)  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789)  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790)  * end up at those groups (they would end up in group: 0-1,3).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792)  * To correct this we have to introduce the group balance mask. This mask
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793)  * will contain those CPUs in the group that can reach this group given the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794)  * (child) domain tree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796)  * With this we can once again compute balance_cpu and sched_group_capacity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797)  * relations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799)  * XXX include words on how balance_cpu is unique and therefore can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800)  * used for sched_group_capacity links.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803)  * Another 'interesting' topology is:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805)  *   node   0   1   2   3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806)  *     0:  10  20  20  30
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807)  *     1:  20  10  20  20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808)  *     2:  20  20  10  20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809)  *     3:  30  20  20  10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811)  * Which looks a little like:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813)  *   0 ----- 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814)  *   |     / |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815)  *   |   /   |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816)  *   | /     |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817)  *   2 ----- 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819)  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820)  * are not.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822)  * This leads to a few particularly weird cases where the sched_domain's are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823)  * not of the same number for each CPU. Consider:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825)  * NUMA-2	0-3						0-3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826)  *  groups:	{0-2},{1-3}					{1-3},{0-2}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828)  * NUMA-1	0-2		0-3		0-3		1-3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830)  * NUMA-0	0		1		2		3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836)  * Build the balance mask; it contains only those CPUs that can arrive at this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837)  * group and should be considered to continue balancing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839)  * We do this during the group creation pass, therefore the group information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840)  * isn't complete yet, however since each group represents a (child) domain we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841)  * can fully construct this using the sched_domain bits (which are already
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842)  * complete).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 	const struct cpumask *sg_span = sched_group_span(sg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 	struct sd_data *sdd = sd->private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 	struct sched_domain *sibling;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 	cpumask_clear(mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 	for_each_cpu(i, sg_span) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 		sibling = *per_cpu_ptr(sdd->sd, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 		 * Can happen in the asymmetric case, where these siblings are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 		 * unused. The mask will not be empty because those CPUs that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 		 * do have the top domain _should_ span the domain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 		if (!sibling->child)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 		/* If we would not end up here, we can't continue from here */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 		cpumask_set_cpu(i, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 	/* We must not have empty masks here */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 	WARN_ON_ONCE(cpumask_empty(mask));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877)  * XXX: This creates per-node group entries; since the load-balancer will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878)  * immediately access remote memory to construct this group's load-balance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879)  * statistics having the groups node local is of dubious benefit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) static struct sched_group *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 	struct sched_group *sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 	struct cpumask *sg_span;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 			GFP_KERNEL, cpu_to_node(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 	if (!sg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 	sg_span = sched_group_span(sg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 	if (sd->child)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 		cpumask_copy(sg_span, sched_domain_span(sd->child));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 		cpumask_copy(sg_span, sched_domain_span(sd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 	atomic_inc(&sg->ref);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 	return sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) static void init_overlap_sched_group(struct sched_domain *sd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 				     struct sched_group *sg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 	struct cpumask *mask = sched_domains_tmpmask2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 	struct sd_data *sdd = sd->private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 	struct cpumask *sg_span;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 	build_balance_mask(sd, sg, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 	cpu = cpumask_first_and(sched_group_span(sg), mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 	if (atomic_inc_return(&sg->sgc->ref) == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 		cpumask_copy(group_balance_mask(sg), mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 	 * Initialize sgc->capacity such that even if we mess up the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 	 * domains and no possible iteration will get us here, we won't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 	 * die on a /0 trap.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 	sg_span = sched_group_span(sg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) build_overlap_sched_groups(struct sched_domain *sd, int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 	struct sched_group *first = NULL, *last = NULL, *sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 	const struct cpumask *span = sched_domain_span(sd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 	struct cpumask *covered = sched_domains_tmpmask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 	struct sd_data *sdd = sd->private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 	struct sched_domain *sibling;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 	cpumask_clear(covered);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 	for_each_cpu_wrap(i, span, cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 		struct cpumask *sg_span;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 		if (cpumask_test_cpu(i, covered))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 		sibling = *per_cpu_ptr(sdd->sd, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 		 * Asymmetric node setups can result in situations where the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 		 * domain tree is of unequal depth, make sure to skip domains
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 		 * that already cover the entire range.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 		 * In that case build_sched_domains() will have terminated the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 		 * iteration early and our sibling sd spans will be empty.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 		 * Domains should always include the CPU they're built on, so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 		 * check that.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 		sg = build_group_from_child_sched_domain(sibling, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 		if (!sg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 			goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 		sg_span = sched_group_span(sg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 		cpumask_or(covered, covered, sg_span);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 		init_overlap_sched_group(sd, sg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 		if (!first)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 			first = sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 		if (last)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 			last->next = sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 		last = sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 		last->next = first;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 	sd->groups = first;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 	free_sched_groups(first, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 	return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992)  * Package topology (also see the load-balance blurb in fair.c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994)  * The scheduler builds a tree structure to represent a number of important
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995)  * topology features. By default (default_topology[]) these include:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997)  *  - Simultaneous multithreading (SMT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998)  *  - Multi-Core Cache (MC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999)  *  - Package (DIE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001)  * Where the last one more or less denotes everything up to a NUMA node.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003)  * The tree consists of 3 primary data structures:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005)  *	sched_domain -> sched_group -> sched_group_capacity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006)  *	    ^ ^             ^ ^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007)  *          `-'             `-'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009)  * The sched_domains are per-CPU and have a two way link (parent & child) and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010)  * denote the ever growing mask of CPUs belonging to that level of topology.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012)  * Each sched_domain has a circular (double) linked list of sched_group's, each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013)  * denoting the domains of the level below (or individual CPUs in case of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014)  * first domain level). The sched_group linked by a sched_domain includes the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015)  * CPU of that sched_domain [*].
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017)  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019)  * CPU   0   1   2   3   4   5   6   7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021)  * DIE  [                             ]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022)  * MC   [             ] [             ]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023)  * SMT  [     ] [     ] [     ] [     ]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025)  *  - or -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027)  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028)  * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029)  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031)  * CPU   0   1   2   3   4   5   6   7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033)  * One way to think about it is: sched_domain moves you up and down among these
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034)  * topology levels, while sched_group moves you sideways through it, at child
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035)  * domain granularity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037)  * sched_group_capacity ensures each unique sched_group has shared storage.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039)  * There are two related construction problems, both require a CPU that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040)  * uniquely identify each group (for a given domain):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042)  *  - The first is the balance_cpu (see should_we_balance() and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043)  *    load-balance blub in fair.c); for each group we only want 1 CPU to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044)  *    continue balancing at a higher domain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046)  *  - The second is the sched_group_capacity; we want all identical groups
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047)  *    to share a single sched_group_capacity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049)  * Since these topologies are exclusive by construction. That is, its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050)  * impossible for an SMT thread to belong to multiple cores, and cores to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051)  * be part of multiple caches. There is a very clear and unique location
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052)  * for each CPU in the hierarchy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054)  * Therefore computing a unique CPU for each group is trivial (the iteration
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055)  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056)  * group), we can simply pick the first CPU in each group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059)  * [*] in other words, the first group of each domain is its child domain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) static struct sched_group *get_group(int cpu, struct sd_data *sdd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 	struct sched_domain *child = sd->child;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 	struct sched_group *sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 	bool already_visited;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 	if (child)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 		cpu = cpumask_first(sched_domain_span(child));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 	sg = *per_cpu_ptr(sdd->sg, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 	/* Increase refcounts for claim_allocations: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 	already_visited = atomic_inc_return(&sg->ref) > 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 	/* sgc visits should follow a similar trend as sg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 	WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 	/* If we have already visited that group, it's already initialized. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 	if (already_visited)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 		return sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 	if (child) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 		cpumask_set_cpu(cpu, sched_group_span(sg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 		cpumask_set_cpu(cpu, group_balance_mask(sg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 	sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 	return sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100)  * build_sched_groups will build a circular linked list of the groups
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101)  * covered by the given span, will set each group's ->cpumask correctly,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102)  * and will initialize their ->sgc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104)  * Assumes the sched_domain tree is fully constructed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) build_sched_groups(struct sched_domain *sd, int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 	struct sched_group *first = NULL, *last = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 	struct sd_data *sdd = sd->private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 	const struct cpumask *span = sched_domain_span(sd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 	struct cpumask *covered;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 	lockdep_assert_held(&sched_domains_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 	covered = sched_domains_tmpmask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 	cpumask_clear(covered);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 	for_each_cpu_wrap(i, span, cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 		struct sched_group *sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 		if (cpumask_test_cpu(i, covered))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 		sg = get_group(i, sdd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 		cpumask_or(covered, covered, sched_group_span(sg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 		if (!first)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 			first = sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 		if (last)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 			last->next = sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 		last = sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 	last->next = first;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 	sd->groups = first;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143)  * Initialize sched groups cpu_capacity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145)  * cpu_capacity indicates the capacity of sched group, which is used while
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146)  * distributing the load between different sched groups in a sched domain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147)  * Typically cpu_capacity for all the groups in a sched domain will be same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148)  * unless there are asymmetries in the topology. If there are asymmetries,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149)  * group having more cpu_capacity will pickup more load compared to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150)  * group having less cpu_capacity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 	struct sched_group *sg = sd->groups;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 	WARN_ON(!sg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 		int cpu, max_cpu = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 		sg->group_weight = cpumask_weight(sched_group_span(sg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 		if (!(sd->flags & SD_ASYM_PACKING))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 			goto next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 		for_each_cpu(cpu, sched_group_span(sg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 			if (max_cpu < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 				max_cpu = cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 			else if (sched_asym_prefer(cpu, max_cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 				max_cpu = cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 		sg->asym_prefer_cpu = max_cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) next:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 		sg = sg->next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 	} while (sg != sd->groups);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 	if (cpu != group_balance_cpu(sg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 	update_group_capacity(sd, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185)  * Initializers for schedule domains
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186)  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) static int default_relax_domain_level = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) int sched_domain_level_max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) static int __init setup_relax_domain_level(char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 	if (kstrtoint(str, 0, &default_relax_domain_level))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 		pr_warn("Unable to set relax_domain_level\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) __setup("relax_domain_level=", setup_relax_domain_level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) static void set_domain_attribute(struct sched_domain *sd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 				 struct sched_domain_attr *attr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 	int request;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 	if (!attr || attr->relax_domain_level < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 		if (default_relax_domain_level < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 		request = default_relax_domain_level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 		request = attr->relax_domain_level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 	if (sd->level > request) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 		/* Turn off idle balance on this domain: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) static void __sdt_free(const struct cpumask *cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) static int __sdt_alloc(const struct cpumask *cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 				 const struct cpumask *cpu_map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 	switch (what) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 	case sa_rootdomain:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 		if (!atomic_read(&d->rd->refcount))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 			free_rootdomain(&d->rd->rcu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 		fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 	case sa_sd:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 		free_percpu(d->sd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 		fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 	case sa_sd_storage:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 		__sdt_free(cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 		fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 	case sa_none:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) static enum s_alloc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) 	memset(d, 0, sizeof(*d));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) 	if (__sdt_alloc(cpu_map))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) 		return sa_sd_storage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) 	d->sd = alloc_percpu(struct sched_domain *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 	if (!d->sd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) 		return sa_sd_storage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) 	d->rd = alloc_rootdomain();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) 	if (!d->rd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 		return sa_sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) 	return sa_rootdomain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259)  * NULL the sd_data elements we've used to build the sched_domain and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260)  * sched_group structure so that the subsequent __free_domain_allocs()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261)  * will not free the data we're using.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) static void claim_allocations(int cpu, struct sched_domain *sd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 	struct sd_data *sdd = sd->private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) enum numa_topology_type sched_numa_topology_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) static int			sched_domains_numa_levels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) static int			sched_domains_curr_level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) int				sched_max_numa_distance;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) static int			*sched_domains_numa_distance;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) static struct cpumask		***sched_domains_numa_masks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) int __read_mostly		node_reclaim_distance = RECLAIM_DISTANCE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293)  * SD_flags allowed in topology descriptions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295)  * These flags are purely descriptive of the topology and do not prescribe
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296)  * behaviour. Behaviour is artificial and mapped in the below sd_init()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297)  * function:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299)  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300)  *   SD_SHARE_PKG_RESOURCES - describes shared caches
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301)  *   SD_NUMA                - describes NUMA topologies
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303)  * Odd one out, which beside describing the topology has a quirk also
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304)  * prescribes the desired behaviour that goes along with it:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306)  *   SD_ASYM_PACKING        - describes SMT quirks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) #define TOPOLOGY_SD_FLAGS		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 	(SD_SHARE_CPUCAPACITY	|	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) 	 SD_SHARE_PKG_RESOURCES |	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 	 SD_NUMA		|	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 	 SD_ASYM_PACKING)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) static struct sched_domain *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) sd_init(struct sched_domain_topology_level *tl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 	const struct cpumask *cpu_map,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 	struct sched_domain *child, int dflags, int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 	struct sd_data *sdd = &tl->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 	int sd_id, sd_weight, sd_flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 	 * Ugly hack to pass state to sd_numa_mask()...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 	sched_domains_curr_level = tl->numa_level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 	sd_weight = cpumask_weight(tl->mask(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 	if (tl->sd_flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 		sd_flags = (*tl->sd_flags)();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) 			"wrong sd_flags in topology description\n"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 		sd_flags &= TOPOLOGY_SD_FLAGS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 	/* Apply detected topology flags */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 	sd_flags |= dflags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 	*sd = (struct sched_domain){
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 		.min_interval		= sd_weight,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 		.max_interval		= 2*sd_weight,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 		.busy_factor		= 16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 		.imbalance_pct		= 117,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 		.cache_nice_tries	= 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 		.flags			= 1*SD_BALANCE_NEWIDLE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 					| 1*SD_BALANCE_EXEC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 					| 1*SD_BALANCE_FORK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 					| 0*SD_BALANCE_WAKE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 					| 1*SD_WAKE_AFFINE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 					| 0*SD_SHARE_CPUCAPACITY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 					| 0*SD_SHARE_PKG_RESOURCES
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 					| 0*SD_SERIALIZE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 					| 1*SD_PREFER_SIBLING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 					| 0*SD_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 					| sd_flags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 					,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 		.last_balance		= jiffies,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 		.balance_interval	= sd_weight,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 		.max_newidle_lb_cost	= 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 		.next_decay_max_lb_cost	= jiffies,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 		.child			= child,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) #ifdef CONFIG_SCHED_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 		.name			= tl->name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 	sd_id = cpumask_first(sched_domain_span(sd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) 	 * Convert topological properties into behaviour.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 	/* Don't attempt to spread across CPUs of different capacities. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 	if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 		sd->child->flags &= ~SD_PREFER_SIBLING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 		sd->imbalance_pct = 110;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) 		sd->imbalance_pct = 117;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) 		sd->cache_nice_tries = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 	} else if (sd->flags & SD_NUMA) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 		sd->cache_nice_tries = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 		sd->flags &= ~SD_PREFER_SIBLING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 		sd->flags |= SD_SERIALIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) 		if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 			sd->flags &= ~(SD_BALANCE_EXEC |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 				       SD_BALANCE_FORK |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 				       SD_WAKE_AFFINE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 		sd->cache_nice_tries = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 	 * For all levels sharing cache; connect a sched_domain_shared
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) 	 * instance.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) 		atomic_inc(&sd->shared->ref);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 	sd->private = sdd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) 	return sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423)  * Topology list, bottom-up.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) static struct sched_domain_topology_level default_topology[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) #ifdef CONFIG_SCHED_SMT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) #ifdef CONFIG_SCHED_MC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) 	{ NULL, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) static struct sched_domain_topology_level *sched_domain_topology =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 	default_topology;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) #define for_each_sd_topology(tl)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) 	for (tl = sched_domain_topology; tl->mask; tl++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) void set_sched_topology(struct sched_domain_topology_level *tl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) 	if (WARN_ON_ONCE(sched_smp_initialized))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) 	sched_domain_topology = tl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) static const struct cpumask *sd_numa_mask(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) static void sched_numa_warn(const char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) 	static int done = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) 	int i,j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) 	if (done)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) 	done = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) 	printk(KERN_WARNING "ERROR: %s\n\n", str);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) 	for (i = 0; i < nr_node_ids; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) 		printk(KERN_WARNING "  ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) 		for (j = 0; j < nr_node_ids; j++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) 			printk(KERN_CONT "%02d ", node_distance(i,j));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) 		printk(KERN_CONT "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) 	printk(KERN_WARNING "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) bool find_numa_distance(int distance)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) 	if (distance == node_distance(0, 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) 	for (i = 0; i < sched_domains_numa_levels; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) 		if (sched_domains_numa_distance[i] == distance)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) 			return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494)  * A system can have three types of NUMA topology:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495)  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496)  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497)  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499)  * The difference between a glueless mesh topology and a backplane
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500)  * topology lies in whether communication between not directly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501)  * connected nodes goes through intermediary nodes (where programs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502)  * could run), or through backplane controllers. This affects
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503)  * placement of programs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505)  * The type of topology can be discerned with the following tests:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506)  * - If the maximum distance between any nodes is 1 hop, the system
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507)  *   is directly connected.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508)  * - If for two nodes A and B, located N > 1 hops away from each other,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509)  *   there is an intermediary node C, which is < N hops away from both
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510)  *   nodes A and B, the system is a glueless mesh.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) static void init_numa_topology_type(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) 	int a, b, c, n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) 	n = sched_max_numa_distance;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) 	if (sched_domains_numa_levels <= 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) 		sched_numa_topology_type = NUMA_DIRECT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) 	for_each_online_node(a) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) 		for_each_online_node(b) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) 			/* Find two nodes furthest removed from each other. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) 			if (node_distance(a, b) < n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) 			/* Is there an intermediary node between a and b? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) 			for_each_online_node(c) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) 				if (node_distance(a, c) < n &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) 				    node_distance(b, c) < n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) 					sched_numa_topology_type =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) 							NUMA_GLUELESS_MESH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) 					return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) 			sched_numa_topology_type = NUMA_BACKPLANE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) void sched_init_numa(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) 	struct sched_domain_topology_level *tl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) 	unsigned long *distance_map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) 	int nr_levels = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) 	int i, j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) 	 * unique distances in the node_distance() table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) 	distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) 	if (!distance_map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) 	bitmap_zero(distance_map, NR_DISTANCE_VALUES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) 	for (i = 0; i < nr_node_ids; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) 		for (j = 0; j < nr_node_ids; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) 			int distance = node_distance(i, j);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) 			if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) 				sched_numa_warn("Invalid distance value range");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) 				return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) 			bitmap_set(distance_map, distance, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) 	 * We can now figure out how many unique distance values there are and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) 	 * allocate memory accordingly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) 	nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) 	sched_domains_numa_distance = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) 	if (!sched_domains_numa_distance) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) 		bitmap_free(distance_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) 	for (i = 0, j = 0; i < nr_levels; i++, j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) 		j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) 		sched_domains_numa_distance[i] = j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 	bitmap_free(distance_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) 	 * 'nr_levels' contains the number of unique distances
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) 	 * The sched_domains_numa_distance[] array includes the actual distance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) 	 * numbers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) 	 * the array will contain less then 'nr_levels' members. This could be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) 	 * in other functions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) 	 * We reset it to 'nr_levels' at the end of this function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) 	sched_domains_numa_levels = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) 	sched_domains_numa_masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) 	if (!sched_domains_numa_masks)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) 	 * Now for each level, construct a mask per node which contains all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) 	 * CPUs of nodes that are that many hops away from us.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) 	for (i = 0; i < nr_levels; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) 		sched_domains_numa_masks[i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) 		if (!sched_domains_numa_masks[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) 		for (j = 0; j < nr_node_ids; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) 			int k;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) 			if (!mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) 				return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) 			sched_domains_numa_masks[i][j] = mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) 			for_each_node(k) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) 				if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) 					sched_numa_warn("Node-distance not symmetric");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) 				if (node_distance(j, k) > sched_domains_numa_distance[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) 					continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) 				cpumask_or(mask, mask, cpumask_of_node(k));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) 	/* Compute default topology size */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) 	for (i = 0; sched_domain_topology[i].mask; i++);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) 	tl = kzalloc((i + nr_levels + 1) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) 	if (!tl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) 	 * Copy the default topology bits..
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) 	for (i = 0; sched_domain_topology[i].mask; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) 		tl[i] = sched_domain_topology[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) 	 * Add the NUMA identity distance, aka single NODE.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) 	tl[i++] = (struct sched_domain_topology_level){
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) 		.mask = sd_numa_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) 		.numa_level = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) 		SD_INIT_NAME(NODE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) 	 * .. and append 'j' levels of NUMA goodness.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) 	for (j = 1; j < nr_levels; i++, j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) 		tl[i] = (struct sched_domain_topology_level){
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) 			.mask = sd_numa_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) 			.sd_flags = cpu_numa_flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) 			.flags = SDTL_OVERLAP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) 			.numa_level = j,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) 			SD_INIT_NAME(NUMA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) 		};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) 	sched_domain_topology = tl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) 	sched_domains_numa_levels = nr_levels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) 	sched_max_numa_distance = sched_domains_numa_distance[nr_levels - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) 	init_numa_topology_type();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) void sched_domains_numa_masks_set(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) 	int node = cpu_to_node(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) 	int i, j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) 	for (i = 0; i < sched_domains_numa_levels; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) 		for (j = 0; j < nr_node_ids; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) void sched_domains_numa_masks_clear(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) 	int i, j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) 	for (i = 0; i < sched_domains_numa_levels; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) 		for (j = 0; j < nr_node_ids; j++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716)  * sched_numa_find_closest() - given the NUMA topology, find the cpu
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717)  *                             closest to @cpu from @cpumask.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718)  * cpumask: cpumask to find a cpu from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719)  * cpu: cpu to be close to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721)  * returns: cpu, or nr_cpu_ids when nothing found.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) 	int i, j = cpu_to_node(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) 	for (i = 0; i < sched_domains_numa_levels; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) 		cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) 		if (cpu < nr_cpu_ids)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) 			return cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) 	return nr_cpu_ids;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) #endif /* CONFIG_NUMA */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737) static int __sdt_alloc(const struct cpumask *cpu_map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) 	struct sched_domain_topology_level *tl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) 	int j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) 	for_each_sd_topology(tl) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) 		struct sd_data *sdd = &tl->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) 		sdd->sd = alloc_percpu(struct sched_domain *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) 		if (!sdd->sd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) 		if (!sdd->sds)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) 		sdd->sg = alloc_percpu(struct sched_group *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) 		if (!sdd->sg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) 		if (!sdd->sgc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) 		for_each_cpu(j, cpu_map) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) 			struct sched_domain *sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) 			struct sched_domain_shared *sds;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) 			struct sched_group *sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) 			struct sched_group_capacity *sgc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) 					GFP_KERNEL, cpu_to_node(j));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) 			if (!sd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) 				return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) 			*per_cpu_ptr(sdd->sd, j) = sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774) 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) 					GFP_KERNEL, cpu_to_node(j));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) 			if (!sds)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) 				return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779) 			*per_cpu_ptr(sdd->sds, j) = sds;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) 					GFP_KERNEL, cpu_to_node(j));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) 			if (!sg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784) 				return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) 			sg->next = sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) 			*per_cpu_ptr(sdd->sg, j) = sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790) 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791) 					GFP_KERNEL, cpu_to_node(j));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) 			if (!sgc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) 				return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) #ifdef CONFIG_SCHED_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) 			sgc->id = j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799) 			*per_cpu_ptr(sdd->sgc, j) = sgc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) static void __sdt_free(const struct cpumask *cpu_map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) 	struct sched_domain_topology_level *tl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809) 	int j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) 	for_each_sd_topology(tl) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) 		struct sd_data *sdd = &tl->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) 		for_each_cpu(j, cpu_map) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815) 			struct sched_domain *sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817) 			if (sdd->sd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818) 				sd = *per_cpu_ptr(sdd->sd, j);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819) 				if (sd && (sd->flags & SD_OVERLAP))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) 					free_sched_groups(sd->groups, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) 				kfree(*per_cpu_ptr(sdd->sd, j));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) 			if (sdd->sds)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825) 				kfree(*per_cpu_ptr(sdd->sds, j));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) 			if (sdd->sg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827) 				kfree(*per_cpu_ptr(sdd->sg, j));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) 			if (sdd->sgc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) 				kfree(*per_cpu_ptr(sdd->sgc, j));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) 		free_percpu(sdd->sd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832) 		sdd->sd = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833) 		free_percpu(sdd->sds);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834) 		sdd->sds = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) 		free_percpu(sdd->sg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836) 		sdd->sg = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837) 		free_percpu(sdd->sgc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838) 		sdd->sgc = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842) static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844) 		struct sched_domain *child, int dflags, int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846) 	struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) 	if (child) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849) 		sd->level = child->level + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851) 		child->parent = sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853) 		if (!cpumask_subset(sched_domain_span(child),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) 				    sched_domain_span(sd))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) 			pr_err("BUG: arch topology borken\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) #ifdef CONFIG_SCHED_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857) 			pr_err("     the %s domain not a subset of the %s domain\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) 					child->name, sd->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) 			/* Fixup, ensure @sd has at least @child CPUs. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) 			cpumask_or(sched_domain_span(sd),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862) 				   sched_domain_span(sd),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) 				   sched_domain_span(child));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867) 	set_domain_attribute(sd, attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) 	return sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873)  * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874)  * any two given CPUs at this (non-NUMA) topology level.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) static bool topology_span_sane(struct sched_domain_topology_level *tl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877) 			      const struct cpumask *cpu_map, int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881) 	/* NUMA levels are allowed to overlap */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882) 	if (tl->flags & SDTL_OVERLAP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886) 	 * Non-NUMA levels cannot partially overlap - they must be either
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887) 	 * completely equal or completely disjoint. Otherwise we can end up
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888) 	 * breaking the sched_group lists - i.e. a later get_group() pass
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889) 	 * breaks the linking done for an earlier span.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) 	for_each_cpu(i, cpu_map) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892) 		if (i == cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) 		 * We should 'and' all those masks with 'cpu_map' to exactly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896) 		 * match the topology we're about to build, but that can only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) 		 * remove CPUs, which only lessens our ability to detect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898) 		 * overlaps
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900) 		if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901) 		    cpumask_intersects(tl->mask(cpu), tl->mask(i)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902) 			return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905) 	return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909)  * Find the sched_domain_topology_level where all CPU capacities are visible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910)  * for all CPUs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912) static struct sched_domain_topology_level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913) *asym_cpu_capacity_level(const struct cpumask *cpu_map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915) 	int i, j, asym_level = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916) 	bool asym = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917) 	struct sched_domain_topology_level *tl, *asym_tl = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918) 	unsigned long cap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920) 	/* Is there any asymmetry? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921) 	cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923) 	for_each_cpu(i, cpu_map) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) 		if (arch_scale_cpu_capacity(i) != cap) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925) 			asym = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) 	if (!asym)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934) 	 * Examine topology from all CPU's point of views to detect the lowest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) 	 * sched_domain_topology_level where a highest capacity CPU is visible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936) 	 * to everyone.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938) 	for_each_cpu(i, cpu_map) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939) 		unsigned long max_capacity = arch_scale_cpu_capacity(i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940) 		int tl_id = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942) 		for_each_sd_topology(tl) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) 			if (tl_id < asym_level)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) 				goto next_level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) 			for_each_cpu_and(j, tl->mask(i), cpu_map) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) 				unsigned long capacity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) 				capacity = arch_scale_cpu_capacity(j);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951) 				if (capacity <= max_capacity)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) 					continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954) 				max_capacity = capacity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) 				asym_level = tl_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956) 				asym_tl = tl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958) next_level:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959) 			tl_id++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) 	return asym_tl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968)  * Build sched domains for a given set of CPUs and attach the sched domains
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969)  * to the individual CPUs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974) 	enum s_alloc alloc_state = sa_none;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) 	struct sched_domain *sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) 	struct s_data d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977) 	struct rq *rq = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) 	int i, ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979) 	struct sched_domain_topology_level *tl_asym;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980) 	bool has_asym = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982) 	if (WARN_ON(cpumask_empty(cpu_map)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) 		goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985) 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986) 	if (alloc_state != sa_rootdomain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987) 		goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) 	tl_asym = asym_cpu_capacity_level(cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) 	/* Set up domains for CPUs specified by the cpu_map: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992) 	for_each_cpu(i, cpu_map) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993) 		struct sched_domain_topology_level *tl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) 		int dflags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) 		sd = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) 		for_each_sd_topology(tl) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) 			if (tl == tl_asym) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) 				dflags |= SD_ASYM_CPUCAPACITY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) 				has_asym = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003) 			if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004) 				goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006) 			sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) 			if (tl == sched_domain_topology)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009) 				*per_cpu_ptr(d.sd, i) = sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) 			if (tl->flags & SDTL_OVERLAP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011) 				sd->flags |= SD_OVERLAP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012) 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017) 	/* Build the groups for the domains */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018) 	for_each_cpu(i, cpu_map) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019) 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020) 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) 			if (sd->flags & SD_OVERLAP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) 				if (build_overlap_sched_groups(sd, i))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023) 					goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) 				if (build_sched_groups(sd, i))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026) 					goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031) 	/* Calculate CPU capacity for physical packages and nodes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033) 		if (!cpumask_test_cpu(i, cpu_map))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036) 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) 			claim_allocations(i, sd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) 			init_sched_groups_capacity(i, sd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042) 	/* Attach the domains */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) 	for_each_cpu(i, cpu_map) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045) 		rq = cpu_rq(i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) 		sd = *per_cpu_ptr(d.sd, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048) 		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049) 		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050) 			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052) 		cpu_attach_domain(sd, d.rd, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) 	if (has_asym)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057) 		static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059) 	if (rq && sched_debug_enabled) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060) 		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061) 			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) 	trace_android_vh_build_sched_domains(has_asym);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065) 	ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066) error:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067) 	__free_domain_allocs(&d, alloc_state, cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) /* Current sched domains: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073) static cpumask_var_t			*doms_cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) /* Number of sched domains in 'doms_cur': */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076) static int				ndoms_cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078) /* Attribues of custom domains in 'doms_cur' */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079) static struct sched_domain_attr		*dattr_cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082)  * Special case: If a kmalloc() of a doms_cur partition (array of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083)  * cpumask) fails, then fallback to a single sched domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084)  * as determined by the single cpumask fallback_doms.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086) static cpumask_var_t			fallback_doms;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089)  * arch_update_cpu_topology lets virtualized architectures update the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090)  * CPU core maps. It is supposed to return 1 if the topology changed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091)  * or 0 if it stayed the same.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) int __weak arch_update_cpu_topology(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098) cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101) 	cpumask_var_t *doms;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) 	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104) 	if (!doms)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106) 	for (i = 0; i < ndoms; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107) 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108) 			free_sched_domains(doms, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112) 	return doms;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115) void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118) 	for (i = 0; i < ndoms; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119) 		free_cpumask_var(doms[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120) 	kfree(doms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124)  * Set up scheduler domains and groups.  For now this just excludes isolated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125)  * CPUs, but could be used to exclude other special cases in the future.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127) int sched_init_domains(const struct cpumask *cpu_map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132) 	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133) 	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135) 	arch_update_cpu_topology();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136) 	ndoms_cur = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137) 	doms_cur = alloc_sched_domains(ndoms_cur);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138) 	if (!doms_cur)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139) 		doms_cur = &fallback_doms;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140) 	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141) 	err = build_sched_domains(doms_cur[0], NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142) 	register_sched_domain_sysctl();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2144) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2145) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2147) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2148)  * Detach sched domains from a group of CPUs specified in cpu_map
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2149)  * These CPUs will now be attached to the NULL domain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2150)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2151) static void detach_destroy_domains(const struct cpumask *cpu_map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2152) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2153) 	unsigned int cpu = cpumask_any(cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2154) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2156) 	if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2157) 		static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2159) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2160) 	for_each_cpu(i, cpu_map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2161) 		cpu_attach_domain(NULL, &def_root_domain, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2162) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2163) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2165) /* handle null as "default" */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2166) static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2167) 			struct sched_domain_attr *new, int idx_new)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2168) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2169) 	struct sched_domain_attr tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2171) 	/* Fast path: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2172) 	if (!new && !cur)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2173) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2175) 	tmp = SD_ATTR_INIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2177) 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2178) 			new ? (new + idx_new) : &tmp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2179) 			sizeof(struct sched_domain_attr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2180) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2182) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2183)  * Partition sched domains as specified by the 'ndoms_new'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2184)  * cpumasks in the array doms_new[] of cpumasks. This compares
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2185)  * doms_new[] to the current sched domain partitioning, doms_cur[].
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2186)  * It destroys each deleted domain and builds each new domain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2187)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2188)  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2189)  * The masks don't intersect (don't overlap.) We should setup one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2190)  * sched domain for each mask. CPUs not in any of the cpumasks will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2191)  * not be load balanced. If the same cpumask appears both in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2192)  * current 'doms_cur' domains and in the new 'doms_new', we can leave
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2193)  * it as it is.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2194)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2195)  * The passed in 'doms_new' should be allocated using
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2196)  * alloc_sched_domains.  This routine takes ownership of it and will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2197)  * free_sched_domains it when done with it. If the caller failed the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2198)  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2199)  * and partition_sched_domains() will fallback to the single partition
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2200)  * 'fallback_doms', it also forces the domains to be rebuilt.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2201)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2202)  * If doms_new == NULL it will be replaced with cpu_online_mask.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2203)  * ndoms_new == 0 is a special case for destroying existing domains,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2204)  * and it will not create the default domain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2205)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2206)  * Call with hotplug lock and sched_domains_mutex held
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2207)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2208) void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2209) 				    struct sched_domain_attr *dattr_new)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2210) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2211) 	bool __maybe_unused has_eas = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2212) 	int i, j, n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2213) 	int new_topology;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2215) 	lockdep_assert_held(&sched_domains_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2217) 	/* Always unregister in case we don't destroy any domains: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2218) 	unregister_sched_domain_sysctl();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2220) 	/* Let the architecture update CPU core mappings: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2221) 	new_topology = arch_update_cpu_topology();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2223) 	if (!doms_new) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2224) 		WARN_ON_ONCE(dattr_new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2225) 		n = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2226) 		doms_new = alloc_sched_domains(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2227) 		if (doms_new) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2228) 			n = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2229) 			cpumask_and(doms_new[0], cpu_active_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2230) 				    housekeeping_cpumask(HK_FLAG_DOMAIN));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2231) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2232) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2233) 		n = ndoms_new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2234) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2235) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2236) 	/* Destroy deleted domains: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2237) 	for (i = 0; i < ndoms_cur; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2238) 		for (j = 0; j < n && !new_topology; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2239) 			if (cpumask_equal(doms_cur[i], doms_new[j]) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2240) 			    dattrs_equal(dattr_cur, i, dattr_new, j)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2241) 				struct root_domain *rd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2243) 				/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2244) 				 * This domain won't be destroyed and as such
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2245) 				 * its dl_bw->total_bw needs to be cleared.  It
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2246) 				 * will be recomputed in function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2247) 				 * update_tasks_root_domain().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2248) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2249) 				rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2250) 				dl_clear_root_domain(rd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2251) 				goto match1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2252) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2253) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2254) 		/* No match - a current sched domain not in new doms_new[] */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2255) 		detach_destroy_domains(doms_cur[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2256) match1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2257) 		;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2258) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2260) 	n = ndoms_cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2261) 	if (!doms_new) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2262) 		n = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2263) 		doms_new = &fallback_doms;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2264) 		cpumask_and(doms_new[0], cpu_active_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2265) 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2266) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2268) 	/* Build new domains: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2269) 	for (i = 0; i < ndoms_new; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2270) 		for (j = 0; j < n && !new_topology; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2271) 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2272) 			    dattrs_equal(dattr_new, i, dattr_cur, j))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2273) 				goto match2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2274) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2275) 		/* No match - add a new doms_new */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2276) 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2277) match2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2278) 		;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2279) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2281) #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2282) 	/* Build perf. domains: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2283) 	for (i = 0; i < ndoms_new; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2284) 		for (j = 0; j < n && !sched_energy_update; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2285) 			if (cpumask_equal(doms_new[i], doms_cur[j]) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2286) 			    cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2287) 				has_eas = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2288) 				goto match3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2289) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2290) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2291) 		/* No match - add perf. domains for a new rd */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2292) 		has_eas |= build_perf_domains(doms_new[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2293) match3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2294) 		;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2295) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2296) 	sched_energy_set(has_eas);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2297) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2299) 	/* Remember the new sched domains: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2300) 	if (doms_cur != &fallback_doms)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2301) 		free_sched_domains(doms_cur, ndoms_cur);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2303) 	kfree(dattr_cur);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2304) 	doms_cur = doms_new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2305) 	dattr_cur = dattr_new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2306) 	ndoms_cur = ndoms_new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2307) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2308) 	register_sched_domain_sysctl();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2309) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2311) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2312)  * Call with hotplug lock held
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2313)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2314) void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2315) 			     struct sched_domain_attr *dattr_new)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2316) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2317) 	mutex_lock(&sched_domains_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2318) 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2319) 	mutex_unlock(&sched_domains_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2320) }