Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /* bpf/cpumap.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * Unlike devmap which redirects XDP frames out another NIC device,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  * this map type redirects raw XDP frames to another CPU.  The remote
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  * CPU will do SKB-allocation and call the normal network stack.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  * This is a scalability and isolation mechanism, that allow
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  * separating the early driver network XDP layer, from the rest of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  * netstack, and assigning dedicated CPUs for this stage.  This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  * basically allows for 10G wirespeed pre-filtering via bpf.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/bpf.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/filter.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/ptr_ring.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <net/xdp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #include <linux/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #include <linux/workqueue.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #include <linux/kthread.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #include <linux/capability.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #include <trace/events/xdp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #include <linux/netdevice.h>   /* netif_receive_skb_core */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #include <linux/etherdevice.h> /* eth_type_trans */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) /* General idea: XDP packets getting XDP redirected to another CPU,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)  * will maximum be stored/queued for one driver ->poll() call.  It is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35)  * guaranteed that queueing the frame and the flush operation happen on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36)  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)  * which queue in bpf_cpu_map_entry contains packets.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) struct bpf_cpu_map_entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) struct bpf_cpu_map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) struct xdp_bulk_queue {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	void *q[CPU_MAP_BULK_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	struct list_head flush_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 	struct bpf_cpu_map_entry *obj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 	unsigned int count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) /* Struct for every remote "destination" CPU in map */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) struct bpf_cpu_map_entry {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 	u32 cpu;    /* kthread CPU and map index */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 	int map_id; /* Back reference to map */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	struct xdp_bulk_queue __percpu *bulkq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	struct bpf_cpu_map *cmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 	/* Queue with potential multi-producers, and single-consumer kthread */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	struct ptr_ring *queue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	struct task_struct *kthread;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 	struct bpf_cpumap_val value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	struct bpf_prog *prog;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	atomic_t refcnt; /* Control when this struct can be free'ed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 	struct rcu_head rcu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	struct work_struct kthread_stop_wq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) struct bpf_cpu_map {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	struct bpf_map map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	/* Below members specific for map type */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	struct bpf_cpu_map_entry **cpu_map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	u32 value_size = attr->value_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	struct bpf_cpu_map *cmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	int err = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	u64 cost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	if (!bpf_capable())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 		return ERR_PTR(-EPERM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	/* check sanity of attributes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	if (attr->max_entries == 0 || attr->key_size != 4 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	    attr->map_flags & ~BPF_F_NUMA_NODE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 		return ERR_PTR(-EINVAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	cmap = kzalloc(sizeof(*cmap), GFP_USER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	if (!cmap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 		return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	bpf_map_init_from_attr(&cmap->map, attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	if (cmap->map.max_entries > NR_CPUS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 		err = -E2BIG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 		goto free_cmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	/* make sure page count doesn't overflow */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	/* Notice returns -EPERM on if map size is larger than memlock limit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	ret = bpf_map_charge_init(&cmap->map.memory, cost);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 		err = ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 		goto free_cmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	/* Alloc array for possible remote "destination" CPUs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 					   sizeof(struct bpf_cpu_map_entry *),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 					   cmap->map.numa_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	if (!cmap->cpu_map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 		goto free_charge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	return &cmap->map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) free_charge:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	bpf_map_charge_finish(&cmap->map.memory);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) free_cmap:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	kfree(cmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	return ERR_PTR(err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	atomic_inc(&rcpu->refcnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) /* called from workqueue, to workaround syscall using preempt_disable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) static void cpu_map_kthread_stop(struct work_struct *work)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	struct bpf_cpu_map_entry *rcpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	 * as it waits until all in-flight call_rcu() callbacks complete.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	rcu_barrier();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	/* kthread_stop will wake_up_process and wait for it to complete */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	kthread_stop(rcpu->kthread);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) static struct sk_buff *cpu_map_build_skb(struct xdp_frame *xdpf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 					 struct sk_buff *skb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	unsigned int hard_start_headroom;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	unsigned int frame_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	void *pkt_data_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	/* Part of headroom was reserved to xdpf */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	hard_start_headroom = sizeof(struct xdp_frame) +  xdpf->headroom;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	/* Memory size backing xdp_frame data already have reserved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	 * room for build_skb to place skb_shared_info in tailroom.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	frame_size = xdpf->frame_sz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	pkt_data_start = xdpf->data - hard_start_headroom;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	skb = build_skb_around(skb, pkt_data_start, frame_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	if (unlikely(!skb))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	skb_reserve(skb, hard_start_headroom);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	__skb_put(skb, xdpf->len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	if (xdpf->metasize)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 		skb_metadata_set(skb, xdpf->metasize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	/* Essential SKB info: protocol and skb->dev */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	/* Optional SKB info, currently missing:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	 * - HW checksum info		(skb->ip_summed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	 * - HW RX hash			(skb_set_hash)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	 * - RX ring dev queue index	(skb_record_rx_queue)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	/* Until page_pool get SKB return path, release DMA here */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	xdp_release_frame(xdpf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	/* Allow SKB to reuse area used by xdp_frame */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	xdp_scrub_frame(xdpf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	return skb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	/* The tear-down procedure should have made sure that queue is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	 * empty.  See __cpu_map_entry_replace() and work-queue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	 * gracefully and warn once.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	struct xdp_frame *xdpf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	while ((xdpf = ptr_ring_consume(ring)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 		if (WARN_ON_ONCE(xdpf))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 			xdp_return_frame(xdpf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	if (atomic_dec_and_test(&rcpu->refcnt)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 		if (rcpu->prog)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 			bpf_prog_put(rcpu->prog);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 		/* The queue should be empty at this point */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 		__cpu_map_ring_cleanup(rcpu->queue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 		ptr_ring_cleanup(rcpu->queue, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 		kfree(rcpu->queue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 		kfree(rcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 				    void **frames, int n,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 				    struct xdp_cpumap_stats *stats)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	struct xdp_rxq_info rxq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	struct xdp_buff xdp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	int i, nframes = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	if (!rcpu->prog)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 		return n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	rcu_read_lock_bh();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	xdp_set_return_frame_no_direct();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	xdp.rxq = &rxq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	for (i = 0; i < n; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 		struct xdp_frame *xdpf = frames[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 		u32 act;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 		int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 		rxq.dev = xdpf->dev_rx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 		rxq.mem = xdpf->mem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 		/* TODO: report queue_index to xdp_rxq_info */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 		xdp_convert_frame_to_buff(xdpf, &xdp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 		switch (act) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 		case XDP_PASS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 			err = xdp_update_frame_from_buff(&xdp, xdpf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 			if (err < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 				xdp_return_frame(xdpf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 				stats->drop++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 				frames[nframes++] = xdpf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 				stats->pass++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 		case XDP_REDIRECT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 					      rcpu->prog);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 			if (unlikely(err)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 				xdp_return_frame(xdpf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 				stats->drop++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 				stats->redirect++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 			bpf_warn_invalid_xdp_action(act);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 			fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 		case XDP_DROP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 			xdp_return_frame(xdpf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 			stats->drop++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	if (stats->redirect)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 		xdp_do_flush_map();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	xdp_clear_return_frame_no_direct();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	return nframes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) #define CPUMAP_BATCH 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) static int cpu_map_kthread_run(void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	struct bpf_cpu_map_entry *rcpu = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	set_current_state(TASK_INTERRUPTIBLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 	/* When kthread gives stop order, then rcpu have been disconnected
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	 * from map, thus no new packets can enter. Remaining in-flight
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	 * per CPU stored packets are flushed to this queue.  Wait honoring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	 * kthread_stop signal until queue is empty.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 		struct xdp_cpumap_stats stats = {}; /* zero stats */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 		unsigned int drops = 0, sched = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 		void *frames[CPUMAP_BATCH];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 		void *skbs[CPUMAP_BATCH];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 		int i, n, m, nframes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 		/* Release CPU reschedule checks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 		if (__ptr_ring_empty(rcpu->queue)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 			set_current_state(TASK_INTERRUPTIBLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 			/* Recheck to avoid lost wake-up */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 			if (__ptr_ring_empty(rcpu->queue)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 				schedule();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 				sched = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 				__set_current_state(TASK_RUNNING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 			sched = cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 		 * The bpf_cpu_map_entry is single consumer, with this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 		 * kthread CPU pinned. Lockless access to ptr_ring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 		 * consume side valid as no-resize allowed of queue.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 		n = __ptr_ring_consume_batched(rcpu->queue, frames,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 					       CPUMAP_BATCH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 		for (i = 0; i < n; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 			void *f = frames[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 			struct page *page = virt_to_page(f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 			/* Bring struct page memory area to curr CPU. Read by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 			 * build_skb_around via page_is_pfmemalloc(), and when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 			 * freed written by page_frag_free call.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 			prefetchw(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 		/* Support running another XDP prog on this CPU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 		nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, n, &stats);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 		if (nframes) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 			m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 			if (unlikely(m == 0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 				for (i = 0; i < nframes; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 					skbs[i] = NULL; /* effect: xdp_return_frame */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 				drops += nframes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 		local_bh_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 		for (i = 0; i < nframes; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 			struct xdp_frame *xdpf = frames[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 			struct sk_buff *skb = skbs[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 			int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 			skb = cpu_map_build_skb(xdpf, skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 			if (!skb) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 				xdp_return_frame(xdpf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 			/* Inject into network stack */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 			ret = netif_receive_skb_core(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 			if (ret == NET_RX_DROP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 				drops++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 		/* Feedback loop via tracepoint */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 		trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched, &stats);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 		local_bh_enable(); /* resched point, may call do_softirq() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	__set_current_state(TASK_RUNNING);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 	put_cpu_map_entry(rcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) bool cpu_map_prog_allowed(struct bpf_map *map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	return map->map_type == BPF_MAP_TYPE_CPUMAP &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	       map->value_size != offsetofend(struct bpf_cpumap_val, qsize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 	struct bpf_prog *prog;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 	if (IS_ERR(prog))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 		return PTR_ERR(prog);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	if (prog->expected_attach_type != BPF_XDP_CPUMAP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 		bpf_prog_put(prog);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 	rcpu->value.bpf_prog.id = prog->aux->id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	rcpu->prog = prog;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) static struct bpf_cpu_map_entry *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) __cpu_map_entry_alloc(struct bpf_cpumap_val *value, u32 cpu, int map_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 	int numa, err, i, fd = value->bpf_prog.fd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 	struct bpf_cpu_map_entry *rcpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 	struct xdp_bulk_queue *bq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 	/* Have map->numa_node, but choose node of redirect target CPU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 	numa = cpu_to_node(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 	if (!rcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 	/* Alloc percpu bulkq */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 					 sizeof(void *), gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 	if (!rcpu->bulkq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 		goto free_rcu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	for_each_possible_cpu(i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 		bq = per_cpu_ptr(rcpu->bulkq, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 		bq->obj = rcpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 	/* Alloc queue */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 	if (!rcpu->queue)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 		goto free_bulkq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 		goto free_queue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 	rcpu->cpu    = cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 	rcpu->map_id = map_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 	rcpu->value.qsize  = value->qsize;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 		goto free_ptr_ring;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 	/* Setup kthread */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 					       "cpumap/%d/map:%d", cpu, map_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 	if (IS_ERR(rcpu->kthread))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 		goto free_prog;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 	/* Make sure kthread runs on a single CPU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 	kthread_bind(rcpu->kthread, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	wake_up_process(rcpu->kthread);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 	return rcpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) free_prog:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 	if (rcpu->prog)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 		bpf_prog_put(rcpu->prog);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) free_ptr_ring:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 	ptr_ring_cleanup(rcpu->queue, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) free_queue:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 	kfree(rcpu->queue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) free_bulkq:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	free_percpu(rcpu->bulkq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) free_rcu:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 	kfree(rcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) static void __cpu_map_entry_free(struct rcu_head *rcu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 	struct bpf_cpu_map_entry *rcpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 	/* This cpu_map_entry have been disconnected from map and one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 	 * RCU grace-period have elapsed.  Thus, XDP cannot queue any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 	 * new packets and cannot change/set flush_needed that can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 	 * find this entry.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 	free_percpu(rcpu->bulkq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 	/* Cannot kthread_stop() here, last put free rcpu resources */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 	put_cpu_map_entry(rcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502)  * ensure any driver rcu critical sections have completed, but this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503)  * does not guarantee a flush has happened yet. Because driver side
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504)  * rcu_read_lock/unlock only protects the running XDP program.  The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505)  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506)  * pending flush op doesn't fail.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508)  * The bpf_cpu_map_entry is still used by the kthread, and there can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509)  * still be pending packets (in queue and percpu bulkq).  A refcnt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510)  * makes sure to last user (kthread_stop vs. call_rcu) free memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511)  * resources.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513)  * The rcu callback __cpu_map_entry_free flush remaining packets in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514)  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515)  * preemption, cannot call kthread_stop() to make sure queue is empty.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516)  * Instead a work_queue is started for stopping kthread,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517)  * cpu_map_kthread_stop, which waits for an RCU grace period before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518)  * stopping kthread, emptying the queue.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 	struct bpf_cpu_map_entry *old_rcpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 	if (old_rcpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 		schedule_work(&old_rcpu->kthread_stop_wq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) static int cpu_map_delete_elem(struct bpf_map *map, void *key)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 	u32 key_cpu = *(u32 *)key;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 	if (key_cpu >= map->max_entries)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 	/* notice caller map_delete_elem() use preempt_disable() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 			       u64 map_flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 	struct bpf_cpumap_val cpumap_value = {};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 	struct bpf_cpu_map_entry *rcpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 	/* Array index key correspond to CPU number */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 	u32 key_cpu = *(u32 *)key;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 	memcpy(&cpumap_value, value, map->value_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 	if (unlikely(map_flags > BPF_EXIST))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 	if (unlikely(key_cpu >= cmap->map.max_entries))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 		return -E2BIG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 	if (unlikely(map_flags == BPF_NOEXIST))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 		return -EEXIST;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 		return -EOVERFLOW;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 	/* Make sure CPU is a valid possible cpu */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 	if (cpumap_value.qsize == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 		rcpu = NULL; /* Same as deleting */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 		rcpu = __cpu_map_entry_alloc(&cpumap_value, key_cpu, map->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 		if (!rcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 		rcpu->cmap = cmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) static void cpu_map_free(struct bpf_map *map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 	u32 i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 	 * so the bpf programs (can be more than one that used this map) were
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 	 * disconnected from events. Wait for outstanding critical sections in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 	 * these programs to complete. The rcu critical section only guarantees
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 	 * It does __not__ ensure pending flush operations (if any) are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 	 * complete.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 	bpf_clear_redirect_map(map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 	synchronize_rcu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 	/* For cpu_map the remote CPUs can still be using the entries
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 	 * (struct bpf_cpu_map_entry).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 	for (i = 0; i < cmap->map.max_entries; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 		struct bpf_cpu_map_entry *rcpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 		rcpu = READ_ONCE(cmap->cpu_map[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 		if (!rcpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) 		/* bq flush and cleanup happens after RCU grace-period */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 	bpf_map_area_free(cmap->cpu_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) 	kfree(cmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 	struct bpf_cpu_map_entry *rcpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) 	if (key >= map->max_entries)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 	rcpu = READ_ONCE(cmap->cpu_map[key]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) 	return rcpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 	struct bpf_cpu_map_entry *rcpu =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 		__cpu_map_lookup_elem(map, *(u32 *)key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 	return rcpu ? &rcpu->value : NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) 	u32 index = key ? *(u32 *)key : U32_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) 	u32 *next = next_key;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) 	if (index >= cmap->map.max_entries) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) 		*next = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) 	if (index == cmap->map.max_entries - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) 		return -ENOENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) 	*next = index + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) static int cpu_map_btf_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) const struct bpf_map_ops cpu_map_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) 	.map_meta_equal		= bpf_map_meta_equal,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) 	.map_alloc		= cpu_map_alloc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) 	.map_free		= cpu_map_free,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) 	.map_delete_elem	= cpu_map_delete_elem,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) 	.map_update_elem	= cpu_map_update_elem,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) 	.map_lookup_elem	= cpu_map_lookup_elem,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) 	.map_get_next_key	= cpu_map_get_next_key,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) 	.map_check_btf		= map_check_no_btf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) 	.map_btf_name		= "bpf_cpu_map",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) 	.map_btf_id		= &cpu_map_btf_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) 	struct bpf_cpu_map_entry *rcpu = bq->obj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 	unsigned int processed = 0, drops = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 	const int to_cpu = rcpu->cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) 	struct ptr_ring *q;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) 	if (unlikely(!bq->count))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) 	q = rcpu->queue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) 	spin_lock(&q->producer_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) 	for (i = 0; i < bq->count; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) 		struct xdp_frame *xdpf = bq->q[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 		int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) 		err = __ptr_ring_produce(q, xdpf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 		if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) 			drops++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 			xdp_return_frame_rx_napi(xdpf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) 		processed++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) 	bq->count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) 	spin_unlock(&q->producer_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) 	__list_del_clearprev(&bq->flush_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) 	/* Feedback loop via tracepoints */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) /* Runs under RCU-read-side, plus in softirq under NAPI protection.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705)  * Thus, safe percpu variable access.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) 		bq_flush_to_queue(bq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) 	/* Notice, xdp_buff/page MUST be queued here, long enough for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) 	 * driver to code invoking us to finished, due to driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) 	 * Thus, incoming xdp_frame is always queued here (else we race
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) 	 * with another CPU on page-refcnt and remaining driver code).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) 	 * Queue time is very short, as driver will invoke flush
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) 	 * operation, when completing napi->poll call.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) 	bq->q[bq->count++] = xdpf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) 	if (!bq->flush_node.prev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) 		list_add(&bq->flush_node, flush_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) 		    struct net_device *dev_rx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) 	struct xdp_frame *xdpf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) 	xdpf = xdp_convert_buff_to_frame(xdp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) 	if (unlikely(!xdpf))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) 		return -EOVERFLOW;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) 	/* Info needed when constructing SKB on remote CPU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) 	xdpf->dev_rx = dev_rx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) 	bq_enqueue(rcpu, xdpf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) void __cpu_map_flush(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) 	struct xdp_bulk_queue *bq, *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) 		bq_flush_to_queue(bq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) 		/* If already running, costs spin_lock_irqsave + smb_mb */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) 		wake_up_process(bq->obj->kthread);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) static int __init cpu_map_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) 	int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) 	for_each_possible_cpu(cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) 		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) subsys_initcall(cpu_map_init);