Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Read-Copy Update mechanism for mutual exclusion (tree-based version)
* Internal non-public definitions that provide either classic
* or preemptible semantics.
*
* Copyright Red Hat, 2009
* Copyright IBM Corporation, 2009
*
* Author: Ingo Molnar <mingo@elte.hu>
* Paul E. McKenney <paulmck@linux.ibm.com>
*/
#include "../locking/rtmutex_common.h"
#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
/*
* Check the RCU kernel configuration parameters and print informative
* messages about anything out of the ordinary.
*/
static void __init rcu_bootup_announce_oddness(void)
{
<------>if (IS_ENABLED(CONFIG_RCU_TRACE))
<------><------>pr_info("\tRCU event tracing is enabled.\n");
<------>if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
<------> (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
<------><------>pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
<------><------><------>RCU_FANOUT);
<------>if (rcu_fanout_exact)
<------><------>pr_info("\tHierarchical RCU autobalancing is disabled.\n");
<------>if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
<------><------>pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
<------>if (IS_ENABLED(CONFIG_PROVE_RCU))
<------><------>pr_info("\tRCU lockdep checking is enabled.\n");
<------>if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
<------><------>pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n");
<------>if (RCU_NUM_LVLS >= 4)
<------><------>pr_info("\tFour(or more)-level hierarchy is enabled.\n");
<------>if (RCU_FANOUT_LEAF != 16)
<------><------>pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
<------><------><------>RCU_FANOUT_LEAF);
<------>if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
<------><------>pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
<------><------><------>rcu_fanout_leaf);
<------>if (nr_cpu_ids != NR_CPUS)
<------><------>pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
#ifdef CONFIG_RCU_BOOST
<------>pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
<------><------>kthread_prio, CONFIG_RCU_BOOST_DELAY);
#endif
<------>if (blimit != DEFAULT_RCU_BLIMIT)
<------><------>pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
<------>if (qhimark != DEFAULT_RCU_QHIMARK)
<------><------>pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
<------>if (qlowmark != DEFAULT_RCU_QLOMARK)
<------><------>pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
<------>if (qovld != DEFAULT_RCU_QOVLD)
<------><------>pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
<------>if (jiffies_till_first_fqs != ULONG_MAX)
<------><------>pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
<------>if (jiffies_till_next_fqs != ULONG_MAX)
<------><------>pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
<------>if (jiffies_till_sched_qs != ULONG_MAX)
<------><------>pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
<------>if (rcu_kick_kthreads)
<------><------>pr_info("\tKick kthreads if too-long grace period.\n");
<------>if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
<------><------>pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
<------>if (gp_preinit_delay)
<------><------>pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
<------>if (gp_init_delay)
<------><------>pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
<------>if (gp_cleanup_delay)
<------><------>pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
<------>if (!use_softirq)
<------><------>pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
<------>if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
<------><------>pr_info("\tRCU debug extended QS entry/exit.\n");
<------>rcupdate_announce_bootup_oddness();
}
#ifdef CONFIG_PREEMPT_RCU
static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
static void rcu_read_unlock_special(struct task_struct *t);
/*
* Tell them what RCU they are running.
*/
static void __init rcu_bootup_announce(void)
{
<------>pr_info("Preemptible hierarchical RCU implementation.\n");
<------>rcu_bootup_announce_oddness();
}
/* Flags for rcu_preempt_ctxt_queue() decision table. */
#define RCU_GP_TASKS 0x8
#define RCU_EXP_TASKS 0x4
#define RCU_GP_BLKD 0x2
#define RCU_EXP_BLKD 0x1
/*
* Queues a task preempted within an RCU-preempt read-side critical
* section into the appropriate location within the ->blkd_tasks list,
* depending on the states of any ongoing normal and expedited grace
* periods. The ->gp_tasks pointer indicates which element the normal
* grace period is waiting on (NULL if none), and the ->exp_tasks pointer
* indicates which element the expedited grace period is waiting on (again,
* NULL if none). If a grace period is waiting on a given element in the
* ->blkd_tasks list, it also waits on all subsequent elements. Thus,
* adding a task to the tail of the list blocks any grace period that is
* already waiting on one of the elements. In contrast, adding a task
* to the head of the list won't block any grace period that is already
* waiting on one of the elements.
*
* This queuing is imprecise, and can sometimes make an ongoing grace
* period wait for a task that is not strictly speaking blocking it.
* Given the choice, we needlessly block a normal grace period rather than
* blocking an expedited grace period.
*
* Note that an endless sequence of expedited grace periods still cannot
* indefinitely postpone a normal grace period. Eventually, all of the
* fixed number of preempted tasks blocking the normal grace period that are
* not also blocking the expedited grace period will resume and complete
* their RCU read-side critical sections. At that point, the ->gp_tasks
* pointer will equal the ->exp_tasks pointer, at which point the end of
* the corresponding expedited grace period will also be the end of the
* normal grace period.
*/
static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
<------>__releases(rnp->lock) /* But leaves rrupts disabled. */
{
<------>int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
<------><------><------> (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
<------><------><------> (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
<------><------><------> (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
<------>struct task_struct *t = current;
<------>raw_lockdep_assert_held_rcu_node(rnp);
<------>WARN_ON_ONCE(rdp->mynode != rnp);
<------>WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
<------>/* RCU better not be waiting on newly onlined CPUs! */
<------>WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
<------><------> rdp->grpmask);
<------>/*
<------> * Decide where to queue the newly blocked task. In theory,
<------> * this could be an if-statement. In practice, when I tried
<------> * that, it was quite messy.
<------> */
<------>switch (blkd_state) {
<------>case 0:
<------>case RCU_EXP_TASKS:
<------>case RCU_EXP_TASKS + RCU_GP_BLKD:
<------>case RCU_GP_TASKS:
<------>case RCU_GP_TASKS + RCU_EXP_TASKS:
<------><------>/*
<------><------> * Blocking neither GP, or first task blocking the normal
<------><------> * GP but not blocking the already-waiting expedited GP.
<------><------> * Queue at the head of the list to avoid unnecessarily
<------><------> * blocking the already-waiting GPs.
<------><------> */
<------><------>list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
<------><------>break;
<------>case RCU_EXP_BLKD:
<------>case RCU_GP_BLKD:
<------>case RCU_GP_BLKD + RCU_EXP_BLKD:
<------>case RCU_GP_TASKS + RCU_EXP_BLKD:
<------>case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
<------>case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
<------><------>/*
<------><------> * First task arriving that blocks either GP, or first task
<------><------> * arriving that blocks the expedited GP (with the normal
<------><------> * GP already waiting), or a task arriving that blocks
<------><------> * both GPs with both GPs already waiting. Queue at the
<------><------> * tail of the list to avoid any GP waiting on any of the
<------><------> * already queued tasks that are not blocking it.
<------><------> */
<------><------>list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
<------><------>break;
<------>case RCU_EXP_TASKS + RCU_EXP_BLKD:
<------>case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
<------>case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
<------><------>/*
<------><------> * Second or subsequent task blocking the expedited GP.
<------><------> * The task either does not block the normal GP, or is the
<------><------> * first task blocking the normal GP. Queue just after
<------><------> * the first task blocking the expedited GP.
<------><------> */
<------><------>list_add(&t->rcu_node_entry, rnp->exp_tasks);
<------><------>break;
<------>case RCU_GP_TASKS + RCU_GP_BLKD:
<------>case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
<------><------>/*
<------><------> * Second or subsequent task blocking the normal GP.
<------><------> * The task does not block the expedited GP. Queue just
<------><------> * after the first task blocking the normal GP.
<------><------> */
<------><------>list_add(&t->rcu_node_entry, rnp->gp_tasks);
<------><------>break;
<------>default:
<------><------>/* Yet another exercise in excessive paranoia. */
<------><------>WARN_ON_ONCE(1);
<------><------>break;
<------>}
<------>/*
<------> * We have now queued the task. If it was the first one to
<------> * block either grace period, update the ->gp_tasks and/or
<------> * ->exp_tasks pointers, respectively, to reference the newly
<------> * blocked tasks.
<------> */
<------>if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
<------><------>WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
<------><------>WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
<------>}
<------>if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
<------><------>WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
<------>WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
<------><------> !(rnp->qsmask & rdp->grpmask));
<------>WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
<------><------> !(rnp->expmask & rdp->grpmask));
<------>raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
<------>/*
<------> * Report the quiescent state for the expedited GP. This expedited
<------> * GP should not be able to end until we report, so there should be
<------> * no need to check for a subsequent expedited GP. (Though we are
<------> * still in a quiescent state in any case.)
<------> */
<------>if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
<------><------>rcu_report_exp_rdp(rdp);
<------>else
<------><------>WARN_ON_ONCE(rdp->exp_deferred_qs);
}
/*
* Record a preemptible-RCU quiescent state for the specified CPU.
* Note that this does not necessarily mean that the task currently running
* on the CPU is in a quiescent state: Instead, it means that the current
* grace period need not wait on any RCU read-side critical section that
* starts later on this CPU. It also means that if the current task is
* in an RCU read-side critical section, it has already added itself to
* some leaf rcu_node structure's ->blkd_tasks list. In addition to the
* current task, there might be any number of other tasks blocked while
* in an RCU read-side critical section.
*
* Callers to this function must disable preemption.
*/
static void rcu_qs(void)
{
<------>RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
<------>if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
<------><------>trace_rcu_grace_period(TPS("rcu_preempt"),
<------><------><------><------> __this_cpu_read(rcu_data.gp_seq),
<------><------><------><------> TPS("cpuqs"));
<------><------>__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
<------><------>barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
<------><------>WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
<------>}
}
/*
* We have entered the scheduler, and the current task might soon be
* context-switched away from. If this task is in an RCU read-side
* critical section, we will no longer be able to rely on the CPU to
* record that fact, so we enqueue the task on the blkd_tasks list.
* The task will dequeue itself when it exits the outermost enclosing
* RCU read-side critical section. Therefore, the current grace period
* cannot be permitted to complete until the blkd_tasks list entries
* predating the current grace period drain, in other words, until
* rnp->gp_tasks becomes NULL.
*
* Caller must disable interrupts.
*/
void rcu_note_context_switch(bool preempt)
{
<------>struct task_struct *t = current;
<------>struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
<------>struct rcu_node *rnp;
<------>trace_rcu_utilization(TPS("Start context switch"));
<------>lockdep_assert_irqs_disabled();
<------>WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
<------>if (rcu_preempt_depth() > 0 &&
<------> !t->rcu_read_unlock_special.b.blocked) {
<------><------>/* Possibly blocking in an RCU read-side critical section. */
<------><------>rnp = rdp->mynode;
<------><------>raw_spin_lock_rcu_node(rnp);
<------><------>t->rcu_read_unlock_special.b.blocked = true;
<------><------>t->rcu_blocked_node = rnp;
<------><------>/*
<------><------> * Verify the CPU's sanity, trace the preemption, and
<------><------> * then queue the task as required based on the states
<------><------> * of any ongoing and expedited grace periods.
<------><------> */
<------><------>WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
<------><------>WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
<------><------>trace_rcu_preempt_task(rcu_state.name,
<------><------><------><------> t->pid,
<------><------><------><------> (rnp->qsmask & rdp->grpmask)
<------><------><------><------> ? rnp->gp_seq
<------><------><------><------> : rcu_seq_snap(&rnp->gp_seq));
<------><------>rcu_preempt_ctxt_queue(rnp, rdp);
<------>} else {
<------><------>rcu_preempt_deferred_qs(t);
<------>}
<------>/*
<------> * Either we were not in an RCU read-side critical section to
<------> * begin with, or we have now recorded that critical section
<------> * globally. Either way, we can now note a quiescent state
<------> * for this CPU. Again, if we were in an RCU read-side critical
<------> * section, and if that critical section was blocking the current
<------> * grace period, then the fact that the task has been enqueued
<------> * means that we continue to block the current grace period.
<------> */
<------>rcu_qs();
<------>if (rdp->exp_deferred_qs)
<------><------>rcu_report_exp_rdp(rdp);
<------>rcu_tasks_qs(current, preempt);
<------>trace_rcu_utilization(TPS("End context switch"));
}
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
/*
* Check for preempted RCU readers blocking the current grace period
* for the specified rcu_node structure. If the caller needs a reliable
* answer, it must hold the rcu_node's ->lock.
*/
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
{
<------>return READ_ONCE(rnp->gp_tasks) != NULL;
}
/* limit value for ->rcu_read_lock_nesting. */
#define RCU_NEST_PMAX (INT_MAX / 2)
static void rcu_preempt_read_enter(void)
{
<------>current->rcu_read_lock_nesting++;
}
static int rcu_preempt_read_exit(void)
{
<------>return --current->rcu_read_lock_nesting;
}
static void rcu_preempt_depth_set(int val)
{
<------>current->rcu_read_lock_nesting = val;
}
/*
* Preemptible RCU implementation for rcu_read_lock().
* Just increment ->rcu_read_lock_nesting, shared state will be updated
* if we block.
*/
void __rcu_read_lock(void)
{
<------>rcu_preempt_read_enter();
<------>if (IS_ENABLED(CONFIG_PROVE_LOCKING))
<------><------>WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
<------>if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
<------><------>WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
<------>barrier(); /* critical section after entry code. */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);
/*
* Preemptible RCU implementation for rcu_read_unlock().
* Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
* rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
* invoke rcu_read_unlock_special() to clean up after a context switch
* in an RCU read-side critical section and other special cases.
*/
void __rcu_read_unlock(void)
{
<------>struct task_struct *t = current;
<------>if (rcu_preempt_read_exit() == 0) {
<------><------>barrier(); /* critical section before exit code. */
<------><------>if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
<------><------><------>rcu_read_unlock_special(t);
<------>}
<------>if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
<------><------>int rrln = rcu_preempt_depth();
<------><------>WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
<------>}
}
EXPORT_SYMBOL_GPL(__rcu_read_unlock);
/*
* Advance a ->blkd_tasks-list pointer to the next entry, instead
* returning NULL if at the end of the list.
*/
static struct list_head *rcu_next_node_entry(struct task_struct *t,
<------><------><------><------><------> struct rcu_node *rnp)
{
<------>struct list_head *np;
<------>np = t->rcu_node_entry.next;
<------>if (np == &rnp->blkd_tasks)
<------><------>np = NULL;
<------>return np;
}
/*
* Return true if the specified rcu_node structure has tasks that were
* preempted within an RCU read-side critical section.
*/
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
{
<------>return !list_empty(&rnp->blkd_tasks);
}
/*
* Report deferred quiescent states. The deferral time can
* be quite short, for example, in the case of the call from
* rcu_read_unlock_special().
*/
static void
rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
{
<------>bool empty_exp;
<------>bool empty_norm;
<------>bool empty_exp_now;
<------>struct list_head *np;
<------>bool drop_boost_mutex = false;
<------>struct rcu_data *rdp;
<------>struct rcu_node *rnp;
<------>union rcu_special special;
<------>/*
<------> * If RCU core is waiting for this CPU to exit its critical section,
<------> * report the fact that it has exited. Because irqs are disabled,
<------> * t->rcu_read_unlock_special cannot change.
<------> */
<------>special = t->rcu_read_unlock_special;
<------>rdp = this_cpu_ptr(&rcu_data);
<------>if (!special.s && !rdp->exp_deferred_qs) {
<------><------>local_irq_restore(flags);
<------><------>return;
<------>}
<------>t->rcu_read_unlock_special.s = 0;
<------>if (special.b.need_qs) {
<------><------>if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
<------><------><------>rcu_report_qs_rdp(rdp);
<------><------><------>udelay(rcu_unlock_delay);
<------><------>} else {
<------><------><------>rcu_qs();
<------><------>}
<------>}
<------>/*
<------> * Respond to a request by an expedited grace period for a
<------> * quiescent state from this CPU. Note that requests from
<------> * tasks are handled when removing the task from the
<------> * blocked-tasks list below.
<------> */
<------>if (rdp->exp_deferred_qs)
<------><------>rcu_report_exp_rdp(rdp);
<------>/* Clean up if blocked during RCU read-side critical section. */
<------>if (special.b.blocked) {
<------><------>/*
<------><------> * Remove this task from the list it blocked on. The task
<------><------> * now remains queued on the rcu_node corresponding to the
<------><------> * CPU it first blocked on, so there is no longer any need
<------><------> * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
<------><------> */
<------><------>rnp = t->rcu_blocked_node;
<------><------>raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
<------><------>WARN_ON_ONCE(rnp != t->rcu_blocked_node);
<------><------>WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
<------><------>empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
<------><------>WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
<------><------><------> (!empty_norm || rnp->qsmask));
<------><------>empty_exp = sync_rcu_exp_done(rnp);
<------><------>smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
<------><------>np = rcu_next_node_entry(t, rnp);
<------><------>list_del_init(&t->rcu_node_entry);
<------><------>t->rcu_blocked_node = NULL;
<------><------>trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
<------><------><------><------><------><------>rnp->gp_seq, t->pid);
<------><------>if (&t->rcu_node_entry == rnp->gp_tasks)
<------><------><------>WRITE_ONCE(rnp->gp_tasks, np);
<------><------>if (&t->rcu_node_entry == rnp->exp_tasks)
<------><------><------>WRITE_ONCE(rnp->exp_tasks, np);
<------><------>if (IS_ENABLED(CONFIG_RCU_BOOST)) {
<------><------><------>/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
<------><------><------>drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
<------><------><------>if (&t->rcu_node_entry == rnp->boost_tasks)
<------><------><------><------>WRITE_ONCE(rnp->boost_tasks, np);
<------><------>}
<------><------>/*
<------><------> * If this was the last task on the current list, and if
<------><------> * we aren't waiting on any CPUs, report the quiescent state.
<------><------> * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
<------><------> * so we must take a snapshot of the expedited state.
<------><------> */
<------><------>empty_exp_now = sync_rcu_exp_done(rnp);
<------><------>if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
<------><------><------>trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
<------><------><------><------><------><------><------> rnp->gp_seq,
<------><------><------><------><------><------><------> 0, rnp->qsmask,
<------><------><------><------><------><------><------> rnp->level,
<------><------><------><------><------><------><------> rnp->grplo,
<------><------><------><------><------><------><------> rnp->grphi,
<------><------><------><------><------><------><------> !!rnp->gp_tasks);
<------><------><------>rcu_report_unblock_qs_rnp(rnp, flags);
<------><------>} else {
<------><------><------>raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
<------><------>}
<------><------>/*
<------><------> * If this was the last task on the expedited lists,
<------><------> * then we need to report up the rcu_node hierarchy.
<------><------> */
<------><------>if (!empty_exp && empty_exp_now)
<------><------><------>rcu_report_exp_rnp(rnp, true);
<------><------>/* Unboost if we were boosted. */
<------><------>if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
<------><------><------>rt_mutex_futex_unlock(&rnp->boost_mtx);
<------>} else {
<------><------>local_irq_restore(flags);
<------>}
}
/*
* Is a deferred quiescent-state pending, and are we also not in
* an RCU read-side critical section? It is the caller's responsibility
* to ensure it is otherwise safe to report any deferred quiescent
* states. The reason for this is that it is safe to report a
* quiescent state during context switch even though preemption
* is disabled. This function cannot be expected to understand these
* nuances, so the caller must handle them.
*/
static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
{
<------>return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
<------><------>READ_ONCE(t->rcu_read_unlock_special.s)) &&
<------> rcu_preempt_depth() == 0;
}
/*
* Report a deferred quiescent state if needed and safe to do so.
* As with rcu_preempt_need_deferred_qs(), "safe" involves only
* not being in an RCU read-side critical section. The caller must
* evaluate safety in terms of interrupt, softirq, and preemption
* disabling.
*/
static void rcu_preempt_deferred_qs(struct task_struct *t)
{
<------>unsigned long flags;
<------>if (!rcu_preempt_need_deferred_qs(t))
<------><------>return;
<------>local_irq_save(flags);
<------>rcu_preempt_deferred_qs_irqrestore(t, flags);
}
/*
* Minimal handler to give the scheduler a chance to re-evaluate.
*/
static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
{
<------>struct rcu_data *rdp;
<------>rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
<------>rdp->defer_qs_iw_pending = false;
}
/*
* Handle special cases during rcu_read_unlock(), such as needing to
* notify RCU core processing or task having blocked during the RCU
* read-side critical section.
*/
static void rcu_read_unlock_special(struct task_struct *t)
{
<------>unsigned long flags;
<------>bool preempt_bh_were_disabled =
<------><------><------>!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
<------>bool irqs_were_disabled;
<------>/* NMI handlers cannot block and cannot safely manipulate state. */
<------>if (in_nmi())
<------><------>return;
<------>local_irq_save(flags);
<------>irqs_were_disabled = irqs_disabled_flags(flags);
<------>if (preempt_bh_were_disabled || irqs_were_disabled) {
<------><------>bool exp;
<------><------>struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
<------><------>struct rcu_node *rnp = rdp->mynode;
<------><------>exp = (t->rcu_blocked_node &&
<------><------> READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
<------><------> (rdp->grpmask & READ_ONCE(rnp->expmask));
<------><------>// Need to defer quiescent state until everything is enabled.
<------><------>if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) {
<------><------><------>// Using softirq, safe to awaken, and either the
<------><------><------>// wakeup is free or there is an expedited GP.
<------><------><------>raise_softirq_irqoff(RCU_SOFTIRQ);
<------><------>} else {
<------><------><------>// Enabling BH or preempt does reschedule, so...
<------><------><------>// Also if no expediting, slow is OK.
<------><------><------>// Plus nohz_full CPUs eventually get tick enabled.
<------><------><------>set_tsk_need_resched(current);
<------><------><------>set_preempt_need_resched();
<------><------><------>if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
<------><------><------> !rdp->defer_qs_iw_pending && exp && cpu_online(rdp->cpu)) {
<------><------><------><------>// Get scheduler to re-evaluate and call hooks.
<------><------><------><------>// If !IRQ_WORK, FQS scan will eventually IPI.
<------><------><------><------>init_irq_work(&rdp->defer_qs_iw,
<------><------><------><------><------> rcu_preempt_deferred_qs_handler);
<------><------><------><------>rdp->defer_qs_iw_pending = true;
<------><------><------><------>irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
<------><------><------>}
<------><------>}
<------><------>local_irq_restore(flags);
<------><------>return;
<------>}
<------>rcu_preempt_deferred_qs_irqrestore(t, flags);
}
/*
* Check that the list of blocked tasks for the newly completed grace
* period is in fact empty. It is a serious bug to complete a grace
* period that still has RCU readers blocked! This function must be
* invoked -before- updating this rnp's ->gp_seq.
*
* Also, if there are blocked tasks on the list, they automatically
* block the newly created grace period, so set up ->gp_tasks accordingly.
*/
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
<------>struct task_struct *t;
<------>RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
<------>raw_lockdep_assert_held_rcu_node(rnp);
<------>if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
<------><------>dump_blkd_tasks(rnp, 10);
<------>if (rcu_preempt_has_tasks(rnp) &&
<------> (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
<------><------>WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
<------><------>t = container_of(rnp->gp_tasks, struct task_struct,
<------><------><------><------> rcu_node_entry);
<------><------>trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
<------><------><------><------><------><------>rnp->gp_seq, t->pid);
<------>}
<------>WARN_ON_ONCE(rnp->qsmask);
}
/*
* Check for a quiescent state from the current CPU, including voluntary
* context switches for Tasks RCU. When a task blocks, the task is
* recorded in the corresponding CPU's rcu_node structure, which is checked
* elsewhere, hence this function need only check for quiescent states
* related to the current CPU, not to those related to tasks.
*/
static void rcu_flavor_sched_clock_irq(int user)
{
<------>struct task_struct *t = current;
<------>lockdep_assert_irqs_disabled();
<------>if (user || rcu_is_cpu_rrupt_from_idle()) {
<------><------>rcu_note_voluntary_context_switch(current);
<------>}
<------>if (rcu_preempt_depth() > 0 ||
<------> (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
<------><------>/* No QS, force context switch if deferred. */
<------><------>if (rcu_preempt_need_deferred_qs(t)) {
<------><------><------>set_tsk_need_resched(t);
<------><------><------>set_preempt_need_resched();
<------><------>}
<------>} else if (rcu_preempt_need_deferred_qs(t)) {
<------><------>rcu_preempt_deferred_qs(t); /* Report deferred QS. */
<------><------>return;
<------>} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
<------><------>rcu_qs(); /* Report immediate QS. */
<------><------>return;
<------>}
<------>/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
<------>if (rcu_preempt_depth() > 0 &&
<------> __this_cpu_read(rcu_data.core_needs_qs) &&
<------> __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
<------> !t->rcu_read_unlock_special.b.need_qs &&
<------> time_after(jiffies, rcu_state.gp_start + HZ))
<------><------>t->rcu_read_unlock_special.b.need_qs = true;
}
/*
* Check for a task exiting while in a preemptible-RCU read-side
* critical section, clean up if so. No need to issue warnings, as
* debug_check_no_locks_held() already does this if lockdep is enabled.
* Besides, if this function does anything other than just immediately
* return, there was a bug of some sort. Spewing warnings from this
* function is like as not to simply obscure important prior warnings.
*/
void exit_rcu(void)
{
<------>struct task_struct *t = current;
<------>if (unlikely(!list_empty(&current->rcu_node_entry))) {
<------><------>rcu_preempt_depth_set(1);
<------><------>barrier();
<------><------>WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
<------>} else if (unlikely(rcu_preempt_depth())) {
<------><------>rcu_preempt_depth_set(1);
<------>} else {
<------><------>return;
<------>}
<------>__rcu_read_unlock();
<------>rcu_preempt_deferred_qs(current);
}
/*
* Dump the blocked-tasks state, but limit the list dump to the
* specified number of elements.
*/
static void
dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
{
<------>int cpu;
<------>int i;
<------>struct list_head *lhp;
<------>bool onl;
<------>struct rcu_data *rdp;
<------>struct rcu_node *rnp1;
<------>raw_lockdep_assert_held_rcu_node(rnp);
<------>pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
<------><------>__func__, rnp->grplo, rnp->grphi, rnp->level,
<------><------>(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
<------>for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
<------><------>pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
<------><------><------>__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
<------>pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
<------><------>__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
<------><------>READ_ONCE(rnp->exp_tasks));
<------>pr_info("%s: ->blkd_tasks", __func__);
<------>i = 0;
<------>list_for_each(lhp, &rnp->blkd_tasks) {
<------><------>pr_cont(" %p", lhp);
<------><------>if (++i >= ncheck)
<------><------><------>break;
<------>}
<------>pr_cont("\n");
<------>for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
<------><------>rdp = per_cpu_ptr(&rcu_data, cpu);
<------><------>onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
<------><------>pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
<------><------><------>cpu, ".o"[onl],
<------><------><------>(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
<------><------><------>(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
<------>}
}
#else /* #ifdef CONFIG_PREEMPT_RCU */
/*
* If strict grace periods are enabled, and if the calling
* __rcu_read_unlock() marks the beginning of a quiescent state, immediately
* report that quiescent state and, if requested, spin for a bit.
*/
void rcu_read_unlock_strict(void)
{
<------>struct rcu_data *rdp;
<------>if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
<------> irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
<------><------>return;
<------>rdp = this_cpu_ptr(&rcu_data);
<------>rcu_report_qs_rdp(rdp);
<------>udelay(rcu_unlock_delay);
}
EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
/*
* Tell them what RCU they are running.
*/
static void __init rcu_bootup_announce(void)
{
<------>pr_info("Hierarchical RCU implementation.\n");
<------>rcu_bootup_announce_oddness();
}
/*
* Note a quiescent state for PREEMPTION=n. Because we do not need to know
* how many quiescent states passed, just if there was at least one since
* the start of the grace period, this just sets a flag. The caller must
* have disabled preemption.
*/
static void rcu_qs(void)
{
<------>RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
<------>if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
<------><------>return;
<------>trace_rcu_grace_period(TPS("rcu_sched"),
<------><------><------> __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
<------>__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
<------>if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
<------><------>return;
<------>__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
<------>rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
}
/*
* Register an urgently needed quiescent state. If there is an
* emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
* dyntick-idle quiescent state visible to other CPUs, which will in
* some cases serve for expedited as well as normal grace periods.
* Either way, register a lightweight quiescent state.
*/
void rcu_all_qs(void)
{
<------>unsigned long flags;
<------>if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
<------><------>return;
<------>preempt_disable();
<------>/* Load rcu_urgent_qs before other flags. */
<------>if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
<------><------>preempt_enable();
<------><------>return;
<------>}
<------>this_cpu_write(rcu_data.rcu_urgent_qs, false);
<------>if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
<------><------>local_irq_save(flags);
<------><------>rcu_momentary_dyntick_idle();
<------><------>local_irq_restore(flags);
<------>}
<------>rcu_qs();
<------>preempt_enable();
}
EXPORT_SYMBOL_GPL(rcu_all_qs);
/*
* Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
*/
void rcu_note_context_switch(bool preempt)
{
<------>trace_rcu_utilization(TPS("Start context switch"));
<------>rcu_qs();
<------>/* Load rcu_urgent_qs before other flags. */
<------>if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
<------><------>goto out;
<------>this_cpu_write(rcu_data.rcu_urgent_qs, false);
<------>if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
<------><------>rcu_momentary_dyntick_idle();
<------>rcu_tasks_qs(current, preempt);
out:
<------>trace_rcu_utilization(TPS("End context switch"));
}
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
/*
* Because preemptible RCU does not exist, there are never any preempted
* RCU readers.
*/
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
{
<------>return 0;
}
/*
* Because there is no preemptible RCU, there can be no readers blocked.
*/
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
{
<------>return false;
}
/*
* Because there is no preemptible RCU, there can be no deferred quiescent
* states.
*/
static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
{
<------>return false;
}
static void rcu_preempt_deferred_qs(struct task_struct *t) { }
/*
* Because there is no preemptible RCU, there can be no readers blocked,
* so there is no need to check for blocked tasks. So check only for
* bogus qsmask values.
*/
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
<------>WARN_ON_ONCE(rnp->qsmask);
}
/*
* Check to see if this CPU is in a non-context-switch quiescent state,
* namely user mode and idle loop.
*/
static void rcu_flavor_sched_clock_irq(int user)
{
<------>if (user || rcu_is_cpu_rrupt_from_idle()) {
<------><------>/*
<------><------> * Get here if this CPU took its interrupt from user
<------><------> * mode or from the idle loop, and if this is not a
<------><------> * nested interrupt. In this case, the CPU is in
<------><------> * a quiescent state, so note it.
<------><------> *
<------><------> * No memory barrier is required here because rcu_qs()
<------><------> * references only CPU-local variables that other CPUs
<------><------> * neither access nor modify, at least not while the
<------><------> * corresponding CPU is online.
<------><------> */
<------><------>rcu_qs();
<------>}
}
/*
* Because preemptible RCU does not exist, tasks cannot possibly exit
* while in preemptible RCU read-side critical sections.
*/
void exit_rcu(void)
{
}
/*
* Dump the guaranteed-empty blocked-tasks state. Trust but verify.
*/
static void
dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
{
<------>WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
}
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
/*
* If boosting, set rcuc kthreads to realtime priority.
*/
static void rcu_cpu_kthread_setup(unsigned int cpu)
{
#ifdef CONFIG_RCU_BOOST
<------>struct sched_param sp;
<------>sp.sched_priority = kthread_prio;
<------>sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
#endif /* #ifdef CONFIG_RCU_BOOST */
}
#ifdef CONFIG_RCU_BOOST
/*
* Carry out RCU priority boosting on the task indicated by ->exp_tasks
* or ->boost_tasks, advancing the pointer to the next task in the
* ->blkd_tasks list.
*
* Note that irqs must be enabled: boosting the task can block.
* Returns 1 if there are more tasks needing to be boosted.
*/
static int rcu_boost(struct rcu_node *rnp)
{
<------>unsigned long flags;
<------>struct task_struct *t;
<------>struct list_head *tb;
<------>if (READ_ONCE(rnp->exp_tasks) == NULL &&
<------> READ_ONCE(rnp->boost_tasks) == NULL)
<------><------>return 0; /* Nothing left to boost. */
<------>raw_spin_lock_irqsave_rcu_node(rnp, flags);
<------>/*
<------> * Recheck under the lock: all tasks in need of boosting
<------> * might exit their RCU read-side critical sections on their own.
<------> */
<------>if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
<------><------>raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
<------><------>return 0;
<------>}
<------>/*
<------> * Preferentially boost tasks blocking expedited grace periods.
<------> * This cannot starve the normal grace periods because a second
<------> * expedited grace period must boost all blocked tasks, including
<------> * those blocking the pre-existing normal grace period.
<------> */
<------>if (rnp->exp_tasks != NULL)
<------><------>tb = rnp->exp_tasks;
<------>else
<------><------>tb = rnp->boost_tasks;
<------>/*
<------> * We boost task t by manufacturing an rt_mutex that appears to
<------> * be held by task t. We leave a pointer to that rt_mutex where
<------> * task t can find it, and task t will release the mutex when it
<------> * exits its outermost RCU read-side critical section. Then
<------> * simply acquiring this artificial rt_mutex will boost task
<------> * t's priority. (Thanks to tglx for suggesting this approach!)
<------> *
<------> * Note that task t must acquire rnp->lock to remove itself from
<------> * the ->blkd_tasks list, which it will do from exit() if from
<------> * nowhere else. We therefore are guaranteed that task t will
<------> * stay around at least until we drop rnp->lock. Note that
<------> * rnp->lock also resolves races between our priority boosting
<------> * and task t's exiting its outermost RCU read-side critical
<------> * section.
<------> */
<------>t = container_of(tb, struct task_struct, rcu_node_entry);
<------>rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
<------>raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
<------>/* Lock only for side effect: boosts task t's priority. */
<------>rt_mutex_lock(&rnp->boost_mtx);
<------>rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
<------>return READ_ONCE(rnp->exp_tasks) != NULL ||
<------> READ_ONCE(rnp->boost_tasks) != NULL;
}
/*
* Priority-boosting kthread, one per leaf rcu_node.
*/
static int rcu_boost_kthread(void *arg)
{
<------>struct rcu_node *rnp = (struct rcu_node *)arg;
<------>int spincnt = 0;
<------>int more2boost;
<------>trace_rcu_utilization(TPS("Start boost kthread@init"));
<------>for (;;) {
<------><------>WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
<------><------>trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
<------><------>rcu_wait(READ_ONCE(rnp->boost_tasks) ||
<------><------><------> READ_ONCE(rnp->exp_tasks));
<------><------>trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
<------><------>WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
<------><------>more2boost = rcu_boost(rnp);
<------><------>if (more2boost)
<------><------><------>spincnt++;
<------><------>else
<------><------><------>spincnt = 0;
<------><------>if (spincnt > 10) {
<------><------><------>WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
<------><------><------>trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
<------><------><------>schedule_timeout_idle(2);
<------><------><------>trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
<------><------><------>spincnt = 0;
<------><------>}
<------>}
<------>/* NOTREACHED */
<------>trace_rcu_utilization(TPS("End boost kthread@notreached"));
<------>return 0;
}
/*
* Check to see if it is time to start boosting RCU readers that are
* blocking the current grace period, and, if so, tell the per-rcu_node
* kthread to start boosting them. If there is an expedited grace
* period in progress, it is always time to boost.
*
* The caller must hold rnp->lock, which this function releases.
* The ->boost_kthread_task is immortal, so we don't need to worry
* about it going away.
*/
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
<------>__releases(rnp->lock)
{
<------>raw_lockdep_assert_held_rcu_node(rnp);
<------>if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
<------><------>raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
<------><------>return;
<------>}
<------>if (rnp->exp_tasks != NULL ||
<------> (rnp->gp_tasks != NULL &&
<------> rnp->boost_tasks == NULL &&
<------> rnp->qsmask == 0 &&
<------> (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
<------><------>if (rnp->exp_tasks == NULL)
<------><------><------>WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
<------><------>raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
<------><------>rcu_wake_cond(rnp->boost_kthread_task,
<------><------><------> READ_ONCE(rnp->boost_kthread_status));
<------>} else {
<------><------>raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
<------>}
}
/*
* Is the current CPU running the RCU-callbacks kthread?
* Caller must have preemption disabled.
*/
static bool rcu_is_callbacks_kthread(void)
{
<------>return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
}
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
/*
* Do priority-boost accounting for the start of a new grace period.
*/
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
<------>rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}
/*
* Create an RCU-boost kthread for the specified node if one does not
* already exist. We only create this kthread for preemptible RCU.
* Returns zero if all is well, a negated errno otherwise.
*/
static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
{
<------>int rnp_index = rnp - rcu_get_root();
<------>unsigned long flags;
<------>struct sched_param sp;
<------>struct task_struct *t;
<------>if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
<------><------>return;
<------>if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
<------><------>return;
<------>rcu_state.boost = 1;
<------>if (rnp->boost_kthread_task != NULL)
<------><------>return;
<------>t = kthread_create(rcu_boost_kthread, (void *)rnp,
<------><------><------> "rcub/%d", rnp_index);
<------>if (WARN_ON_ONCE(IS_ERR(t)))
<------><------>return;
<------>raw_spin_lock_irqsave_rcu_node(rnp, flags);
<------>rnp->boost_kthread_task = t;
<------>raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
<------>sp.sched_priority = kthread_prio;
<------>sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
<------>wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
}
/*
* Set the per-rcu_node kthread's affinity to cover all CPUs that are
* served by the rcu_node in question. The CPU hotplug lock is still
* held, so the value of rnp->qsmaskinit will be stable.
*
* We don't include outgoingcpu in the affinity set, use -1 if there is
* no outgoing CPU. If there are no CPUs left in the affinity set,
* this function allows the kthread to execute on any CPU.
*/
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
<------>struct task_struct *t = rnp->boost_kthread_task;
<------>unsigned long mask = rcu_rnp_online_cpus(rnp);
<------>cpumask_var_t cm;
<------>int cpu;
<------>if (!t)
<------><------>return;
<------>if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
<------><------>return;
<------>for_each_leaf_node_possible_cpu(rnp, cpu)
<------><------>if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
<------><------> cpu != outgoingcpu)
<------><------><------>cpumask_set_cpu(cpu, cm);
<------>if (cpumask_weight(cm) == 0)
<------><------>cpumask_setall(cm);
<------>set_cpus_allowed_ptr(t, cm);
<------>free_cpumask_var(cm);
}
/*
* Spawn boost kthreads -- called as soon as the scheduler is running.
*/
static void __init rcu_spawn_boost_kthreads(void)
{
<------>struct rcu_node *rnp;
<------>rcu_for_each_leaf_node(rnp)
<------><------>rcu_spawn_one_boost_kthread(rnp);
}
static void rcu_prepare_kthreads(int cpu)
{
<------>struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
<------>struct rcu_node *rnp = rdp->mynode;
<------>/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
<------>if (rcu_scheduler_fully_active)
<------><------>rcu_spawn_one_boost_kthread(rnp);
}
#else /* #ifdef CONFIG_RCU_BOOST */
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
<------>__releases(rnp->lock)
{
<------>raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
}
static bool rcu_is_callbacks_kthread(void)
{
<------>return false;
}
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
}
static void __init rcu_spawn_boost_kthreads(void)
{
}
static void rcu_prepare_kthreads(int cpu)
{
}
#endif /* #else #ifdef CONFIG_RCU_BOOST */
#if !defined(CONFIG_RCU_FAST_NO_HZ)
/*
* Check to see if any future non-offloaded RCU-related work will need
* to be done by the current CPU, even if none need be done immediately,
* returning 1 if so. This function is part of the RCU implementation;
* it is -not- an exported member of the RCU API.
*
* Because we not have RCU_FAST_NO_HZ, just check whether or not this
* CPU has RCU callbacks queued.
*/
int rcu_needs_cpu(u64 basemono, u64 *nextevt)
{
<------>*nextevt = KTIME_MAX;
<------>return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
<------> !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
}
/*
* Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
* after it.
*/
static void rcu_cleanup_after_idle(void)
{
}
/*
* Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
* is nothing.
*/
static void rcu_prepare_for_idle(void)
{
}
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
/*
* This code is invoked when a CPU goes idle, at which point we want
* to have the CPU do everything required for RCU so that it can enter
* the energy-efficient dyntick-idle mode.
*
* The following preprocessor symbol controls this:
*
* RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
* to sleep in dyntick-idle mode with RCU callbacks pending. This
* is sized to be roughly one RCU grace period. Those energy-efficiency
* benchmarkers who might otherwise be tempted to set this to a large
* number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
* system. And if you are -that- concerned about energy efficiency,
* just power the system down and be done with it!
*
* The value below works well in practice. If future workloads require
* adjustment, they can be converted into kernel config parameters, though
* making the state machine smarter might be a better option.
*/
#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
module_param(rcu_idle_gp_delay, int, 0644);
/*
* Try to advance callbacks on the current CPU, but only if it has been
* awhile since the last time we did so. Afterwards, if there are any
* callbacks ready for immediate invocation, return true.
*/
static bool __maybe_unused rcu_try_advance_all_cbs(void)
{
<------>bool cbs_ready = false;
<------>struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
<------>struct rcu_node *rnp;
<------>/* Exit early if we advanced recently. */
<------>if (jiffies == rdp->last_advance_all)
<------><------>return false;
<------>rdp->last_advance_all = jiffies;
<------>rnp = rdp->mynode;
<------>/*
<------> * Don't bother checking unless a grace period has
<------> * completed since we last checked and there are
<------> * callbacks not yet ready to invoke.
<------> */
<------>if ((rcu_seq_completed_gp(rdp->gp_seq,
<------><------><------><------> rcu_seq_current(&rnp->gp_seq)) ||
<------> unlikely(READ_ONCE(rdp->gpwrap))) &&
<------> rcu_segcblist_pend_cbs(&rdp->cblist))
<------><------>note_gp_changes(rdp);
<------>if (rcu_segcblist_ready_cbs(&rdp->cblist))
<------><------>cbs_ready = true;
<------>return cbs_ready;
}
/*
* Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
* to invoke. If the CPU has callbacks, try to advance them. Tell the
* caller about what to set the timeout.
*
* The caller must have disabled interrupts.
*/
int rcu_needs_cpu(u64 basemono, u64 *nextevt)
{
<------>struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
<------>unsigned long dj;
<------>lockdep_assert_irqs_disabled();
<------>/* If no non-offloaded callbacks, RCU doesn't need the CPU. */
<------>if (rcu_segcblist_empty(&rdp->cblist) ||
<------> rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
<------><------>*nextevt = KTIME_MAX;
<------><------>return 0;
<------>}
<------>/* Attempt to advance callbacks. */
<------>if (rcu_try_advance_all_cbs()) {
<------><------>/* Some ready to invoke, so initiate later invocation. */
<------><------>invoke_rcu_core();
<------><------>return 1;
<------>}
<------>rdp->last_accelerate = jiffies;
<------>/* Request timer and round. */
<------>dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
<------>*nextevt = basemono + dj * TICK_NSEC;
<------>return 0;
}
/*
* Prepare a CPU for idle from an RCU perspective. The first major task is to
* sense whether nohz mode has been enabled or disabled via sysfs. The second
* major task is to accelerate (that is, assign grace-period numbers to) any
* recently arrived callbacks.
*
* The caller must have disabled interrupts.
*/
static void rcu_prepare_for_idle(void)
{
<------>bool needwake;
<------>struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
<------>struct rcu_node *rnp;
<------>int tne;
<------>lockdep_assert_irqs_disabled();
<------>if (rcu_segcblist_is_offloaded(&rdp->cblist))
<------><------>return;
<------>/* Handle nohz enablement switches conservatively. */
<------>tne = READ_ONCE(tick_nohz_active);
<------>if (tne != rdp->tick_nohz_enabled_snap) {
<------><------>if (!rcu_segcblist_empty(&rdp->cblist))
<------><------><------>invoke_rcu_core(); /* force nohz to see update. */
<------><------>rdp->tick_nohz_enabled_snap = tne;
<------><------>return;
<------>}
<------>if (!tne)
<------><------>return;
<------>/*
<------> * If we have not yet accelerated this jiffy, accelerate all
<------> * callbacks on this CPU.
<------> */
<------>if (rdp->last_accelerate == jiffies)
<------><------>return;
<------>rdp->last_accelerate = jiffies;
<------>if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
<------><------>rnp = rdp->mynode;
<------><------>raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
<------><------>needwake = rcu_accelerate_cbs(rnp, rdp);
<------><------>raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
<------><------>if (needwake)
<------><------><------>rcu_gp_kthread_wake();
<------>}
}
/*
* Clean up for exit from idle. Attempt to advance callbacks based on
* any grace periods that elapsed while the CPU was idle, and if any
* callbacks are now ready to invoke, initiate invocation.
*/
static void rcu_cleanup_after_idle(void)
{
<------>struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
<------>lockdep_assert_irqs_disabled();
<------>if (rcu_segcblist_is_offloaded(&rdp->cblist))
<------><------>return;
<------>if (rcu_try_advance_all_cbs())
<------><------>invoke_rcu_core();
}
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
#ifdef CONFIG_RCU_NOCB_CPU
/*
* Offload callback processing from the boot-time-specified set of CPUs
* specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
* created that pull the callbacks from the corresponding CPU, wait for
* a grace period to elapse, and invoke the callbacks. These kthreads
* are organized into GP kthreads, which manage incoming callbacks, wait for
* grace periods, and awaken CB kthreads, and the CB kthreads, which only
* invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
* do a wake_up() on their GP kthread when they insert a callback into any
* empty list, unless the rcu_nocb_poll boot parameter has been specified,
* in which case each kthread actively polls its CPU. (Which isn't so great
* for energy efficiency, but which does reduce RCU's overhead on that CPU.)
*
* This is intended to be used in conjunction with Frederic Weisbecker's
* adaptive-idle work, which would seriously reduce OS jitter on CPUs
* running CPU-bound user-mode computations.
*
* Offloading of callbacks can also be used as an energy-efficiency
* measure because CPUs with no RCU callbacks queued are more aggressive
* about entering dyntick-idle mode.
*/
/*
* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
* The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
* comma-separated list of CPUs and/or CPU ranges. If an invalid list is
* given, a warning is emitted and all CPUs are offloaded.
*/
static int __init rcu_nocb_setup(char *str)
{
<------>alloc_bootmem_cpumask_var(&rcu_nocb_mask);
<------>if (!strcasecmp(str, "all"))
<------><------>cpumask_setall(rcu_nocb_mask);
<------>else
<------><------>if (cpulist_parse(str, rcu_nocb_mask)) {
<------><------><------>pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
<------><------><------>cpumask_setall(rcu_nocb_mask);
<------><------>}
<------>return 1;
}
__setup("rcu_nocbs=", rcu_nocb_setup);
static int __init parse_rcu_nocb_poll(char *arg)
{
<------>rcu_nocb_poll = true;
<------>return 0;
}
early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
/*
* Don't bother bypassing ->cblist if the call_rcu() rate is low.
* After all, the main point of bypassing is to avoid lock contention
* on ->nocb_lock, which only can happen at high call_rcu() rates.
*/
int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
module_param(nocb_nobypass_lim_per_jiffy, int, 0);
/*
* Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
* lock isn't immediately available, increment ->nocb_lock_contended to
* flag the contention.
*/
static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
<------>__acquires(&rdp->nocb_bypass_lock)
{
<------>lockdep_assert_irqs_disabled();
<------>if (raw_spin_trylock(&rdp->nocb_bypass_lock))
<------><------>return;
<------>atomic_inc(&rdp->nocb_lock_contended);
<------>WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
<------>smp_mb__after_atomic(); /* atomic_inc() before lock. */
<------>raw_spin_lock(&rdp->nocb_bypass_lock);
<------>smp_mb__before_atomic(); /* atomic_dec() after lock. */
<------>atomic_dec(&rdp->nocb_lock_contended);
}
/*
* Spinwait until the specified rcu_data structure's ->nocb_lock is
* not contended. Please note that this is extremely special-purpose,
* relying on the fact that at most two kthreads and one CPU contend for
* this lock, and also that the two kthreads are guaranteed to have frequent
* grace-period-duration time intervals between successive acquisitions
* of the lock. This allows us to use an extremely simple throttling
* mechanism, and further to apply it only to the CPU doing floods of
* call_rcu() invocations. Don't try this at home!
*/
static void rcu_nocb_wait_contended(struct rcu_data *rdp)
{
<------>WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
<------>while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
<------><------>cpu_relax();
}
/*
* Conditionally acquire the specified rcu_data structure's
* ->nocb_bypass_lock.
*/
static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
{
<------>lockdep_assert_irqs_disabled();
<------>return raw_spin_trylock(&rdp->nocb_bypass_lock);
}
/*
* Release the specified rcu_data structure's ->nocb_bypass_lock.
*/
static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
<------>__releases(&rdp->nocb_bypass_lock)
{
<------>lockdep_assert_irqs_disabled();
<------>raw_spin_unlock(&rdp->nocb_bypass_lock);
}
/*
* Acquire the specified rcu_data structure's ->nocb_lock, but only
* if it corresponds to a no-CBs CPU.
*/
static void rcu_nocb_lock(struct rcu_data *rdp)
{
<------>lockdep_assert_irqs_disabled();
<------>if (!rcu_segcblist_is_offloaded(&rdp->cblist))
<------><------>return;
<------>raw_spin_lock(&rdp->nocb_lock);
}
/*
* Release the specified rcu_data structure's ->nocb_lock, but only
* if it corresponds to a no-CBs CPU.
*/
static void rcu_nocb_unlock(struct rcu_data *rdp)
{
<------>if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
<------><------>lockdep_assert_irqs_disabled();
<------><------>raw_spin_unlock(&rdp->nocb_lock);
<------>}
}
/*
* Release the specified rcu_data structure's ->nocb_lock and restore
* interrupts, but only if it corresponds to a no-CBs CPU.
*/
static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
<------><------><------><------> unsigned long flags)
{
<------>if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
<------><------>lockdep_assert_irqs_disabled();
<------><------>raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
<------>} else {
<------><------>local_irq_restore(flags);
<------>}
}
/* Lockdep check that ->cblist may be safely accessed. */
static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
{
<------>lockdep_assert_irqs_disabled();
<------>if (rcu_segcblist_is_offloaded(&rdp->cblist))
<------><------>lockdep_assert_held(&rdp->nocb_lock);
}
/*
* Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
* grace period.
*/
static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
{
<------>swake_up_all(sq);
}
static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
{
<------>return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
}
static void rcu_init_one_nocb(struct rcu_node *rnp)
{
<------>init_swait_queue_head(&rnp->nocb_gp_wq[0]);
<------>init_swait_queue_head(&rnp->nocb_gp_wq[1]);
}
/* Is the specified CPU a no-CBs CPU? */
bool rcu_is_nocb_cpu(int cpu)
{
<------>if (cpumask_available(rcu_nocb_mask))
<------><------>return cpumask_test_cpu(cpu, rcu_nocb_mask);
<------>return false;
}
/*
* Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock
* and this function releases it.
*/
static void wake_nocb_gp(struct rcu_data *rdp, bool force,
<------><------><------> unsigned long flags)
<------>__releases(rdp->nocb_lock)
{
<------>bool needwake = false;
<------>struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
<------>lockdep_assert_held(&rdp->nocb_lock);
<------>if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
<------><------>trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
<------><------><------><------> TPS("AlreadyAwake"));
<------><------>rcu_nocb_unlock_irqrestore(rdp, flags);
<------><------>return;
<------>}
<------>if (READ_ONCE(rdp->nocb_defer_wakeup) > RCU_NOCB_WAKE_NOT) {
<------><------>WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
<------><------>del_timer(&rdp->nocb_timer);
<------>}
<------>rcu_nocb_unlock_irqrestore(rdp, flags);
<------>raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
<------>if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
<------><------>WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
<------><------>needwake = true;
<------><------>trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
<------>}
<------>raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
<------>if (needwake)
<------><------>wake_up_process(rdp_gp->nocb_gp_kthread);
}
/*
* Arrange to wake the GP kthread for this NOCB group at some future
* time when it is safe to do so.
*/
static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
<------><------><------> const char *reason)
{
<------>if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
<------><------>mod_timer(&rdp->nocb_timer, jiffies + 1);
<------>if (rdp->nocb_defer_wakeup < waketype)
<------><------>WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
<------>trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
}
/*
* Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
* However, if there is a callback to be enqueued and if ->nocb_bypass
* proves to be initially empty, just return false because the no-CB GP
* kthread may need to be awakened in this case.
*
* Note that this function always returns true if rhp is NULL.
*/
static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
<------><------><------><------> unsigned long j)
{
<------>struct rcu_cblist rcl;
<------>WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
<------>rcu_lockdep_assert_cblist_protected(rdp);
<------>lockdep_assert_held(&rdp->nocb_bypass_lock);
<------>if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
<------><------>raw_spin_unlock(&rdp->nocb_bypass_lock);
<------><------>return false;
<------>}
<------>/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
<------>if (rhp)
<------><------>rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
<------>rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
<------>rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
<------>WRITE_ONCE(rdp->nocb_bypass_first, j);
<------>rcu_nocb_bypass_unlock(rdp);
<------>return true;
}
/*
* Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
* However, if there is a callback to be enqueued and if ->nocb_bypass
* proves to be initially empty, just return false because the no-CB GP
* kthread may need to be awakened in this case.
*
* Note that this function always returns true if rhp is NULL.
*/
static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
<------><------><------><------> unsigned long j)
{
<------>if (!rcu_segcblist_is_offloaded(&rdp->cblist))
<------><------>return true;
<------>rcu_lockdep_assert_cblist_protected(rdp);
<------>rcu_nocb_bypass_lock(rdp);
<------>return rcu_nocb_do_flush_bypass(rdp, rhp, j);
}
/*
* If the ->nocb_bypass_lock is immediately available, flush the
* ->nocb_bypass queue into ->cblist.
*/
static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
{
<------>rcu_lockdep_assert_cblist_protected(rdp);
<------>if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
<------> !rcu_nocb_bypass_trylock(rdp))
<------><------>return;
<------>WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
}
/*
* See whether it is appropriate to use the ->nocb_bypass list in order
* to control contention on ->nocb_lock. A limited number of direct
* enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
* is non-empty, further callbacks must be placed into ->nocb_bypass,
* otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
* back to direct use of ->cblist. However, ->nocb_bypass should not be
* used if ->cblist is empty, because otherwise callbacks can be stranded
* on ->nocb_bypass because we cannot count on the current CPU ever again
* invoking call_rcu(). The general rule is that if ->nocb_bypass is
* non-empty, the corresponding no-CBs grace-period kthread must not be
* in an indefinite sleep state.
*
* Finally, it is not permitted to use the bypass during early boot,
* as doing so would confuse the auto-initialization code. Besides
* which, there is no point in worrying about lock contention while
* there is only one CPU in operation.
*/
static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
<------><------><------><------>bool *was_alldone, unsigned long flags)
{
<------>unsigned long c;
<------>unsigned long cur_gp_seq;
<------>unsigned long j = jiffies;
<------>long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
<------>if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
<------><------>*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
<------><------>return false; /* Not offloaded, no bypassing. */
<------>}
<------>lockdep_assert_irqs_disabled();
<------>// Don't use ->nocb_bypass during early boot.
<------>if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
<------><------>rcu_nocb_lock(rdp);
<------><------>WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
<------><------>*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
<------><------>return false;
<------>}
<------>// If we have advanced to a new jiffy, reset counts to allow
<------>// moving back from ->nocb_bypass to ->cblist.
<------>if (j == rdp->nocb_nobypass_last) {
<------><------>c = rdp->nocb_nobypass_count + 1;
<------>} else {
<------><------>WRITE_ONCE(rdp->nocb_nobypass_last, j);
<------><------>c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
<------><------>if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
<------><------><------><------> nocb_nobypass_lim_per_jiffy))
<------><------><------>c = 0;
<------><------>else if (c > nocb_nobypass_lim_per_jiffy)
<------><------><------>c = nocb_nobypass_lim_per_jiffy;
<------>}
<------>WRITE_ONCE(rdp->nocb_nobypass_count, c);
<------>// If there hasn't yet been all that many ->cblist enqueues
<------>// this jiffy, tell the caller to enqueue onto ->cblist. But flush
<------>// ->nocb_bypass first.
<------>if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
<------><------>rcu_nocb_lock(rdp);
<------><------>*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
<------><------>if (*was_alldone)
<------><------><------>trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
<------><------><------><------><------> TPS("FirstQ"));
<------><------>WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
<------><------>WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
<------><------>return false; // Caller must enqueue the callback.
<------>}
<------>// If ->nocb_bypass has been used too long or is too full,
<------>// flush ->nocb_bypass to ->cblist.
<------>if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
<------> ncbs >= qhimark) {
<------><------>rcu_nocb_lock(rdp);
<------><------>if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
<------><------><------>*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
<------><------><------>if (*was_alldone)
<------><------><------><------>trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
<------><------><------><------><------><------> TPS("FirstQ"));
<------><------><------>WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
<------><------><------>return false; // Caller must enqueue the callback.
<------><------>}
<------><------>if (j != rdp->nocb_gp_adv_time &&
<------><------> rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
<------><------> rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
<------><------><------>rcu_advance_cbs_nowake(rdp->mynode, rdp);
<------><------><------>rdp->nocb_gp_adv_time = j;
<------><------>}
<------><------>rcu_nocb_unlock_irqrestore(rdp, flags);
<------><------>return true; // Callback already enqueued.
<------>}
<------>// We need to use the bypass.
<------>rcu_nocb_wait_contended(rdp);
<------>rcu_nocb_bypass_lock(rdp);
<------>ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
<------>rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
<------>rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
<------>if (!ncbs) {
<------><------>WRITE_ONCE(rdp->nocb_bypass_first, j);
<------><------>trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
<------>}
<------>rcu_nocb_bypass_unlock(rdp);
<------>smp_mb(); /* Order enqueue before wake. */
<------>if (ncbs) {
<------><------>local_irq_restore(flags);
<------>} else {
<------><------>// No-CBs GP kthread might be indefinitely asleep, if so, wake.
<------><------>rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
<------><------>if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
<------><------><------>trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
<------><------><------><------><------> TPS("FirstBQwake"));
<------><------><------>__call_rcu_nocb_wake(rdp, true, flags);
<------><------>} else {
<------><------><------>trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
<------><------><------><------><------> TPS("FirstBQnoWake"));
<------><------><------>rcu_nocb_unlock_irqrestore(rdp, flags);
<------><------>}
<------>}
<------>return true; // Callback already enqueued.
}
/*
* Awaken the no-CBs grace-period kthead if needed, either due to it
* legitimately being asleep or due to overload conditions.
*
* If warranted, also wake up the kthread servicing this CPUs queues.
*/
static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
<------><------><------><------> unsigned long flags)
<------><------><------><------> __releases(rdp->nocb_lock)
{
<------>unsigned long cur_gp_seq;
<------>unsigned long j;
<------>long len;
<------>struct task_struct *t;
<------>// If we are being polled or there is no kthread, just leave.
<------>t = READ_ONCE(rdp->nocb_gp_kthread);
<------>if (rcu_nocb_poll || !t) {
<------><------>trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
<------><------><------><------> TPS("WakeNotPoll"));
<------><------>rcu_nocb_unlock_irqrestore(rdp, flags);
<------><------>return;
<------>}
<------>// Need to actually to a wakeup.
<------>len = rcu_segcblist_n_cbs(&rdp->cblist);
<------>if (was_alldone) {
<------><------>rdp->qlen_last_fqs_check = len;
<------><------>if (!irqs_disabled_flags(flags)) {
<------><------><------>/* ... if queue was empty ... */
<------><------><------>wake_nocb_gp(rdp, false, flags);
<------><------><------>trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
<------><------><------><------><------> TPS("WakeEmpty"));
<------><------>} else {
<------><------><------>wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
<------><------><------><------><------> TPS("WakeEmptyIsDeferred"));
<------><------><------>rcu_nocb_unlock_irqrestore(rdp, flags);
<------><------>}
<------>} else if (len > rdp->qlen_last_fqs_check + qhimark) {
<------><------>/* ... or if many callbacks queued. */
<------><------>rdp->qlen_last_fqs_check = len;
<------><------>j = jiffies;
<------><------>if (j != rdp->nocb_gp_adv_time &&
<------><------> rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
<------><------> rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
<------><------><------>rcu_advance_cbs_nowake(rdp->mynode, rdp);
<------><------><------>rdp->nocb_gp_adv_time = j;
<------><------>}
<------><------>smp_mb(); /* Enqueue before timer_pending(). */
<------><------>if ((rdp->nocb_cb_sleep ||
<------><------> !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
<------><------> !timer_pending(&rdp->nocb_bypass_timer))
<------><------><------>wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
<------><------><------><------><------> TPS("WakeOvfIsDeferred"));
<------><------>rcu_nocb_unlock_irqrestore(rdp, flags);
<------>} else {
<------><------>trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
<------><------>rcu_nocb_unlock_irqrestore(rdp, flags);
<------>}
<------>return;
}
/* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
{
<------>unsigned long flags;
<------>struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
<------>trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
<------>rcu_nocb_lock_irqsave(rdp, flags);
<------>smp_mb__after_spinlock(); /* Timer expire before wakeup. */
<------>__call_rcu_nocb_wake(rdp, true, flags);
}
/*
* No-CBs GP kthreads come here to wait for additional callbacks to show up
* or for grace periods to end.
*/
static void nocb_gp_wait(struct rcu_data *my_rdp)
{
<------>bool bypass = false;
<------>long bypass_ncbs;
<------>int __maybe_unused cpu = my_rdp->cpu;
<------>unsigned long cur_gp_seq;
<------>unsigned long flags;
<------>bool gotcbs = false;
<------>unsigned long j = jiffies;
<------>bool needwait_gp = false; // This prevents actual uninitialized use.
<------>bool needwake;
<------>bool needwake_gp;
<------>struct rcu_data *rdp;
<------>struct rcu_node *rnp;
<------>unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
<------>bool wasempty = false;
<------>/*
<------> * Each pass through the following loop checks for CBs and for the
<------> * nearest grace period (if any) to wait for next. The CB kthreads
<------> * and the global grace-period kthread are awakened if needed.
<------> */
<------>WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
<------>for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
<------><------>trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
<------><------>rcu_nocb_lock_irqsave(rdp, flags);
<------><------>bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
<------><------>if (bypass_ncbs &&
<------><------> (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
<------><------> bypass_ncbs > 2 * qhimark)) {
<------><------><------>// Bypass full or old, so flush it.
<------><------><------>(void)rcu_nocb_try_flush_bypass(rdp, j);
<------><------><------>bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
<------><------>} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
<------><------><------>rcu_nocb_unlock_irqrestore(rdp, flags);
<------><------><------>continue; /* No callbacks here, try next. */
<------><------>}
<------><------>if (bypass_ncbs) {
<------><------><------>trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
<------><------><------><------><------> TPS("Bypass"));
<------><------><------>bypass = true;
<------><------>}
<------><------>rnp = rdp->mynode;
<------><------>if (bypass) { // Avoid race with first bypass CB.
<------><------><------>WRITE_ONCE(my_rdp->nocb_defer_wakeup,
<------><------><------><------> RCU_NOCB_WAKE_NOT);
<------><------><------>del_timer(&my_rdp->nocb_timer);
<------><------>}
<------><------>// Advance callbacks if helpful and low contention.
<------><------>needwake_gp = false;
<------><------>if (!rcu_segcblist_restempty(&rdp->cblist,
<------><------><------><------><------> RCU_NEXT_READY_TAIL) ||
<------><------> (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
<------><------> rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
<------><------><------>raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
<------><------><------>needwake_gp = rcu_advance_cbs(rnp, rdp);
<------><------><------>wasempty = rcu_segcblist_restempty(&rdp->cblist,
<------><------><------><------><------><------><------> RCU_NEXT_READY_TAIL);
<------><------><------>raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
<------><------>}
<------><------>// Need to wait on some grace period?
<------><------>WARN_ON_ONCE(wasempty &&
<------><------><------> !rcu_segcblist_restempty(&rdp->cblist,
<------><------><------><------><------><------> RCU_NEXT_READY_TAIL));
<------><------>if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
<------><------><------>if (!needwait_gp ||
<------><------><------> ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
<------><------><------><------>wait_gp_seq = cur_gp_seq;
<------><------><------>needwait_gp = true;
<------><------><------>trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
<------><------><------><------><------> TPS("NeedWaitGP"));
<------><------>}
<------><------>if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
<------><------><------>needwake = rdp->nocb_cb_sleep;
<------><------><------>WRITE_ONCE(rdp->nocb_cb_sleep, false);
<------><------><------>smp_mb(); /* CB invocation -after- GP end. */
<------><------>} else {
<------><------><------>needwake = false;
<------><------>}
<------><------>rcu_nocb_unlock_irqrestore(rdp, flags);
<------><------>if (needwake) {
<------><------><------>swake_up_one(&rdp->nocb_cb_wq);
<------><------><------>gotcbs = true;
<------><------>}
<------><------>if (needwake_gp)
<------><------><------>rcu_gp_kthread_wake();
<------>}
<------>my_rdp->nocb_gp_bypass = bypass;
<------>my_rdp->nocb_gp_gp = needwait_gp;
<------>my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
<------>if (bypass && !rcu_nocb_poll) {
<------><------>// At least one child with non-empty ->nocb_bypass, so set
<------><------>// timer in order to avoid stranding its callbacks.
<------><------>raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
<------><------>mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
<------><------>raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
<------>}
<------>if (rcu_nocb_poll) {
<------><------>/* Polling, so trace if first poll in the series. */
<------><------>if (gotcbs)
<------><------><------>trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
<------><------>schedule_timeout_idle(1);
<------>} else if (!needwait_gp) {
<------><------>/* Wait for callbacks to appear. */
<------><------>trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
<------><------>swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
<------><------><------><------>!READ_ONCE(my_rdp->nocb_gp_sleep));
<------><------>trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
<------>} else {
<------><------>rnp = my_rdp->mynode;
<------><------>trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
<------><------>swait_event_interruptible_exclusive(
<------><------><------>rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
<------><------><------>rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
<------><------><------>!READ_ONCE(my_rdp->nocb_gp_sleep));
<------><------>trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
<------>}
<------>if (!rcu_nocb_poll) {
<------><------>raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
<------><------>if (bypass)
<------><------><------>del_timer(&my_rdp->nocb_bypass_timer);
<------><------>WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
<------><------>raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
<------>}
<------>my_rdp->nocb_gp_seq = -1;
<------>WARN_ON(signal_pending(current));
}
/*
* No-CBs grace-period-wait kthread. There is one of these per group
* of CPUs, but only once at least one CPU in that group has come online
* at least once since boot. This kthread checks for newly posted
* callbacks from any of the CPUs it is responsible for, waits for a
* grace period, then awakens all of the rcu_nocb_cb_kthread() instances
* that then have callback-invocation work to do.
*/
static int rcu_nocb_gp_kthread(void *arg)
{
<------>struct rcu_data *rdp = arg;
<------>for (;;) {
<------><------>WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
<------><------>nocb_gp_wait(rdp);
<------><------>cond_resched_tasks_rcu_qs();
<------>}
<------>return 0;
}
/*
* Invoke any ready callbacks from the corresponding no-CBs CPU,
* then, if there are no more, wait for more to appear.
*/
static void nocb_cb_wait(struct rcu_data *rdp)
{
<------>unsigned long cur_gp_seq;
<------>unsigned long flags;
<------>bool needwake_gp = false;
<------>struct rcu_node *rnp = rdp->mynode;
<------>local_irq_save(flags);
<------>rcu_momentary_dyntick_idle();
<------>local_irq_restore(flags);
<------>local_bh_disable();
<------>rcu_do_batch(rdp);
<------>local_bh_enable();
<------>lockdep_assert_irqs_enabled();
<------>rcu_nocb_lock_irqsave(rdp, flags);
<------>if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
<------> rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
<------> raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
<------><------>needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
<------><------>raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
<------>}
<------>if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
<------><------>rcu_nocb_unlock_irqrestore(rdp, flags);
<------><------>if (needwake_gp)
<------><------><------>rcu_gp_kthread_wake();
<------><------>return;
<------>}
<------>trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
<------>WRITE_ONCE(rdp->nocb_cb_sleep, true);
<------>rcu_nocb_unlock_irqrestore(rdp, flags);
<------>if (needwake_gp)
<------><------>rcu_gp_kthread_wake();
<------>swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
<------><------><------><------> !READ_ONCE(rdp->nocb_cb_sleep));
<------>if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
<------><------>/* ^^^ Ensure CB invocation follows _sleep test. */
<------><------>return;
<------>}
<------>WARN_ON(signal_pending(current));
<------>trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
}
/*
* Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
* nocb_cb_wait() to do the dirty work.
*/
static int rcu_nocb_cb_kthread(void *arg)
{
<------>struct rcu_data *rdp = arg;
<------>// Each pass through this loop does one callback batch, and,
<------>// if there are no more ready callbacks, waits for them.
<------>for (;;) {
<------><------>nocb_cb_wait(rdp);
<------><------>cond_resched_tasks_rcu_qs();
<------>}
<------>return 0;
}
/* Is a deferred wakeup of rcu_nocb_kthread() required? */
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
{
<------>return READ_ONCE(rdp->nocb_defer_wakeup);
}
/* Do a deferred wakeup of rcu_nocb_kthread(). */
static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
{
<------>unsigned long flags;
<------>int ndw;
<------>rcu_nocb_lock_irqsave(rdp, flags);
<------>if (!rcu_nocb_need_deferred_wakeup(rdp)) {
<------><------>rcu_nocb_unlock_irqrestore(rdp, flags);
<------><------>return;
<------>}
<------>ndw = READ_ONCE(rdp->nocb_defer_wakeup);
<------>wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
<------>trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
}
/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
{
<------>struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
<------>do_nocb_deferred_wakeup_common(rdp);
}
/*
* Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
* This means we do an inexact common-case check. Note that if
* we miss, ->nocb_timer will eventually clean things up.
*/
static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
<------>if (rcu_nocb_need_deferred_wakeup(rdp))
<------><------>do_nocb_deferred_wakeup_common(rdp);
}
void rcu_nocb_flush_deferred_wakeup(void)
{
<------>do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
}
void __init rcu_init_nohz(void)
{
<------>int cpu;
<------>bool need_rcu_nocb_mask = false;
<------>struct rcu_data *rdp;
#if defined(CONFIG_NO_HZ_FULL)
<------>if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
<------><------>need_rcu_nocb_mask = true;
#endif /* #if defined(CONFIG_NO_HZ_FULL) */
<------>if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
<------><------>if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
<------><------><------>pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
<------><------><------>return;
<------><------>}
<------>}
<------>if (!cpumask_available(rcu_nocb_mask))
<------><------>return;
#if defined(CONFIG_NO_HZ_FULL)
<------>if (tick_nohz_full_running)
<------><------>cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
#endif /* #if defined(CONFIG_NO_HZ_FULL) */
<------>if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
<------><------>pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
<------><------>cpumask_and(rcu_nocb_mask, cpu_possible_mask,
<------><------><------> rcu_nocb_mask);
<------>}
<------>if (cpumask_empty(rcu_nocb_mask))
<------><------>pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
<------>else
<------><------>pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
<------><------><------>cpumask_pr_args(rcu_nocb_mask));
<------>if (rcu_nocb_poll)
<------><------>pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
<------>for_each_cpu(cpu, rcu_nocb_mask) {
<------><------>rdp = per_cpu_ptr(&rcu_data, cpu);
<------><------>if (rcu_segcblist_empty(&rdp->cblist))
<------><------><------>rcu_segcblist_init(&rdp->cblist);
<------><------>rcu_segcblist_offload(&rdp->cblist);
<------>}
<------>rcu_organize_nocb_kthreads();
}
/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
<------>init_swait_queue_head(&rdp->nocb_cb_wq);
<------>init_swait_queue_head(&rdp->nocb_gp_wq);
<------>raw_spin_lock_init(&rdp->nocb_lock);
<------>raw_spin_lock_init(&rdp->nocb_bypass_lock);
<------>raw_spin_lock_init(&rdp->nocb_gp_lock);
<------>timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
<------>timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
<------>rcu_cblist_init(&rdp->nocb_bypass);
}
/*
* If the specified CPU is a no-CBs CPU that does not already have its
* rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
* for this CPU's group has not yet been created, spawn it as well.
*/
static void rcu_spawn_one_nocb_kthread(int cpu)
{
<------>struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
<------>struct rcu_data *rdp_gp;
<------>struct task_struct *t;
<------>/*
<------> * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
<------> * then nothing to do.
<------> */
<------>if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
<------><------>return;
<------>/* If we didn't spawn the GP kthread first, reorganize! */
<------>rdp_gp = rdp->nocb_gp_rdp;
<------>if (!rdp_gp->nocb_gp_kthread) {
<------><------>t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
<------><------><------><------>"rcuog/%d", rdp_gp->cpu);
<------><------>if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
<------><------><------>return;
<------><------>WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
<------>}
<------>/* Spawn the kthread for this CPU. */
<------>t = kthread_run(rcu_nocb_cb_kthread, rdp,
<------><------><------>"rcuo%c/%d", rcu_state.abbr, cpu);
<------>if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
<------><------>return;
<------>WRITE_ONCE(rdp->nocb_cb_kthread, t);
<------>WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
}
/*
* If the specified CPU is a no-CBs CPU that does not already have its
* rcuo kthread, spawn it.
*/
static void rcu_spawn_cpu_nocb_kthread(int cpu)
{
<------>if (rcu_scheduler_fully_active)
<------><------>rcu_spawn_one_nocb_kthread(cpu);
}
/*
* Once the scheduler is running, spawn rcuo kthreads for all online
* no-CBs CPUs. This assumes that the early_initcall()s happen before
* non-boot CPUs come online -- if this changes, we will need to add
* some mutual exclusion.
*/
static void __init rcu_spawn_nocb_kthreads(void)
{
<------>int cpu;
<------>for_each_online_cpu(cpu)
<------><------>rcu_spawn_cpu_nocb_kthread(cpu);
}
/* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
static int rcu_nocb_gp_stride = -1;
module_param(rcu_nocb_gp_stride, int, 0444);
/*
* Initialize GP-CB relationships for all no-CBs CPU.
*/
static void __init rcu_organize_nocb_kthreads(void)
{
<------>int cpu;
<------>bool firsttime = true;
<------>bool gotnocbs = false;
<------>bool gotnocbscbs = true;
<------>int ls = rcu_nocb_gp_stride;
<------>int nl = 0; /* Next GP kthread. */
<------>struct rcu_data *rdp;
<------>struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
<------>struct rcu_data *rdp_prev = NULL;
<------>if (!cpumask_available(rcu_nocb_mask))
<------><------>return;
<------>if (ls == -1) {
<------><------>ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
<------><------>rcu_nocb_gp_stride = ls;
<------>}
<------>/*
<------> * Each pass through this loop sets up one rcu_data structure.
<------> * Should the corresponding CPU come online in the future, then
<------> * we will spawn the needed set of rcu_nocb_kthread() kthreads.
<------> */
<------>for_each_cpu(cpu, rcu_nocb_mask) {
<------><------>rdp = per_cpu_ptr(&rcu_data, cpu);
<------><------>if (rdp->cpu >= nl) {
<------><------><------>/* New GP kthread, set up for CBs & next GP. */
<------><------><------>gotnocbs = true;
<------><------><------>nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
<------><------><------>rdp->nocb_gp_rdp = rdp;
<------><------><------>rdp_gp = rdp;
<------><------><------>if (dump_tree) {
<------><------><------><------>if (!firsttime)
<------><------><------><------><------>pr_cont("%s\n", gotnocbscbs
<------><------><------><------><------><------><------>? "" : " (self only)");
<------><------><------><------>gotnocbscbs = false;
<------><------><------><------>firsttime = false;
<------><------><------><------>pr_alert("%s: No-CB GP kthread CPU %d:",
<------><------><------><------><------> __func__, cpu);
<------><------><------>}
<------><------>} else {
<------><------><------>/* Another CB kthread, link to previous GP kthread. */
<------><------><------>gotnocbscbs = true;
<------><------><------>rdp->nocb_gp_rdp = rdp_gp;
<------><------><------>rdp_prev->nocb_next_cb_rdp = rdp;
<------><------><------>if (dump_tree)
<------><------><------><------>pr_cont(" %d", cpu);
<------><------>}
<------><------>rdp_prev = rdp;
<------>}
<------>if (gotnocbs && dump_tree)
<------><------>pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
}
/*
* Bind the current task to the offloaded CPUs. If there are no offloaded
* CPUs, leave the task unbound. Splat if the bind attempt fails.
*/
void rcu_bind_current_to_nocb(void)
{
<------>if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
<------><------>WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
}
EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
/*
* Dump out nocb grace-period kthread state for the specified rcu_data
* structure.
*/
static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
{
<------>struct rcu_node *rnp = rdp->mynode;
<------>pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
<------><------>rdp->cpu,
<------><------>"kK"[!!rdp->nocb_gp_kthread],
<------><------>"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
<------><------>"dD"[!!rdp->nocb_defer_wakeup],
<------><------>"tT"[timer_pending(&rdp->nocb_timer)],
<------><------>"bB"[timer_pending(&rdp->nocb_bypass_timer)],
<------><------>"sS"[!!rdp->nocb_gp_sleep],
<------><------>".W"[swait_active(&rdp->nocb_gp_wq)],
<------><------>".W"[swait_active(&rnp->nocb_gp_wq[0])],
<------><------>".W"[swait_active(&rnp->nocb_gp_wq[1])],
<------><------>".B"[!!rdp->nocb_gp_bypass],
<------><------>".G"[!!rdp->nocb_gp_gp],
<------><------>(long)rdp->nocb_gp_seq,
<------><------>rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
}
/* Dump out nocb kthread state for the specified rcu_data structure. */
static void show_rcu_nocb_state(struct rcu_data *rdp)
{
<------>struct rcu_segcblist *rsclp = &rdp->cblist;
<------>bool waslocked;
<------>bool wastimer;
<------>bool wassleep;
<------>if (rdp->nocb_gp_rdp == rdp)
<------><------>show_rcu_nocb_gp_state(rdp);
<------>pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
<------><------>rdp->cpu, rdp->nocb_gp_rdp->cpu,
<------><------>"kK"[!!rdp->nocb_cb_kthread],
<------><------>"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
<------><------>"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
<------><------>"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
<------><------>"sS"[!!rdp->nocb_cb_sleep],
<------><------>".W"[swait_active(&rdp->nocb_cb_wq)],
<------><------>jiffies - rdp->nocb_bypass_first,
<------><------>jiffies - rdp->nocb_nobypass_last,
<------><------>rdp->nocb_nobypass_count,
<------><------>".D"[rcu_segcblist_ready_cbs(rsclp)],
<------><------>".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
<------><------>".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
<------><------>".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
<------><------>".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
<------><------>rcu_segcblist_n_cbs(&rdp->cblist));
<------>/* It is OK for GP kthreads to have GP state. */
<------>if (rdp->nocb_gp_rdp == rdp)
<------><------>return;
<------>waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
<------>wastimer = timer_pending(&rdp->nocb_bypass_timer);
<------>wassleep = swait_active(&rdp->nocb_gp_wq);
<------>if (!rdp->nocb_gp_sleep && !waslocked && !wastimer && !wassleep)
<------><------>return; /* Nothing untowards. */
<------>pr_info(" nocb GP activity on CB-only CPU!!! %c%c%c%c %c\n",
<------><------>"lL"[waslocked],
<------><------>"dD"[!!rdp->nocb_defer_wakeup],
<------><------>"tT"[wastimer],
<------><------>"sS"[!!rdp->nocb_gp_sleep],
<------><------>".W"[wassleep]);
}
#else /* #ifdef CONFIG_RCU_NOCB_CPU */
/* No ->nocb_lock to acquire. */
static void rcu_nocb_lock(struct rcu_data *rdp)
{
}
/* No ->nocb_lock to release. */
static void rcu_nocb_unlock(struct rcu_data *rdp)
{
}
/* No ->nocb_lock to release. */
static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
<------><------><------><------> unsigned long flags)
{
<------>local_irq_restore(flags);
}
/* Lockdep check that ->cblist may be safely accessed. */
static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
{
<------>lockdep_assert_irqs_disabled();
}
static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
{
}
static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
{
<------>return NULL;
}
static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}
static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
<------><------><------><------> unsigned long j)
{
<------>return true;
}
static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
<------><------><------><------>bool *was_alldone, unsigned long flags)
{
<------>return false;
}
static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
<------><------><------><------> unsigned long flags)
{
<------>WARN_ON_ONCE(1); /* Should be dead code! */
}
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
{
<------>return false;
}
static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
}
static void rcu_spawn_cpu_nocb_kthread(int cpu)
{
}
static void __init rcu_spawn_nocb_kthreads(void)
{
}
static void show_rcu_nocb_state(struct rcu_data *rdp)
{
}
#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
/*
* Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
* grace-period kthread will do force_quiescent_state() processing?
* The idea is to avoid waking up RCU core processing on such a
* CPU unless the grace period has extended for too long.
*
* This code relies on the fact that all NO_HZ_FULL CPUs are also
* CONFIG_RCU_NOCB_CPU CPUs.
*/
static bool rcu_nohz_full_cpu(void)
{
#ifdef CONFIG_NO_HZ_FULL
<------>if (tick_nohz_full_cpu(smp_processor_id()) &&
<------> (!rcu_gp_in_progress() ||
<------> time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
<------><------>return true;
#endif /* #ifdef CONFIG_NO_HZ_FULL */
<------>return false;
}
/*
* Bind the RCU grace-period kthreads to the housekeeping CPU.
*/
static void rcu_bind_gp_kthread(void)
{
<------>if (!tick_nohz_full_enabled())
<------><------>return;
<------>housekeeping_affine(current, HK_FLAG_RCU);
}
/* Record the current task on dyntick-idle entry. */
static __always_inline void rcu_dynticks_task_enter(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
<------>WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}
/* Record no current task on dyntick-idle exit. */
static __always_inline void rcu_dynticks_task_exit(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
<------>WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}
/* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
static __always_inline void rcu_dynticks_task_trace_enter(void)
{
#ifdef CONFIG_TASKS_TRACE_RCU
<------>if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
<------><------>current->trc_reader_special.b.need_mb = true;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
}
/* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
static __always_inline void rcu_dynticks_task_trace_exit(void)
{
#ifdef CONFIG_TASKS_TRACE_RCU
<------>if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
<------><------>current->trc_reader_special.b.need_mb = false;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
}