^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Pid namespaces
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Authors:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * Many thanks to Oleg Nesterov for comments and help
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/pid.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/pid_namespace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/user_namespace.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/syscalls.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/cred.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/acct.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/proc_ns.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <linux/reboot.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <linux/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <linux/sched/task.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #include <linux/sched/signal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #include <linux/idr.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) static DEFINE_MUTEX(pid_caches_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) static struct kmem_cache *pid_ns_cachep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) /* Write once array, filled from the beginning. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) * creates the kmem cache to allocate pids from.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) * @level: pid namespace level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) static struct kmem_cache *create_pid_cachep(unsigned int level)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) /* Level 0 is init_pid_ns.pid_cachep */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) struct kmem_cache **pkc = &pid_cache[level - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) struct kmem_cache *kc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) char name[4 + 10 + 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) unsigned int len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) kc = READ_ONCE(*pkc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) if (kc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) return kc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) snprintf(name, sizeof(name), "pid_%u", level + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) len = sizeof(struct pid) + level * sizeof(struct upid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) mutex_lock(&pid_caches_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) /* Name collision forces to do allocation under mutex. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) if (!*pkc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) *pkc = kmem_cache_create(name, len, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) mutex_unlock(&pid_caches_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) /* current can fail, but someone else can succeed. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) return READ_ONCE(*pkc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) static void dec_pid_namespaces(struct ucounts *ucounts)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) struct pid_namespace *parent_pid_ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) struct pid_namespace *ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) unsigned int level = parent_pid_ns->level + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) struct ucounts *ucounts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) err = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) if (!in_userns(parent_pid_ns->user_ns, user_ns))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) err = -ENOSPC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) if (level > MAX_PID_NS_LEVEL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) ucounts = inc_pid_namespaces(user_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) if (!ucounts)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) err = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) if (ns == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) goto out_dec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) idr_init(&ns->idr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) ns->pid_cachep = create_pid_cachep(level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) if (ns->pid_cachep == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) goto out_free_idr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) err = ns_alloc_inum(&ns->ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) goto out_free_idr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) ns->ns.ops = &pidns_operations;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) kref_init(&ns->kref);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) ns->level = level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) ns->parent = get_pid_ns(parent_pid_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) ns->user_ns = get_user_ns(user_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) ns->ucounts = ucounts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) ns->pid_allocated = PIDNS_ADDING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) return ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) out_free_idr:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) idr_destroy(&ns->idr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) kmem_cache_free(pid_ns_cachep, ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) out_dec:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) dec_pid_namespaces(ucounts);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) return ERR_PTR(err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) static void delayed_free_pidns(struct rcu_head *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) dec_pid_namespaces(ns->ucounts);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) put_user_ns(ns->user_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) kmem_cache_free(pid_ns_cachep, ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) static void destroy_pid_namespace(struct pid_namespace *ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) ns_free_inum(&ns->ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) idr_destroy(&ns->idr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) call_rcu(&ns->rcu, delayed_free_pidns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) struct pid_namespace *copy_pid_ns(unsigned long flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) struct user_namespace *user_ns, struct pid_namespace *old_ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) if (!(flags & CLONE_NEWPID))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) return get_pid_ns(old_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) if (task_active_pid_ns(current) != old_ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) return ERR_PTR(-EINVAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) return create_pid_namespace(user_ns, old_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) static void free_pid_ns(struct kref *kref)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) struct pid_namespace *ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) ns = container_of(kref, struct pid_namespace, kref);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) destroy_pid_namespace(ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) void put_pid_ns(struct pid_namespace *ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) struct pid_namespace *parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) while (ns != &init_pid_ns) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) parent = ns->parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) if (!kref_put(&ns->kref, free_pid_ns))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) ns = parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) EXPORT_SYMBOL_GPL(put_pid_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) void zap_pid_ns_processes(struct pid_namespace *pid_ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) int nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) struct task_struct *task, *me = current;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) int init_pids = thread_group_leader(me) ? 1 : 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) struct pid *pid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) /* Don't allow any more processes into the pid namespace */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) disable_pid_allocation(pid_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) * Ignore SIGCHLD causing any terminated children to autoreap.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) * This speeds up the namespace shutdown, plus see the comment
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) * below.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) spin_lock_irq(&me->sighand->siglock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) spin_unlock_irq(&me->sighand->siglock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) * The last thread in the cgroup-init thread group is terminating.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) * Find remaining pid_ts in the namespace, signal and wait for them
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) * to exit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) * Note: This signals each threads in the namespace - even those that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) * belong to the same thread group, To avoid this, we would have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) * to walk the entire tasklist looking a processes in this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) * namespace, but that could be unnecessarily expensive if the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) * pid namespace has just a few processes. Or we need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) * maintain a tasklist for each pid namespace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) read_lock(&tasklist_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) nr = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) task = pid_task(pid, PIDTYPE_PID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) if (task && !__fatal_signal_pending(task))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) read_unlock(&tasklist_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) * kernel_wait4() will also block until our children traced from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) * parent namespace are detached and become EXIT_DEAD.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) clear_thread_flag(TIF_SIGPENDING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) rc = kernel_wait4(-1, NULL, __WALL, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) } while (rc != -ECHILD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) * process whose parents processes are outside of the pid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) * namespace. Such processes are created with setns()+fork().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) * If those EXIT_ZOMBIE processes are not reaped by their
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) * parents before their parents exit, they will be reparented
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) * to pid_ns->child_reaper. Thus pidns->child_reaper needs to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) * stay valid until they all go away.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) * The code relies on the pid_ns->child_reaper ignoring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) * SIGCHILD to cause those EXIT_ZOMBIE processes to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) * autoreaped if reparented.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) * Semantically it is also desirable to wait for EXIT_ZOMBIE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) * processes before allowing the child_reaper to be reaped, as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) * that gives the invariant that when the init process of a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) * pid namespace is reaped all of the processes in the pid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) * namespace are gone.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) * Once all of the other tasks are gone from the pid_namespace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) * free_pid() will awaken this task.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) for (;;) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) set_current_state(TASK_INTERRUPTIBLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) if (pid_ns->pid_allocated == init_pids)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) schedule();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) __set_current_state(TASK_RUNNING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) if (pid_ns->reboot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) current->signal->group_exit_code = pid_ns->reboot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) acct_exit_ns(pid_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) #ifdef CONFIG_CHECKPOINT_RESTORE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) static int pid_ns_ctl_handler(struct ctl_table *table, int write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) void *buffer, size_t *lenp, loff_t *ppos)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) struct pid_namespace *pid_ns = task_active_pid_ns(current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) struct ctl_table tmp = *table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) int ret, next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) * Writing directly to ns' last_pid field is OK, since this field
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) * is volatile in a living namespace anyway and a code writing to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) * it should synchronize its usage with external means.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) next = idr_get_cursor(&pid_ns->idr) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) tmp.data = &next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) if (!ret && write)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) idr_set_cursor(&pid_ns->idr, next + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) extern int pid_max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) static struct ctl_table pid_ns_ctl_table[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) .procname = "ns_last_pid",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) .maxlen = sizeof(int),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) .mode = 0666, /* permissions are checked in the handler */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) .proc_handler = pid_ns_ctl_handler,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) .extra1 = SYSCTL_ZERO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) .extra2 = &pid_max,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) #endif /* CONFIG_CHECKPOINT_RESTORE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) if (pid_ns == &init_pid_ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) switch (cmd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) case LINUX_REBOOT_CMD_RESTART2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) case LINUX_REBOOT_CMD_RESTART:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) pid_ns->reboot = SIGHUP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) case LINUX_REBOOT_CMD_POWER_OFF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) case LINUX_REBOOT_CMD_HALT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) pid_ns->reboot = SIGINT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) read_lock(&tasklist_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) send_sig(SIGKILL, pid_ns->child_reaper, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) read_unlock(&tasklist_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) do_exit(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) /* Not reached */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) return container_of(ns, struct pid_namespace, ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) static struct ns_common *pidns_get(struct task_struct *task)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) struct pid_namespace *ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) ns = task_active_pid_ns(task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) if (ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) get_pid_ns(ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) return ns ? &ns->ns : NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) static struct ns_common *pidns_for_children_get(struct task_struct *task)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) struct pid_namespace *ns = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) task_lock(task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) if (task->nsproxy) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) ns = task->nsproxy->pid_ns_for_children;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) get_pid_ns(ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) task_unlock(task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) if (ns) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) read_lock(&tasklist_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) if (!ns->child_reaper) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) put_pid_ns(ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) ns = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) read_unlock(&tasklist_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) return ns ? &ns->ns : NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) static void pidns_put(struct ns_common *ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) put_pid_ns(to_pid_ns(ns));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) static int pidns_install(struct nsset *nsset, struct ns_common *ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) struct nsproxy *nsproxy = nsset->nsproxy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) struct pid_namespace *active = task_active_pid_ns(current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) struct pid_namespace *ancestor, *new = to_pid_ns(ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) * Only allow entering the current active pid namespace
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) * or a child of the current active pid namespace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) * This is required for fork to return a usable pid value and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) * this maintains the property that processes and their
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) * children can not escape their current pid namespace.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) if (new->level < active->level)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) ancestor = new;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) while (ancestor->level > active->level)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) ancestor = ancestor->parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) if (ancestor != active)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) put_pid_ns(nsproxy->pid_ns_for_children);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) nsproxy->pid_ns_for_children = get_pid_ns(new);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) static struct ns_common *pidns_get_parent(struct ns_common *ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) struct pid_namespace *active = task_active_pid_ns(current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) struct pid_namespace *pid_ns, *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) /* See if the parent is in the current namespace */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) pid_ns = p = to_pid_ns(ns)->parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) for (;;) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) if (!p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) return ERR_PTR(-EPERM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) if (p == active)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) p = p->parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) return &get_pid_ns(pid_ns)->ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) static struct user_namespace *pidns_owner(struct ns_common *ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) return to_pid_ns(ns)->user_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) const struct proc_ns_operations pidns_operations = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) .name = "pid",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) .type = CLONE_NEWPID,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) .get = pidns_get,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) .put = pidns_put,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) .install = pidns_install,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) .owner = pidns_owner,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) .get_parent = pidns_get_parent,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) const struct proc_ns_operations pidns_for_children_operations = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) .name = "pid_for_children",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) .real_ns_name = "pid",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) .type = CLONE_NEWPID,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) .get = pidns_for_children_get,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) .put = pidns_put,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) .install = pidns_install,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) .owner = pidns_owner,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) .get_parent = pidns_get_parent,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) static __init int pid_namespaces_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) #ifdef CONFIG_CHECKPOINT_RESTORE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) register_sysctl_paths(kern_path, pid_ns_ctl_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) __initcall(pid_namespaces_init);