^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /* SPDX-License-Identifier: GPL-2.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Scheduler internal types and methods:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) #include <linux/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) #include <linux/sched/autogroup.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) #include <linux/sched/clock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/sched/coredump.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/sched/cpufreq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/sched/cputime.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/sched/deadline.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/sched/debug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/sched/hotplug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/sched/idle.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/sched/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/sched/isolation.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/sched/jobctl.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/sched/loadavg.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/sched/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <linux/sched/nohz.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <linux/sched/numa_balancing.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <linux/sched/prio.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #include <linux/sched/rt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #include <linux/sched/signal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #include <linux/sched/smt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #include <linux/sched/stat.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #include <linux/sched/sysctl.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #include <linux/sched/task.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #include <linux/sched/task_stack.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #include <linux/sched/topology.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #include <linux/sched/user.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #include <linux/sched/wake_q.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #include <linux/sched/xacct.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #include <uapi/linux/sched/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) #include <linux/binfmts.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #include <linux/blkdev.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #include <linux/compat.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) #include <linux/context_tracking.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) #include <linux/cpufreq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) #include <linux/cpuidle.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) #include <linux/cpuset.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) #include <linux/ctype.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) #include <linux/debugfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) #include <linux/delayacct.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) #include <linux/energy_model.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) #include <linux/init_task.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) #include <linux/kprobes.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) #include <linux/kthread.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) #include <linux/membarrier.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) #include <linux/migrate.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) #include <linux/mmu_context.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) #include <linux/nmi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) #include <linux/proc_fs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) #include <linux/prefetch.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) #include <linux/profile.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) #include <linux/psi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) #include <linux/rcupdate_wait.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) #include <linux/security.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) #include <linux/stop_machine.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) #include <linux/suspend.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) #include <linux/swait.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) #include <linux/syscalls.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) #include <linux/task_work.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) #include <linux/tsacct_kern.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) #include <linux/android_vendor.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) #include <linux/android_kabi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) #include <asm/tlb.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) #include <asm-generic/vmlinux.lds.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) #include <soc/rockchip/rockchip_performance.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) #ifdef CONFIG_PARAVIRT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) # include <asm/paravirt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) #include "cpupri.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) #include "cpudeadline.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) #include <trace/events/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) #ifdef CONFIG_SCHED_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) struct rq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) struct cpuidle_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) /* task_struct::on_rq states: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) #define TASK_ON_RQ_QUEUED 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) #define TASK_ON_RQ_MIGRATING 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) extern __read_mostly int scheduler_running;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) extern unsigned long calc_load_update;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) extern atomic_long_t calc_load_tasks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) extern void calc_global_load_tick(struct rq *this_rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) extern long calc_load_fold_active(struct rq *this_rq, long adjust);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) * Helpers for converting nanosecond timing to jiffy resolution
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) * Increase resolution of nice-level calculations for 64-bit architectures.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) * The extra resolution improves shares distribution and load balancing of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) * hierarchies, especially on larger systems. This is not a user-visible change
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) * and does not change the user-interface for setting shares/weights.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) * We increase resolution only if we have enough bits to allow this increased
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) * are pretty high and the returns do not justify the increased costs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) * increase coverage and consistency always enable it on 64-bit platforms.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) #ifdef CONFIG_64BIT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) # define scale_load_down(w) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) ({ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) unsigned long __w = (w); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) if (__w) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) __w; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) })
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) # define scale_load(w) (w)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) # define scale_load_down(w) (w)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) * Task weight (visible to users) and its load (invisible to users) have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) * independent resolution, but they should be well calibrated. We use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) * scale_load() and scale_load_down(w) to convert between them. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) * following must be true:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) * Single value that decides SCHED_DEADLINE internal math precision.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) * 10 -> just above 1us
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) * 9 -> just above 0.5us
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) #define DL_SCALE 10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) * Single value that denotes runtime == period, ie unlimited time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) #define RUNTIME_INF ((u64)~0ULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) static inline int idle_policy(int policy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) return policy == SCHED_IDLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) static inline int fair_policy(int policy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) return policy == SCHED_NORMAL || policy == SCHED_BATCH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) static inline int rt_policy(int policy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) return policy == SCHED_FIFO || policy == SCHED_RR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) static inline int dl_policy(int policy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) return policy == SCHED_DEADLINE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) static inline bool valid_policy(int policy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) return idle_policy(policy) || fair_policy(policy) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) rt_policy(policy) || dl_policy(policy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) static inline int task_has_idle_policy(struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) return idle_policy(p->policy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) static inline int task_has_rt_policy(struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) return rt_policy(p->policy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) static inline int task_has_dl_policy(struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) return dl_policy(p->policy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) static inline void update_avg(u64 *avg, u64 sample)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) s64 diff = sample - *avg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) *avg += diff / 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) * Shifting a value by an exponent greater *or equal* to the size of said value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) * is UB; cap at size-1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) #define shr_bound(val, shift) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) * !! For sched_setattr_nocheck() (kernel) only !!
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) * This is actually gross. :(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) * tasks, but still be able to sleep. We need this on platforms that cannot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) * atomically change clock frequency. Remove once fast switching will be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) * available on such platforms.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) * SUGOV stands for SchedUtil GOVernor.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) #define SCHED_FLAG_SUGOV 0x10000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) * Tells if entity @a should preempt entity @b.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) static inline bool
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) return dl_entity_is_special(a) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) dl_time_before(a->deadline, b->deadline);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) * This is the priority-queue data structure of the RT scheduling class:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) struct rt_prio_array {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) struct list_head queue[MAX_RT_PRIO];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) struct rt_bandwidth {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) /* nests inside the rq lock: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) raw_spinlock_t rt_runtime_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) ktime_t rt_period;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) u64 rt_runtime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) struct hrtimer rt_period_timer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) unsigned int rt_period_active;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) void __dl_clear_params(struct task_struct *p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) struct dl_bandwidth {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) raw_spinlock_t dl_runtime_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) u64 dl_runtime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) u64 dl_period;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) static inline int dl_bandwidth_enabled(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) return sysctl_sched_rt_runtime >= 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) * To keep the bandwidth of -deadline tasks under control
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) * we need some place where:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) * - store the maximum -deadline bandwidth of each cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) * - cache the fraction of bandwidth that is currently allocated in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) * each root domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) * This is all done in the data structure below. It is similar to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) * one used for RT-throttling (rt_bandwidth), with the main difference
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) * that, since here we are only interested in admission control, we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) * do not decrease any runtime while the group "executes", neither we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) * need a timer to replenish it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) * With respect to SMP, bandwidth is given on a per root domain basis,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) * meaning that:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) * - bw (< 100%) is the deadline bandwidth of each CPU;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) * - total_bw is the currently allocated bandwidth in each root domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) struct dl_bw {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) raw_spinlock_t lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) u64 bw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) u64 total_bw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) static inline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) dl_b->total_bw -= tsk_bw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) __dl_update(dl_b, (s32)tsk_bw / cpus);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) static inline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) dl_b->total_bw += tsk_bw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) __dl_update(dl_b, -((s32)tsk_bw / cpus));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) u64 old_bw, u64 new_bw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) return dl_b->bw != -1 &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) * Verify the fitness of task @p to run on @cpu taking into account the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) * CPU original capacity and the runtime/deadline ratio of the task.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) * The function will return true if the CPU original capacity of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) * task and false otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) unsigned long cap = arch_scale_cpu_capacity(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) extern void init_dl_bw(struct dl_bw *dl_b);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) extern int sched_dl_global_validate(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) extern void sched_dl_do_global(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) extern bool __checkparam_dl(const struct sched_attr *attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) extern bool dl_cpu_busy(unsigned int cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) #ifdef CONFIG_CGROUP_SCHED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) #include <linux/cgroup.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) #include <linux/psi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) struct cfs_rq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) struct rt_rq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) extern struct list_head task_groups;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) struct cfs_bandwidth {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) #ifdef CONFIG_CFS_BANDWIDTH
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) raw_spinlock_t lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) ktime_t period;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) u64 quota;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) u64 runtime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) s64 hierarchical_quota;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) u8 idle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) u8 period_active;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) u8 slack_started;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) struct hrtimer period_timer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) struct hrtimer slack_timer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) struct list_head throttled_cfs_rq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) /* Statistics: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) int nr_periods;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) int nr_throttled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) u64 throttled_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) /* Task group related information */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) struct task_group {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) struct cgroup_subsys_state css;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) #ifdef CONFIG_FAIR_GROUP_SCHED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) /* schedulable entities of this group on each CPU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) struct sched_entity **se;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) /* runqueue "owned" by this group on each CPU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) struct cfs_rq **cfs_rq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) unsigned long shares;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) * load_avg can be heavily contended at clock tick time, so put
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) * it in its own cacheline separated from the fields above which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) * will also be accessed at each tick.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) atomic_long_t load_avg ____cacheline_aligned;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) #ifdef CONFIG_RT_GROUP_SCHED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) struct sched_rt_entity **rt_se;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) struct rt_rq **rt_rq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) struct rt_bandwidth rt_bandwidth;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) struct rcu_head rcu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) struct list_head list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) struct task_group *parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) struct list_head siblings;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) struct list_head children;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) #ifdef CONFIG_SCHED_AUTOGROUP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) struct autogroup *autogroup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) struct cfs_bandwidth cfs_bandwidth;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) #ifdef CONFIG_UCLAMP_TASK_GROUP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) /* The two decimal precision [%] value requested from user-space */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) unsigned int uclamp_pct[UCLAMP_CNT];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) /* Clamp values requested for a task group */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) struct uclamp_se uclamp_req[UCLAMP_CNT];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) /* Effective clamp values used for a task group */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) struct uclamp_se uclamp[UCLAMP_CNT];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) /* Latency-sensitive flag used for a task group */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) unsigned int latency_sensitive;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) ANDROID_VENDOR_DATA_ARRAY(1, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) ANDROID_KABI_RESERVE(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) ANDROID_KABI_RESERVE(2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) ANDROID_KABI_RESERVE(3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) ANDROID_KABI_RESERVE(4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) #ifdef CONFIG_FAIR_GROUP_SCHED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) * A weight of 0 or 1 can cause arithmetics problems.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) * A weight of a cfs_rq is the sum of weights of which entities
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) * are queued on this cfs_rq, so a weight of a entity should not be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) * too large, so as the shares value of a task group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) * (The default weight is 1024 - so there's no practical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) * limitation from this.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) #define MIN_SHARES (1UL << 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) #define MAX_SHARES (1UL << 18)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) typedef int (*tg_visitor)(struct task_group *, void *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) extern int walk_tg_tree_from(struct task_group *from,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) tg_visitor down, tg_visitor up, void *data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) * Iterate the full tree, calling @down when first entering a node and @up when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) * leaving it for the final time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) * Caller must hold rcu_lock or sufficient equivalent.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) return walk_tg_tree_from(&root_task_group, down, up, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) extern int tg_nop(struct task_group *tg, void *data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) extern void free_fair_sched_group(struct task_group *tg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) extern void online_fair_sched_group(struct task_group *tg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) extern void unregister_fair_sched_group(struct task_group *tg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) struct sched_entity *se, int cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) struct sched_entity *parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) extern void free_rt_sched_group(struct task_group *tg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) struct sched_rt_entity *rt_se, int cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) struct sched_rt_entity *parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) extern long sched_group_rt_runtime(struct task_group *tg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) extern long sched_group_rt_period(struct task_group *tg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) extern struct task_group *sched_create_group(struct task_group *parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) extern void sched_online_group(struct task_group *tg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) struct task_group *parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) extern void sched_destroy_group(struct task_group *tg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) extern void sched_offline_group(struct task_group *tg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) extern void sched_move_task(struct task_struct *tsk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) #ifdef CONFIG_FAIR_GROUP_SCHED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) extern void set_task_rq_fair(struct sched_entity *se,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) struct cfs_rq *prev, struct cfs_rq *next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) #else /* !CONFIG_SMP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) static inline void set_task_rq_fair(struct sched_entity *se,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) struct cfs_rq *prev, struct cfs_rq *next) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) #endif /* CONFIG_SMP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) #endif /* CONFIG_FAIR_GROUP_SCHED */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) #else /* CONFIG_CGROUP_SCHED */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) struct cfs_bandwidth { };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) #endif /* CONFIG_CGROUP_SCHED */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) /* CFS-related fields in a runqueue */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) struct cfs_rq {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) struct load_weight load;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) unsigned int nr_running;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) unsigned int idle_h_nr_running; /* SCHED_IDLE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) u64 exec_clock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) u64 min_vruntime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) #ifndef CONFIG_64BIT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) u64 min_vruntime_copy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) struct rb_root_cached tasks_timeline;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) * 'curr' points to currently running entity on this cfs_rq.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) * It is set to NULL otherwise (i.e when none are currently running).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) struct sched_entity *curr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) struct sched_entity *next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) struct sched_entity *last;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) struct sched_entity *skip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) #ifdef CONFIG_SCHED_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) unsigned int nr_spread_over;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) * CFS load tracking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) struct sched_avg avg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) #ifndef CONFIG_64BIT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) u64 load_last_update_time_copy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) raw_spinlock_t lock ____cacheline_aligned;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) int nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) unsigned long load_avg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) unsigned long util_avg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) unsigned long runnable_avg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) } removed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) #ifdef CONFIG_FAIR_GROUP_SCHED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) unsigned long tg_load_avg_contrib;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) long propagate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) long prop_runnable_sum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) * h_load = weight * f(tg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) * Where f(tg) is the recursive weight fraction assigned to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) * this group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) unsigned long h_load;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) u64 last_h_load_update;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) struct sched_entity *h_load_next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) #endif /* CONFIG_FAIR_GROUP_SCHED */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) #endif /* CONFIG_SMP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) #ifdef CONFIG_FAIR_GROUP_SCHED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) * (like users, containers etc.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) * This list is used during load balance.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) int on_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) struct list_head leaf_cfs_rq_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) struct task_group *tg; /* group that "owns" this runqueue */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) #ifdef CONFIG_CFS_BANDWIDTH
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) int runtime_enabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) s64 runtime_remaining;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) u64 throttled_clock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) u64 throttled_clock_task;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) u64 throttled_clock_task_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) int throttled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) int throttle_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) struct list_head throttled_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) #endif /* CONFIG_CFS_BANDWIDTH */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) ANDROID_VENDOR_DATA_ARRAY(1, 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) #endif /* CONFIG_FAIR_GROUP_SCHED */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) static inline int rt_bandwidth_enabled(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) return sysctl_sched_rt_runtime >= 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) /* RT IPI pull logic requires IRQ_WORK */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) # define HAVE_RT_PUSH_IPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) /* Real-Time classes' related field in a runqueue: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) struct rt_rq {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) struct rt_prio_array active;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) unsigned int rt_nr_running;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) unsigned int rr_nr_running;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) int curr; /* highest queued rt task prio */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) int next; /* next highest */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) } highest_prio;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) unsigned long rt_nr_migratory;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) unsigned long rt_nr_total;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) int overloaded;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) struct plist_head pushable_tasks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) #endif /* CONFIG_SMP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) int rt_queued;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) int rt_throttled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) u64 rt_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) u64 rt_runtime;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) /* Nests inside the rq lock: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) raw_spinlock_t rt_runtime_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) #ifdef CONFIG_RT_GROUP_SCHED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) unsigned long rt_nr_boosted;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) struct rq *rq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) struct task_group *tg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) return rt_rq->rt_queued && rt_rq->rt_nr_running;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) /* Deadline class' related fields in a runqueue */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) struct dl_rq {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) /* runqueue is an rbtree, ordered by deadline */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) struct rb_root_cached root;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) unsigned long dl_nr_running;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) * Deadline values of the currently executing and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) * earliest ready task on this rq. Caching these facilitates
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) * the decision whether or not a ready but not running task
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) * should migrate somewhere else.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) u64 curr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) u64 next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) } earliest_dl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) unsigned long dl_nr_migratory;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) int overloaded;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) * Tasks on this rq that can be pushed away. They are kept in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) * an rb-tree, ordered by tasks' deadlines, with caching
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) * of the leftmost (earliest deadline) element.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) struct rb_root_cached pushable_dl_tasks_root;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) struct dl_bw dl_bw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) * "Active utilization" for this runqueue: increased when a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) * task wakes up (becomes TASK_RUNNING) and decreased when a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) * task blocks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) u64 running_bw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) * Utilization of the tasks "assigned" to this runqueue (including
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) * the tasks that are in runqueue and the tasks that executed on this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) * CPU and blocked). Increased when a task moves to this runqueue, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) * decreased when the task moves away (migrates, changes scheduling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) * policy, or terminates).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) * This is needed to compute the "inactive utilization" for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) * runqueue (inactive utilization = this_bw - running_bw).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) u64 this_bw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) u64 extra_bw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) * Inverse of the fraction of CPU utilization that can be reclaimed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) * by the GRUB algorithm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) u64 bw_ratio;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) #ifdef CONFIG_FAIR_GROUP_SCHED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) /* An entity is a task if it doesn't "own" a runqueue */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) #define entity_is_task(se) (!se->my_q)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) static inline void se_update_runnable(struct sched_entity *se)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) if (!entity_is_task(se))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) se->runnable_weight = se->my_q->h_nr_running;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) static inline long se_runnable(struct sched_entity *se)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) if (entity_is_task(se))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) return !!se->on_rq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) return se->runnable_weight;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) #define entity_is_task(se) 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) static inline void se_update_runnable(struct sched_entity *se) {}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) static inline long se_runnable(struct sched_entity *se)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) return !!se->on_rq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) * XXX we want to get rid of these helpers and use the full load resolution.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) static inline long se_weight(struct sched_entity *se)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) return scale_load_down(se->load.weight);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) static inline bool sched_asym_prefer(int a, int b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) struct perf_domain {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) struct em_perf_domain *em_pd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) struct perf_domain *next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) struct rcu_head rcu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) /* Scheduling group status flags */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) * We add the notion of a root-domain which will be used to define per-domain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) * variables. Each exclusive cpuset essentially defines an island domain by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) * fully partitioning the member CPUs from any other cpuset. Whenever a new
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) * exclusive cpuset is created, we also create and attach a new root-domain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) * object.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) struct root_domain {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) atomic_t refcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) atomic_t rto_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) struct rcu_head rcu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) cpumask_var_t span;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) cpumask_var_t online;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) * Indicate pullable load on at least one CPU, e.g:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) * - More than one runnable task
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) * - Running task is misfit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) int overload;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) /* Indicate one or more cpus over-utilized (tipping point) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) int overutilized;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) * The bit corresponding to a CPU gets set here if such CPU has more
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) * than one runnable -deadline task (as it is below for RT tasks).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) cpumask_var_t dlo_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) atomic_t dlo_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) struct dl_bw dl_bw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) struct cpudl cpudl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) #ifdef HAVE_RT_PUSH_IPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) * For IPI pull requests, loop across the rto_mask.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) struct irq_work rto_push_work;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) raw_spinlock_t rto_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) /* These are only updated and read within rto_lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) int rto_loop;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) int rto_cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) /* These atomics are updated outside of a lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) atomic_t rto_loop_next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) atomic_t rto_loop_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) * The "RT overload" flag: it gets set if a CPU has more than
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) * one runnable RT task.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) cpumask_var_t rto_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) struct cpupri cpupri;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) unsigned long max_cpu_capacity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) * NULL-terminated list of performance domains intersecting with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) * CPUs of the rd. Protected by RCU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) struct perf_domain __rcu *pd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) ANDROID_VENDOR_DATA_ARRAY(1, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) ANDROID_KABI_RESERVE(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) ANDROID_KABI_RESERVE(2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) ANDROID_KABI_RESERVE(3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) ANDROID_KABI_RESERVE(4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) extern void init_defrootdomain(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) extern int sched_init_domains(const struct cpumask *cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) extern void sched_get_rd(struct root_domain *rd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) extern void sched_put_rd(struct root_domain *rd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) #ifdef HAVE_RT_PUSH_IPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) extern void rto_push_irq_work_func(struct irq_work *work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) extern struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) #endif /* CONFIG_SMP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) #ifdef CONFIG_UCLAMP_TASK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) * struct uclamp_bucket - Utilization clamp bucket
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) * @value: utilization clamp value for tasks on this clamp bucket
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) * @tasks: number of RUNNABLE tasks on this clamp bucket
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) * Keep track of how many tasks are RUNNABLE for a given utilization
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) * clamp value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) struct uclamp_bucket {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) * struct uclamp_rq - rq's utilization clamp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) * @value: currently active clamp values for a rq
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) * @bucket: utilization clamp buckets affecting a rq
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) * A clamp value is affecting a rq when there is at least one task RUNNABLE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) * (or actually running) with that value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) * There are up to UCLAMP_CNT possible different clamp values, currently there
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) * are only two: minimum utilization and maximum utilization.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) * All utilization clamping values are MAX aggregated, since:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) * - for util_min: we want to run the CPU at least at the max of the minimum
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896) * utilization required by its currently RUNNABLE tasks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) * - for util_max: we want to allow the CPU to run up to the max of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) * maximum utilization allowed by its currently RUNNABLE tasks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900) * Since on each system we expect only a limited number of different
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902) * the metrics required to compute all the per-rq utilization clamp values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) struct uclamp_rq {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) unsigned int value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) struct uclamp_bucket bucket[UCLAMP_BUCKETS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) #endif /* CONFIG_UCLAMP_TASK */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) * This is the main, per-CPU runqueue data structure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) * Locking rule: those places that want to lock multiple runqueues
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916) * (such as the load balancing or the thread migration code), lock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) * acquire operations must be ordered by ascending &runqueue.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) struct rq {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) /* runqueue lock: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921) raw_spinlock_t lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) * nr_running and cpu_load should be in the same cacheline because
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925) * remote CPUs use both these fields when doing load calculation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) unsigned int nr_running;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) #ifdef CONFIG_NUMA_BALANCING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929) unsigned int nr_numa_running;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930) unsigned int nr_preferred_running;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931) unsigned int numa_migrate_on;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) #ifdef CONFIG_NO_HZ_COMMON
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935) unsigned long last_blocked_load_update_tick;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) unsigned int has_blocked_load;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) call_single_data_t nohz_csd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938) #endif /* CONFIG_SMP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939) unsigned int nohz_tick_stopped;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) atomic_t nohz_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941) #endif /* CONFIG_NO_HZ_COMMON */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944) unsigned int ttwu_pending;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) u64 nr_switches;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) #ifdef CONFIG_UCLAMP_TASK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949) /* Utilization clamp values based on CPU's RUNNABLE tasks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950) struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951) unsigned int uclamp_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952) #define UCLAMP_FLAG_IDLE 0x01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955) struct cfs_rq cfs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 956) struct rt_rq rt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 957) struct dl_rq dl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 958)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 959) #ifdef CONFIG_FAIR_GROUP_SCHED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 960) /* list of leaf cfs_rq on this CPU: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 961) struct list_head leaf_cfs_rq_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 962) struct list_head *tmp_alone_branch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 963) #endif /* CONFIG_FAIR_GROUP_SCHED */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 964)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 965) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 966) * This is part of a global counter where only the total sum
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 967) * over all CPUs matters. A task can increase this counter on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 968) * one CPU and if it got migrated afterwards it may decrease
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 969) * it on another CPU. Always updated under the runqueue lock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 970) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 971) unsigned long nr_uninterruptible;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 972)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 973) struct task_struct __rcu *curr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 974) struct task_struct *idle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 975) struct task_struct *stop;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 976) unsigned long next_balance;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 977) struct mm_struct *prev_mm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 978)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 979) unsigned int clock_update_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 980) u64 clock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 981) /* Ensure that all clocks are in the same cache line */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 982) u64 clock_task ____cacheline_aligned;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 983) u64 clock_pelt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 984) unsigned long lost_idle_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 985)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 986) atomic_t nr_iowait;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 987)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 988) #ifdef CONFIG_MEMBARRIER
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 989) int membarrier_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 990) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 991)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 992) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 993) struct root_domain *rd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 994) struct sched_domain __rcu *sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 995)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 996) unsigned long cpu_capacity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 997) unsigned long cpu_capacity_orig;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 998)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 999) struct callback_head *balance_callback;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) unsigned char nohz_idle_balance;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) unsigned char idle_balance;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) unsigned long misfit_task_load;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) /* For active balancing */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) int active_balance;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) int push_cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) struct cpu_stop_work active_balance_work;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) /* CPU of this runqueue: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) int online;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) struct list_head cfs_tasks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) struct sched_avg avg_rt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) struct sched_avg avg_dl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) struct sched_avg avg_irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) #ifdef CONFIG_SCHED_THERMAL_PRESSURE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) struct sched_avg avg_thermal;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) u64 idle_stamp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) u64 avg_idle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) /* This is used to determine avg_idle's max value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) u64 max_idle_balance_cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) #endif /* CONFIG_SMP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) #ifdef CONFIG_IRQ_TIME_ACCOUNTING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) u64 prev_irq_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) #ifdef CONFIG_PARAVIRT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) u64 prev_steal_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) u64 prev_steal_time_rq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) /* calc_load related fields */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) unsigned long calc_load_update;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) long calc_load_active;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) #ifdef CONFIG_SCHED_HRTICK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) call_single_data_t hrtick_csd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) struct hrtimer hrtick_timer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) ktime_t hrtick_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) #ifdef CONFIG_SCHEDSTATS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) /* latency stats */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) struct sched_info rq_sched_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) unsigned long long rq_cpu_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) /* sys_sched_yield() stats */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) unsigned int yld_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) /* schedule() stats */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) unsigned int sched_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) unsigned int sched_goidle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) /* try_to_wake_up() stats */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) unsigned int ttwu_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) unsigned int ttwu_local;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) #ifdef CONFIG_HOTPLUG_CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) struct cpu_stop_work drain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) struct cpu_stop_done drain_done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) #ifdef CONFIG_CPU_IDLE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) /* Must be inspected within a rcu lock section */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) struct cpuidle_state *idle_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) ANDROID_VENDOR_DATA_ARRAY(1, 96);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) ANDROID_OEM_DATA_ARRAY(1, 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) ANDROID_KABI_RESERVE(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) ANDROID_KABI_RESERVE(2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) ANDROID_KABI_RESERVE(3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) ANDROID_KABI_RESERVE(4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) #ifdef CONFIG_FAIR_GROUP_SCHED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) /* CPU runqueue to which this cfs_rq is attached */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) return cfs_rq->rq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) return container_of(cfs_rq, struct rq, cfs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) static inline int cpu_of(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) return rq->cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) #ifdef CONFIG_SCHED_SMT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) extern void __update_idle_core(struct rq *rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) static inline void update_idle_core(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) if (static_branch_unlikely(&sched_smt_present))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) __update_idle_core(rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) static inline void update_idle_core(struct rq *rq) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) #define this_rq() this_cpu_ptr(&runqueues)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) #define task_rq(p) cpu_rq(task_cpu(p))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) #define raw_rq() raw_cpu_ptr(&runqueues)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) extern void update_rq_clock(struct rq *rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) static inline u64 __rq_clock_broken(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) return READ_ONCE(rq->clock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) * rq::clock_update_flags bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) * %RQCF_REQ_SKIP - will request skipping of clock update on the next
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) * call to __schedule(). This is an optimisation to avoid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) * neighbouring rq clock updates.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) * in effect and calls to update_rq_clock() are being ignored.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) * made to update_rq_clock() since the last time rq::lock was pinned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) * If inside of __schedule(), clock_update_flags will have been
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) * shifted left (a left shift is a cheap operation for the fast path
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) * if (rq-clock_update_flags >= RQCF_UPDATED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) * to check if %RQCF_UPADTED is set. It'll never be shifted more than
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) * one position though, because the next rq_unpin_lock() will shift it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) * back.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) #define RQCF_REQ_SKIP 0x01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) #define RQCF_ACT_SKIP 0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) #define RQCF_UPDATED 0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) static inline void assert_clock_updated(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) * The only reason for not seeing a clock update since the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) * last rq_pin_lock() is if we're currently skipping updates.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) static inline u64 rq_clock(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) lockdep_assert_held(&rq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) assert_clock_updated(rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) return rq->clock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) static inline u64 rq_clock_task(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) lockdep_assert_held(&rq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) assert_clock_updated(rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) return rq->clock_task;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) * By default the decay is the default pelt decay period.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) * The decay shift can change the decay period in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) * multiples of 32.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) * Decay shift Decay period(ms)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) * 0 32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) * 1 64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) * 2 128
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) * 3 256
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) * 4 512
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) extern int sched_thermal_decay_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) static inline u64 rq_clock_thermal(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) return rq_clock_task(rq) >> sched_thermal_decay_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) static inline void rq_clock_skip_update(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) lockdep_assert_held(&rq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) rq->clock_update_flags |= RQCF_REQ_SKIP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) * See rt task throttling, which is the only time a skip
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) * request is cancelled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) static inline void rq_clock_cancel_skipupdate(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) lockdep_assert_held(&rq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) rq->clock_update_flags &= ~RQCF_REQ_SKIP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) struct rq_flags {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) struct pin_cookie cookie;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) #ifdef CONFIG_SCHED_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) * current pin context is stashed here in case it needs to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) * restored in rq_repin_lock().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) unsigned int clock_update_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) * Lockdep annotation that avoids accidental unlocks; it's like a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) * sticky/continuous lockdep_assert_held().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) * This avoids code that has access to 'struct rq *rq' (basically everything in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) * the scheduler) from accidentally unlocking the rq if they do not also have a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) * copy of the (on-stack) 'struct rq_flags rf'.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) * Also see Documentation/locking/lockdep-design.rst.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) rf->cookie = lockdep_pin_lock(&rq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) #ifdef CONFIG_SCHED_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) rf->clock_update_flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) #ifdef CONFIG_SCHED_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) if (rq->clock_update_flags > RQCF_ACT_SKIP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) rf->clock_update_flags = RQCF_UPDATED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) lockdep_unpin_lock(&rq->lock, rf->cookie);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) lockdep_repin_lock(&rq->lock, rf->cookie);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) #ifdef CONFIG_SCHED_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) * Restore the value we stashed in @rf for this pin context.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) rq->clock_update_flags |= rf->clock_update_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) __acquires(rq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) __acquires(p->pi_lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) __acquires(rq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) __releases(rq->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) rq_unpin_lock(rq, rf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) raw_spin_unlock(&rq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) static inline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) __releases(rq->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) __releases(p->pi_lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) rq_unpin_lock(rq, rf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) raw_spin_unlock(&rq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) static inline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) __acquires(rq->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) raw_spin_lock_irqsave(&rq->lock, rf->flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) rq_pin_lock(rq, rf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) static inline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) rq_lock_irq(struct rq *rq, struct rq_flags *rf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) __acquires(rq->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) raw_spin_lock_irq(&rq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) rq_pin_lock(rq, rf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) static inline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) rq_lock(struct rq *rq, struct rq_flags *rf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) __acquires(rq->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) raw_spin_lock(&rq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) rq_pin_lock(rq, rf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) static inline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) rq_relock(struct rq *rq, struct rq_flags *rf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) __acquires(rq->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) raw_spin_lock(&rq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) rq_repin_lock(rq, rf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) static inline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) __releases(rq->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) rq_unpin_lock(rq, rf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) static inline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) __releases(rq->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) rq_unpin_lock(rq, rf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) raw_spin_unlock_irq(&rq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) static inline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) rq_unlock(struct rq *rq, struct rq_flags *rf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) __releases(rq->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) rq_unpin_lock(rq, rf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) raw_spin_unlock(&rq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) static inline struct rq *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) this_rq_lock_irq(struct rq_flags *rf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) __acquires(rq->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) struct rq *rq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) rq = this_rq();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) rq_lock(rq, rf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) return rq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) #ifdef CONFIG_NUMA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) enum numa_topology_type {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) NUMA_DIRECT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) NUMA_GLUELESS_MESH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) NUMA_BACKPLANE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) extern enum numa_topology_type sched_numa_topology_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) extern int sched_max_numa_distance;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) extern bool find_numa_distance(int distance);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) extern void sched_init_numa(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) extern void sched_domains_numa_masks_set(unsigned int cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) extern void sched_domains_numa_masks_clear(unsigned int cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) static inline void sched_init_numa(void) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) return nr_cpu_ids;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) #ifdef CONFIG_NUMA_BALANCING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) /* The regions in numa_faults array from task_struct */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) enum numa_faults_stats {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) NUMA_MEM = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) NUMA_CPU,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) NUMA_MEMBUF,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) NUMA_CPUBUF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) extern void sched_setnuma(struct task_struct *p, int node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) extern int migrate_task_to(struct task_struct *p, int cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) static inline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) #endif /* CONFIG_NUMA_BALANCING */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) extern int migrate_swap(struct task_struct *p, struct task_struct *t,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) int cpu, int scpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) static inline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) queue_balance_callback(struct rq *rq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) struct callback_head *head,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) void (*func)(struct rq *rq))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) lockdep_assert_held(&rq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) if (unlikely(head->next))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) head->func = (void (*)(struct callback_head *))func;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) head->next = rq->balance_callback;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) rq->balance_callback = head;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) #define rcu_dereference_check_sched_domain(p) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) rcu_dereference_check((p), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) lockdep_is_held(&sched_domains_mutex))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) * See destroy_sched_domains: call_rcu for details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) * The domain tree of any CPU may only be accessed from within
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) * preempt-disabled sections.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) #define for_each_domain(cpu, __sd) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) __sd; __sd = __sd->parent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) * highest_flag_domain - Return highest sched_domain containing flag.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) * @cpu: The CPU whose highest level of sched domain is to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) * be returned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) * @flag: The flag to check for the highest sched_domain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) * for the given CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) * Returns the highest sched_domain of a CPU which contains the given flag.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) struct sched_domain *sd, *hsd = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) for_each_domain(cpu, sd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) if (!(sd->flags & flag))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) hsd = sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) return hsd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) struct sched_domain *sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) for_each_domain(cpu, sd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) if (sd->flags & flag)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) return sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) DECLARE_PER_CPU(int, sd_llc_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) DECLARE_PER_CPU(int, sd_llc_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) extern struct static_key_false sched_asym_cpucapacity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) struct sched_group_capacity {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) atomic_t ref;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) * for a single CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) unsigned long capacity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) unsigned long min_capacity; /* Min per-CPU capacity in group */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) unsigned long max_capacity; /* Max per-CPU capacity in group */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) unsigned long next_update;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) int imbalance; /* XXX unrelated to capacity but shared group state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) #ifdef CONFIG_SCHED_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) int id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) unsigned long cpumask[]; /* Balance mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) struct sched_group {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) struct sched_group *next; /* Must be a circular list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) atomic_t ref;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) unsigned int group_weight;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) struct sched_group_capacity *sgc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) int asym_prefer_cpu; /* CPU of highest priority in group */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) * The CPUs this group covers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) * NOTE: this field is variable length. (Allocated dynamically
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) * by attaching extra space to the end of the structure,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) * depending on how many CPUs the kernel has booted up with)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) unsigned long cpumask[];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) static inline struct cpumask *sched_group_span(struct sched_group *sg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) return to_cpumask(sg->cpumask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) * See build_balance_mask().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) static inline struct cpumask *group_balance_mask(struct sched_group *sg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) return to_cpumask(sg->sgc->cpumask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) * @group: The group whose first CPU is to be returned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) static inline unsigned int group_first_cpu(struct sched_group *group)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) return cpumask_first(sched_group_span(group));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) extern int group_balance_cpu(struct sched_group *sg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) void register_sched_domain_sysctl(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) void dirty_sched_domain_sysctl(int cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) void unregister_sched_domain_sysctl(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) static inline void register_sched_domain_sysctl(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) static inline void dirty_sched_domain_sysctl(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) static inline void unregister_sched_domain_sysctl(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) extern void flush_smp_call_function_from_idle(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) #else /* !CONFIG_SMP: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) static inline void flush_smp_call_function_from_idle(void) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) #include "stats.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) #include "autogroup.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) #ifdef CONFIG_CGROUP_SCHED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) * Return the group to which this tasks belongs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) * We cannot use task_css() and friends because the cgroup subsystem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) * changes that value before the cgroup_subsys::attach() method is called,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) * therefore we cannot pin it and might observe the wrong value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) * core changes this before calling sched_move_task().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) * Instead we use a 'copy' which is updated from sched_move_task() while
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) * holding both task_struct::pi_lock and rq::lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) static inline struct task_group *task_group(struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) return p->sched_task_group;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) struct task_group *tg = task_group(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) #ifdef CONFIG_FAIR_GROUP_SCHED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) p->se.cfs_rq = tg->cfs_rq[cpu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) p->se.parent = tg->se[cpu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) #ifdef CONFIG_RT_GROUP_SCHED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) p->rt.rt_rq = tg->rt_rq[cpu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) p->rt.parent = tg->rt_se[cpu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) #else /* CONFIG_CGROUP_SCHED */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) static inline struct task_group *task_group(struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) #endif /* CONFIG_CGROUP_SCHED */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) set_task_rq(p, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) * successfully executed on another CPU. We must ensure that updates of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) * per-task data have been completed by this moment.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) smp_wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) #ifdef CONFIG_THREAD_INFO_IN_TASK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) WRITE_ONCE(p->cpu, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) WRITE_ONCE(task_thread_info(p)->cpu, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) p->wake_cpu = cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) #ifdef CONFIG_SCHED_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) # include <linux/static_key.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) # define const_debug __read_mostly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) # define const_debug const
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) #define SCHED_FEAT(name, enabled) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) __SCHED_FEAT_##name ,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) #include "features.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) __SCHED_FEAT_NR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) #undef SCHED_FEAT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) #ifdef CONFIG_SCHED_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) * To support run-time toggling of sched features, all the translation units
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) * (but core.c) reference the sysctl_sched_features defined in core.c.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) extern const_debug unsigned int sysctl_sched_features;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) #ifdef CONFIG_JUMP_LABEL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) #define SCHED_FEAT(name, enabled) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) static __always_inline bool static_branch_##name(struct static_key *key) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) return static_key_##enabled(key); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) #include "features.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) #undef SCHED_FEAT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) extern const char * const sched_feat_names[__SCHED_FEAT_NR];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) #else /* !CONFIG_JUMP_LABEL */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) #endif /* CONFIG_JUMP_LABEL */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) #else /* !SCHED_DEBUG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) * Each translation unit has its own copy of sysctl_sched_features to allow
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) * constants propagation at compile time and compiler optimization based on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) * features default.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) #define SCHED_FEAT(name, enabled) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) (1UL << __SCHED_FEAT_##name) * enabled |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) static const_debug __maybe_unused unsigned int sysctl_sched_features =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) #include "features.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) #undef SCHED_FEAT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) #endif /* SCHED_DEBUG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) extern struct static_key_false sched_numa_balancing;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) extern struct static_key_false sched_schedstats;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720) static inline u64 global_rt_period(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722) return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) static inline u64 global_rt_runtime(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) if (sysctl_sched_rt_runtime < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) return RUNTIME_INF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) static inline int task_current(struct rq *rq, struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) return rq->curr == p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) static inline int task_running(struct rq *rq, struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) return p->on_cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) return task_current(rq, p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) static inline int task_on_rq_queued(struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) return p->on_rq == TASK_ON_RQ_QUEUED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) static inline int task_on_rq_migrating(struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) * wake flags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) #define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) #define WF_FORK 0x02 /* Child wakeup after fork */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) #define WF_MIGRATED 0x04 /* Internal use, task got migrated */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) #define WF_ON_CPU 0x08 /* Wakee is on_cpu */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) #define WF_ANDROID_VENDOR 0x1000 /* Vendor specific for Android */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) * To aid in avoiding the subversion of "niceness" due to uneven distribution
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) * of tasks with abnormal "nice" values across CPUs the contribution that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) * each task makes to its run queue's load is weighted according to its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) * scaled version of the new time slice allocation that they receive on time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) * slice expiry etc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) #define WEIGHT_IDLEPRIO 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) #define WMULT_IDLEPRIO 1431655765
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) extern const int sched_prio_to_weight[40];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779) extern const u32 sched_prio_to_wmult[40];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) * {de,en}queue flags:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784) * DEQUEUE_SLEEP - task is no longer runnable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) * ENQUEUE_WAKEUP - task just became runnable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) * are in a known state which allows modification. Such pairs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) * should preserve as much state as possible.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791) * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) * in the runqueue.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) * ENQUEUE_MIGRATED - the task was migrated during wakeup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800) #define DEQUEUE_SLEEP 0x01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801) #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802) #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805) #define ENQUEUE_WAKEUP 0x01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) #define ENQUEUE_RESTORE 0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) #define ENQUEUE_MOVE 0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) #define ENQUEUE_NOCLOCK 0x08
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810) #define ENQUEUE_HEAD 0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) #define ENQUEUE_REPLENISH 0x20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) #define ENQUEUE_MIGRATED 0x40
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815) #define ENQUEUE_MIGRATED 0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818) #define ENQUEUE_WAKEUP_SYNC 0x80
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) #define RETRY_TASK ((void *)-1UL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) struct sched_class {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) #ifdef CONFIG_UCLAMP_TASK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825) int uclamp_enabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) void (*yield_task) (struct rq *rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833) void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) struct task_struct *(*pick_next_task)(struct rq *rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837) void (*put_prev_task)(struct rq *rq, struct task_struct *p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838) void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841) int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842) int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) void (*task_woken)(struct rq *this_rq, struct task_struct *task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) void (*set_cpus_allowed)(struct task_struct *p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) const struct cpumask *newmask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) void (*rq_online)(struct rq *rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851) void (*rq_offline)(struct rq *rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) void (*task_fork)(struct task_struct *p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) void (*task_dead)(struct task_struct *p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) * The switched_from() call is allowed to drop rq->lock, therefore we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) * cannot assume the switched_from/switched_to pair is serliazed by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) * rq->lock. They are however serialized by p->pi_lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) void (*switched_from)(struct rq *this_rq, struct task_struct *task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) void (*switched_to) (struct rq *this_rq, struct task_struct *task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) int oldprio);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) unsigned int (*get_rr_interval)(struct rq *rq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) struct task_struct *task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871) void (*update_curr)(struct rq *rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873) #define TASK_SET_GROUP 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) #define TASK_MOVE_GROUP 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) #ifdef CONFIG_FAIR_GROUP_SCHED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877) void (*task_change_group)(struct task_struct *p, int type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879) } __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881) static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883) WARN_ON_ONCE(rq->curr != prev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884) prev->sched_class->put_prev_task(rq, prev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887) static inline void set_next_task(struct rq *rq, struct task_struct *next)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889) WARN_ON_ONCE(rq->curr != next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890) next->sched_class->set_next_task(rq, next, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893) /* Defined in include/asm-generic/vmlinux.lds.h */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894) extern struct sched_class __begin_sched_classes[];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) extern struct sched_class __end_sched_classes[];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) #define sched_class_highest (__end_sched_classes - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898) #define sched_class_lowest (__begin_sched_classes - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900) #define for_class_range(class, _from, _to) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901) for (class = (_from); class != (_to); class--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903) #define for_each_class(class) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904) for_class_range(class, sched_class_highest, sched_class_lowest)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906) extern const struct sched_class stop_sched_class;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907) extern const struct sched_class dl_sched_class;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908) extern const struct sched_class rt_sched_class;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909) extern const struct sched_class fair_sched_class;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910) extern const struct sched_class idle_sched_class;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912) static inline bool sched_stop_runnable(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914) return rq->stop && task_on_rq_queued(rq->stop);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917) static inline bool sched_dl_runnable(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919) return rq->dl.dl_nr_running > 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) static inline bool sched_rt_runnable(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) return rq->rt.rt_queued > 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) static inline bool sched_fair_runnable(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929) return rq->cfs.nr_running > 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932) extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) extern struct task_struct *pick_next_task_idle(struct rq *rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) extern void update_group_capacity(struct sched_domain *sd, int cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939) extern void trigger_load_balance(struct rq *rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) extern unsigned long __read_mostly max_load_balance_interval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) #ifdef CONFIG_CPU_IDLE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) static inline void idle_set_state(struct rq *rq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948) struct cpuidle_state *idle_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) rq->idle_state = idle_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) static inline struct cpuidle_state *idle_get_state(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) SCHED_WARN_ON(!rcu_read_lock_held());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) return rq->idle_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960) static inline void idle_set_state(struct rq *rq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) struct cpuidle_state *idle_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) static inline struct cpuidle_state *idle_get_state(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) extern void schedule_idle(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) extern void sysrq_sched_debug_show(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974) extern void sched_init_granularity(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) extern void update_max_interval(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977) extern void init_sched_dl_class(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) extern void init_sched_rt_class(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979) extern void init_sched_fair_class(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) extern void reweight_task(struct task_struct *p, int prio);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) extern void resched_curr(struct rq *rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984) extern void resched_cpu(int cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986) extern struct rt_bandwidth def_rt_bandwidth;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987) extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) extern struct dl_bandwidth def_dl_bandwidth;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992) extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) #define BW_SHIFT 20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) #define BW_UNIT (1 << BW_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) #define RATIO_SHIFT 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) #define MAX_BW_BITS (64 - BW_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) #define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) unsigned long to_ratio(u64 period, u64 runtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001) extern void init_entity_runnable_average(struct sched_entity *se);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) extern void post_init_entity_util_avg(struct task_struct *p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004) #ifdef CONFIG_NO_HZ_FULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005) extern bool sched_can_stop_tick(struct rq *rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006) extern int __init sched_tick_offload_init(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009) * Tick may be needed by tasks in the runqueue depending on their policy and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) * requirements. If tick is needed, lets send the target an IPI to kick it out of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011) * nohz mode if necessary.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013) static inline void sched_update_tick_dependency(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015) int cpu = cpu_of(rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017) if (!tick_nohz_full_cpu(cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020) if (sched_can_stop_tick(rq))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023) tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026) static inline int sched_tick_offload_init(void) { return 0; }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) static inline void sched_update_tick_dependency(struct rq *rq) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) static inline void add_nr_running(struct rq *rq, unsigned count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) unsigned prev_nr = rq->nr_running;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) rq->nr_running = prev_nr + count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) if (trace_sched_update_nr_running_tp_enabled()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036) call_trace_sched_update_nr_running(rq, count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040) if (prev_nr < 2 && rq->nr_running >= 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) if (!READ_ONCE(rq->rd->overload))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042) WRITE_ONCE(rq->rd->overload, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) sched_update_tick_dependency(rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049) static inline void sub_nr_running(struct rq *rq, unsigned count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051) rq->nr_running -= count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052) if (trace_sched_update_nr_running_tp_enabled()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) call_trace_sched_update_nr_running(rq, -count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) /* Check if we still need preemption */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057) sched_update_tick_dependency(rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060) extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061) extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065) extern const_debug unsigned int sysctl_sched_nr_migrate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066) extern const_debug unsigned int sysctl_sched_migration_cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068) #ifdef CONFIG_SCHED_HRTICK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071) * Use hrtick when:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) * - enabled by features
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073) * - hrtimer is actually high res
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) static inline int hrtick_enabled(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077) if (!sched_feat(HRTICK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079) if (!cpu_active(cpu_of(rq)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) return hrtimer_is_hres_active(&rq->hrtick_timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084) void hrtick_start(struct rq *rq, u64 delay);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088) static inline int hrtick_enabled(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) #endif /* CONFIG_SCHED_HRTICK */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) #ifndef arch_scale_freq_tick
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096) static __always_inline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) void arch_scale_freq_tick(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) #ifndef arch_scale_freq_capacity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104) * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) * @cpu: the CPU in question.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107) * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109) * f_curr
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110) * ------ * SCHED_CAPACITY_SCALE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111) * f_max
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113) static __always_inline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114) unsigned long arch_scale_freq_capacity(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116) return SCHED_CAPACITY_SCALE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121) #ifdef CONFIG_PREEMPTION
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123) static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126) * fair double_lock_balance: Safely acquires both rq->locks in a fair
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127) * way at the expense of forcing extra atomic operations in all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128) * invocations. This assures that the double_lock is acquired using the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129) * same underlying policy as the spinlock_t on this architecture, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130) * reduces latency compared to the unfair variant below. However, it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) * also adds more overhead and therefore may reduce throughput.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133) static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134) __releases(this_rq->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135) __acquires(busiest->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136) __acquires(this_rq->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138) raw_spin_unlock(&this_rq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139) double_rq_lock(this_rq, busiest);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2144) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2145) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2146) * Unfair double_lock_balance: Optimizes throughput at the expense of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2147) * latency by eliminating extra atomic operations when the locks are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2148) * already in proper order on entry. This favors lower CPU-ids and will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2149) * grant the double lock to lower CPUs over higher ids under contention,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2150) * regardless of entry order into the function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2151) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2152) static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2153) __releases(this_rq->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2154) __acquires(busiest->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2155) __acquires(this_rq->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2156) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2157) int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2158)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2159) if (unlikely(!raw_spin_trylock(&busiest->lock))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2160) if (busiest < this_rq) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2161) raw_spin_unlock(&this_rq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2162) raw_spin_lock(&busiest->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2163) raw_spin_lock_nested(&this_rq->lock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2164) SINGLE_DEPTH_NESTING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2165) ret = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2166) } else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2167) raw_spin_lock_nested(&busiest->lock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2168) SINGLE_DEPTH_NESTING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2169) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2170) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2171) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2172)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2173) #endif /* CONFIG_PREEMPTION */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2174)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2175) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2176) * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2177) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2178) static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2179) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2180) if (unlikely(!irqs_disabled())) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2181) /* printk() doesn't work well under rq->lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2182) raw_spin_unlock(&this_rq->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2183) BUG_ON(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2184) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2186) return _double_lock_balance(this_rq, busiest);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2187) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2188)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2189) static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2190) __releases(busiest->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2191) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2192) raw_spin_unlock(&busiest->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2193) lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2194) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2195)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2196) static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2197) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2198) if (l1 > l2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2199) swap(l1, l2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2200)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2201) spin_lock(l1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2202) spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2203) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2204)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2205) static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2206) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2207) if (l1 > l2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2208) swap(l1, l2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2209)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2210) spin_lock_irq(l1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2211) spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2212) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2213)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2214) static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2215) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2216) if (l1 > l2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2217) swap(l1, l2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2218)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2219) raw_spin_lock(l1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2220) raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2221) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2222)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2223) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2224) * double_rq_lock - safely lock two runqueues
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2225) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2226) * Note this does not disable interrupts like task_rq_lock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2227) * you need to do so manually before calling.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2228) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2229) static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2230) __acquires(rq1->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2231) __acquires(rq2->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2232) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2233) BUG_ON(!irqs_disabled());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2234) if (rq1 == rq2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2235) raw_spin_lock(&rq1->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2236) __acquire(rq2->lock); /* Fake it out ;) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2237) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2238) if (rq1 < rq2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2239) raw_spin_lock(&rq1->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2240) raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2241) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2242) raw_spin_lock(&rq2->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2243) raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2244) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2245) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2246) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2247)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2248) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2249) * double_rq_unlock - safely unlock two runqueues
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2250) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2251) * Note this does not restore interrupts like task_rq_unlock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2252) * you need to do so manually after calling.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2253) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2254) static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2255) __releases(rq1->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2256) __releases(rq2->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2257) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2258) raw_spin_unlock(&rq1->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2259) if (rq1 != rq2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2260) raw_spin_unlock(&rq2->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2261) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2262) __release(rq2->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2263) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2264)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2265) extern void set_rq_online (struct rq *rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2266) extern void set_rq_offline(struct rq *rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2267) extern bool sched_smp_initialized;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2268)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2269) #else /* CONFIG_SMP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2270)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2271) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2272) * double_rq_lock - safely lock two runqueues
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2273) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2274) * Note this does not disable interrupts like task_rq_lock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2275) * you need to do so manually before calling.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2276) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2277) static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2278) __acquires(rq1->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2279) __acquires(rq2->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2280) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2281) BUG_ON(!irqs_disabled());
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2282) BUG_ON(rq1 != rq2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2283) raw_spin_lock(&rq1->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2284) __acquire(rq2->lock); /* Fake it out ;) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2285) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2286)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2287) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2288) * double_rq_unlock - safely unlock two runqueues
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2289) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2290) * Note this does not restore interrupts like task_rq_unlock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2291) * you need to do so manually after calling.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2292) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2293) static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2294) __releases(rq1->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2295) __releases(rq2->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2296) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2297) BUG_ON(rq1 != rq2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2298) raw_spin_unlock(&rq1->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2299) __release(rq2->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2300) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2301)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2302) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2303)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2304) extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2305) extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2306)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2307) #ifdef CONFIG_SCHED_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2308) extern bool sched_debug_enabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2309)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2310) extern void print_cfs_stats(struct seq_file *m, int cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2311) extern void print_rt_stats(struct seq_file *m, int cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2312) extern void print_dl_stats(struct seq_file *m, int cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2313) extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2314) extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2315) extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2316) #ifdef CONFIG_NUMA_BALANCING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2317) extern void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2318) show_numa_stats(struct task_struct *p, struct seq_file *m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2319) extern void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2320) print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2321) unsigned long tpf, unsigned long gsf, unsigned long gpf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2322) #endif /* CONFIG_NUMA_BALANCING */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2323) #endif /* CONFIG_SCHED_DEBUG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2324)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2325) extern void init_cfs_rq(struct cfs_rq *cfs_rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2326) extern void init_rt_rq(struct rt_rq *rt_rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2327) extern void init_dl_rq(struct dl_rq *dl_rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2328)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2329) extern void cfs_bandwidth_usage_inc(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2330) extern void cfs_bandwidth_usage_dec(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2331)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2332) #ifdef CONFIG_NO_HZ_COMMON
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2333) #define NOHZ_BALANCE_KICK_BIT 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2334) #define NOHZ_STATS_KICK_BIT 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2335)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2336) #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2337) #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2338)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2339) #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2340)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2341) #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2342)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2343) extern void nohz_balance_exit_idle(struct rq *rq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2344) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2345) static inline void nohz_balance_exit_idle(struct rq *rq) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2346) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2347)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2348)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2349) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2350) static inline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2351) void __dl_update(struct dl_bw *dl_b, s64 bw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2352) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2353) struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2354) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2355)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2356) RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2357) "sched RCU must be held");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2358) for_each_cpu_and(i, rd->span, cpu_active_mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2359) struct rq *rq = cpu_rq(i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2360)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2361) rq->dl.extra_bw += bw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2362) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2363) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2364) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2365) static inline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2366) void __dl_update(struct dl_bw *dl_b, s64 bw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2367) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2368) struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2369)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2370) dl->extra_bw += bw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2371) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2372) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2373)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2374)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2375) #ifdef CONFIG_IRQ_TIME_ACCOUNTING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2376) struct irqtime {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2377) u64 total;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2378) u64 tick_delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2379) u64 irq_start_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2380) struct u64_stats_sync sync;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2381) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2382)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2383) DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2384)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2385) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2386) * Returns the irqtime minus the softirq time computed by ksoftirqd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2387) * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2388) * and never move forward.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2389) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2390) static inline u64 irq_time_read(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2391) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2392) struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2393) unsigned int seq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2394) u64 total;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2395)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2396) do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2397) seq = __u64_stats_fetch_begin(&irqtime->sync);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2398) total = irqtime->total;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2399) } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2400)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2401) return total;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2402) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2403) #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2404)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2405) #ifdef CONFIG_CPU_FREQ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2406) DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2407)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2408) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2409) * cpufreq_update_util - Take a note about CPU utilization changes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2410) * @rq: Runqueue to carry out the update for.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2411) * @flags: Update reason flags.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2412) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2413) * This function is called by the scheduler on the CPU whose utilization is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2414) * being updated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2415) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2416) * It can only be called from RCU-sched read-side critical sections.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2417) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2418) * The way cpufreq is currently arranged requires it to evaluate the CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2419) * performance state (frequency/voltage) on a regular basis to prevent it from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2420) * being stuck in a completely inadequate performance level for too long.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2421) * That is not guaranteed to happen if the updates are only triggered from CFS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2422) * and DL, though, because they may not be coming in if only RT tasks are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2423) * active all the time (or there are RT tasks only).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2424) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2425) * As a workaround for that issue, this function is called periodically by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2426) * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2427) * but that really is a band-aid. Going forward it should be replaced with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2428) * solutions targeted more specifically at RT tasks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2429) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2430) static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2431) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2432) struct update_util_data *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2433)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2434) data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2435) cpu_of(rq)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2436) if (data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2437) data->func(data, rq_clock(rq), flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2438) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2439) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2440) static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2441) #endif /* CONFIG_CPU_FREQ */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2442)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2443) #ifdef CONFIG_UCLAMP_TASK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2444) unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2445)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2446) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2447) * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2448) * @rq: The rq to clamp against. Must not be NULL.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2449) * @util: The util value to clamp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2450) * @p: The task to clamp against. Can be NULL if you want to clamp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2451) * against @rq only.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2452) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2453) * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2454) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2455) * If sched_uclamp_used static key is disabled, then just return the util
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2456) * without any clamping since uclamp aggregation at the rq level in the fast
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2457) * path is disabled, rendering this operation a NOP.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2458) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2459) * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2460) * will return the correct effective uclamp value of the task even if the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2461) * static key is disabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2462) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2463) static __always_inline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2464) unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2465) struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2466) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2467) unsigned long min_util = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2468) unsigned long max_util = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2469)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2470) if (!static_branch_likely(&sched_uclamp_used))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2471) return util;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2472)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2473) if (p) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2474) min_util = uclamp_eff_value(p, UCLAMP_MIN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2475) max_util = uclamp_eff_value(p, UCLAMP_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2476)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2477) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2478) * Ignore last runnable task's max clamp, as this task will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2479) * reset it. Similarly, no need to read the rq's min clamp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2480) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2481) if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2482) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2483) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2484)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2485) min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2486) max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2487) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2488) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2489) * Since CPU's {min,max}_util clamps are MAX aggregated considering
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2490) * RUNNABLE tasks with _different_ clamps, we can end up with an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2491) * inversion. Fix it now when the clamps are applied.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2492) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2493) if (unlikely(min_util >= max_util))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2494) return min_util;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2495)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2496) return clamp(util, min_util, max_util);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2497) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2498)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2499) static inline bool uclamp_boosted(struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2500) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2501) return uclamp_eff_value(p, UCLAMP_MIN) > 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2502) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2503)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2504) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2505) * When uclamp is compiled in, the aggregation at rq level is 'turned off'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2506) * by default in the fast path and only gets turned on once userspace performs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2507) * an operation that requires it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2508) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2509) * Returns true if userspace opted-in to use uclamp and aggregation at rq level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2510) * hence is active.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2511) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2512) static inline bool uclamp_is_used(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2513) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2514) return static_branch_likely(&sched_uclamp_used);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2515) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2516) #else /* CONFIG_UCLAMP_TASK */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2517) static inline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2518) unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2519) struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2520) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2521) return util;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2522) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2523)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2524) static inline bool uclamp_boosted(struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2525) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2526) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2527) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2528)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2529) static inline bool uclamp_is_used(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2530) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2531) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2532) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2533) #endif /* CONFIG_UCLAMP_TASK */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2534)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2535) #ifdef CONFIG_UCLAMP_TASK_GROUP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2536) static inline bool uclamp_latency_sensitive(struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2537) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2538) struct cgroup_subsys_state *css = task_css(p, cpu_cgrp_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2539) struct task_group *tg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2540)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2541) if (!css)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2542) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2543) tg = container_of(css, struct task_group, css);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2544)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2545) return tg->latency_sensitive;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2546) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2547) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2548) static inline bool uclamp_latency_sensitive(struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2549) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2550) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2551) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2552) #endif /* CONFIG_UCLAMP_TASK_GROUP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2553)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2554) #ifdef arch_scale_freq_capacity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2555) # ifndef arch_scale_freq_invariant
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2556) # define arch_scale_freq_invariant() true
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2557) # endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2558) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2559) # define arch_scale_freq_invariant() false
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2560) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2561)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2562) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2563) static inline unsigned long capacity_orig_of(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2564) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2565) return cpu_rq(cpu)->cpu_capacity_orig;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2566) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2567) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2568)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2569) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2570) * enum schedutil_type - CPU utilization type
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2571) * @FREQUENCY_UTIL: Utilization used to select frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2572) * @ENERGY_UTIL: Utilization used during energy calculation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2573) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2574) * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2575) * need to be aggregated differently depending on the usage made of them. This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2576) * enum is used within schedutil_freq_util() to differentiate the types of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2577) * utilization expected by the callers, and adjust the aggregation accordingly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2578) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2579) enum schedutil_type {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2580) FREQUENCY_UTIL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2581) ENERGY_UTIL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2582) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2583)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2584) #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2585)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2586) unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2587) unsigned long max, enum schedutil_type type,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2588) struct task_struct *p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2589)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2590) static inline unsigned long cpu_bw_dl(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2591) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2592) return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2593) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2594)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2595) static inline unsigned long cpu_util_dl(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2596) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2597) return READ_ONCE(rq->avg_dl.util_avg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2598) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2599)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2600) static inline unsigned long cpu_util_cfs(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2601) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2602) unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2603)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2604) if (sched_feat(UTIL_EST)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2605) util = max_t(unsigned long, util,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2606) READ_ONCE(rq->cfs.avg.util_est.enqueued));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2607) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2608)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2609) return util;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2610) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2611)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2612) static inline unsigned long cpu_util_rt(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2613) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2614) return READ_ONCE(rq->avg_rt.util_avg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2615) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2616) #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2617) static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2618) unsigned long max, enum schedutil_type type,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2619) struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2620) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2621) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2622) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2623) #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2624)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2625) #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2626) static inline unsigned long cpu_util_irq(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2627) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2628) return rq->avg_irq.util_avg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2629) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2630)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2631) static inline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2632) unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2633) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2634) util *= (max - irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2635) util /= max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2636)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2637) return util;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2638)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2639) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2640) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2641) static inline unsigned long cpu_util_irq(struct rq *rq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2642) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2643) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2644) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2645)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2646) static inline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2647) unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2648) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2649) return util;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2650) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2651) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2652)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2653) #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2654)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2655) #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2656)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2657) DECLARE_STATIC_KEY_FALSE(sched_energy_present);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2658)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2659) static inline bool sched_energy_enabled(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2660) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2661) return static_branch_unlikely(&sched_energy_present);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2662) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2663)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2664) #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2665)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2666) #define perf_domain_span(pd) NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2667) static inline bool sched_energy_enabled(void) { return false; }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2668)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2669) #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2670)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2671) #ifdef CONFIG_MEMBARRIER
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2672) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2673) * The scheduler provides memory barriers required by membarrier between:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2674) * - prior user-space memory accesses and store to rq->membarrier_state,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2675) * - store to rq->membarrier_state and following user-space memory accesses.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2676) * In the same way it provides those guarantees around store to rq->curr.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2677) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2678) static inline void membarrier_switch_mm(struct rq *rq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2679) struct mm_struct *prev_mm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2680) struct mm_struct *next_mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2681) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2682) int membarrier_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2683)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2684) if (prev_mm == next_mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2685) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2686)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2687) membarrier_state = atomic_read(&next_mm->membarrier_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2688) if (READ_ONCE(rq->membarrier_state) == membarrier_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2689) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2690)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2691) WRITE_ONCE(rq->membarrier_state, membarrier_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2692) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2693) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2694) static inline void membarrier_switch_mm(struct rq *rq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2695) struct mm_struct *prev_mm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2696) struct mm_struct *next_mm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2697) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2698) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2699) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2700)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2701) #ifdef CONFIG_SMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2702) static inline bool is_per_cpu_kthread(struct task_struct *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2703) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2704) if (!(p->flags & PF_KTHREAD))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2705) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2706)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2707) if (p->nr_cpus_allowed != 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2708) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2709)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2710) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2711) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2712) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2713)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2714) void swake_up_all_locked(struct swait_queue_head *q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2715) void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2716)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2717) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2718) * task_may_not_preempt - check whether a task may not be preemptible soon
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2719) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2720) #ifdef CONFIG_RT_SOFTINT_OPTIMIZATION
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2721) extern bool task_may_not_preempt(struct task_struct *task, int cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2722) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2723) static inline bool task_may_not_preempt(struct task_struct *task, int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2724) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2725) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2726) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2727) #endif /* CONFIG_RT_SOFTINT_OPTIMIZATION */