Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /* SPDX-License-Identifier: GPL-2.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) #ifndef __NET_SCHED_RED_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) #define __NET_SCHED_RED_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) #include <linux/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) #include <linux/bug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) #include <net/pkt_sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) #include <net/inet_ecn.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <net/dsfield.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/reciprocal_div.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) /*	Random Early Detection (RED) algorithm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) 	=======================================
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) 	Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) 	for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) 	This file codes a "divisionless" version of RED algorithm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) 	as written down in Fig.17 of the paper.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 	Short description.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) 	------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 	When a new packet arrives we calculate the average queue length:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) 	avg = (1-W)*avg + W*current_queue_len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 	W is the filter time constant (chosen as 2^(-Wlog)), it controls
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) 	the inertia of the algorithm. To allow larger bursts, W should be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 	decreased.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 	if (avg > th_max) -> packet marked (dropped).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 	if (avg < th_min) -> packet passes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 	if (th_min < avg < th_max) we calculate probability:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 	Pb = max_P * (avg - th_min)/(th_max-th_min)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 	and mark (drop) packet with this probability.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 	Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 	max_P should be small (not 1), usually 0.01..0.02 is good value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	max_P is chosen as a number, so that max_P/(th_max-th_min)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	is a negative power of two in order arithmetics to contain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	only shifts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 	Parameters, settable by user:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 	-----------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 	qth_min		- bytes (should be < qth_max/2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 	qth_max		- bytes (should be at least 2*qth_min and less limit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 	Wlog	       	- bits (<32) log(1/W).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 	Plog	       	- bits (<32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 	Plog is related to max_P by formula:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	max_P = (qth_max-qth_min)/2^Plog;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	F.e. if qth_max=128K and qth_min=32K, then Plog=22
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	corresponds to max_P=0.02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	Scell_log
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	Stab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 	Lookup table for log((1-W)^(t/t_ave).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	NOTES:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	Upper bound on W.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	-----------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 	If you want to allow bursts of L packets of size S,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	you should choose W:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	L + 1 - th_min/S < (1-(1-W)^L)/W
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	th_min/S = 32         th_min/S = 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	log(W)	L
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	-1	33
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	-2	35
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	-3	39
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	-4	46
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	-5	57
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	-6	75
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	-7	101
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	-8	135
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	-9	190
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	etc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94)  * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95)  * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97)  * Every 500 ms:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98)  *  if (avg > target and max_p <= 0.5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99)  *   increase max_p : max_p += alpha;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)  *  else if (avg < target and max_p >= 0.01)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)  *   decrease max_p : max_p *= beta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)  * target :[qth_min + 0.4*(qth_min - qth_max),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)  *          qth_min + 0.6*(qth_min - qth_max)].
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)  * alpha : min(0.01, max_p / 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)  * beta : 0.9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)  * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)  * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) #define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) #define MAX_P_MIN (1 * RED_ONE_PERCENT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) #define MAX_P_MAX (50 * RED_ONE_PERCENT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) #define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) #define RED_STAB_SIZE	256
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) #define RED_STAB_MASK	(RED_STAB_SIZE - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) struct red_stats {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	u32		prob_drop;	/* Early probability drops */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	u32		prob_mark;	/* Early probability marks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	u32		forced_drop;	/* Forced drops, qavg > max_thresh */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	u32		forced_mark;	/* Forced marks, qavg > max_thresh */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	u32		pdrop;          /* Drops due to queue limits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	u32		other;          /* Drops due to drop() calls */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) struct red_parms {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	/* Parameters */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	u32		qth_min;	/* Min avg length threshold: Wlog scaled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	u32		qth_max;	/* Max avg length threshold: Wlog scaled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	u32		Scell_max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	u32		max_P;		/* probability, [0 .. 1.0] 32 scaled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	/* reciprocal_value(max_P / qth_delta) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	struct reciprocal_value	max_P_reciprocal;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	u32		qth_delta;	/* max_th - min_th */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	u32		target_min;	/* min_th + 0.4*(max_th - min_th) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	u32		target_max;	/* min_th + 0.6*(max_th - min_th) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	u8		Scell_log;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	u8		Wlog;		/* log(W)		*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	u8		Plog;		/* random number bits	*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	u8		Stab[RED_STAB_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) struct red_vars {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	/* Variables */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	int		qcount;		/* Number of packets since last random
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 					   number generation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	u32		qR;		/* Cached random number */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	unsigned long	qavg;		/* Average queue length: Wlog scaled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	ktime_t		qidlestart;	/* Start of current idle period */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) static inline u32 red_maxp(u8 Plog)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	return Plog < 32 ? (~0U >> Plog) : ~0U;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) static inline void red_set_vars(struct red_vars *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	/* Reset average queue length, the value is strictly bound
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	 * to the parameters below, reseting hurts a bit but leaving
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	 * it might result in an unreasonable qavg for a while. --TGR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	v->qavg		= 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	v->qcount	= -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) static inline bool red_check_params(u32 qth_min, u32 qth_max, u8 Wlog,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 				    u8 Scell_log, u8 *stab)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	if (fls(qth_min) + Wlog >= 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	if (fls(qth_max) + Wlog >= 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	if (Scell_log >= 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	if (qth_max < qth_min)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	if (stab) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 		int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 		for (i = 0; i < RED_STAB_SIZE; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 			if (stab[i] >= 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 				return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) static inline int red_get_flags(unsigned char qopt_flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 				unsigned char historic_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 				struct nlattr *flags_attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 				unsigned char supported_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 				struct nla_bitfield32 *p_flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 				unsigned char *p_userbits,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 				struct netlink_ext_ack *extack)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	struct nla_bitfield32 flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	if (qopt_flags && flags_attr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 		NL_SET_ERR_MSG_MOD(extack, "flags should be passed either through qopt, or through a dedicated attribute");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	if (flags_attr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 		flags = nla_get_bitfield32(flags_attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 		flags.selector = historic_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 		flags.value = qopt_flags & historic_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	*p_flags = flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	*p_userbits = qopt_flags & ~historic_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) static inline int red_validate_flags(unsigned char flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 				     struct netlink_ext_ack *extack)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	if ((flags & TC_RED_NODROP) && !(flags & TC_RED_ECN)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 		NL_SET_ERR_MSG_MOD(extack, "nodrop mode is only meaningful with ECN");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) static inline void red_set_parms(struct red_parms *p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 				 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 				 u8 Scell_log, u8 *stab, u32 max_P)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	int delta = qth_max - qth_min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	u32 max_p_delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	p->qth_min	= qth_min << Wlog;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	p->qth_max	= qth_max << Wlog;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	p->Wlog		= Wlog;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	p->Plog		= Plog;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	if (delta <= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 		delta = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	p->qth_delta	= delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	if (!max_P) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 		max_P = red_maxp(Plog);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 		max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 	p->max_P = max_P;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	max_p_delta = max_P / delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	max_p_delta = max(max_p_delta, 1U);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	p->max_P_reciprocal  = reciprocal_value(max_p_delta);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	/* RED Adaptative target :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	 * [min_th + 0.4*(min_th - max_th),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	 *  min_th + 0.6*(min_th - max_th)].
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	delta /= 5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	p->target_min = qth_min + 2*delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	p->target_max = qth_min + 3*delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	p->Scell_log	= Scell_log;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	p->Scell_max	= (255 << Scell_log);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	if (stab)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 		memcpy(p->Stab, stab, sizeof(p->Stab));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) static inline int red_is_idling(const struct red_vars *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	return v->qidlestart != 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) static inline void red_start_of_idle_period(struct red_vars *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	v->qidlestart = ktime_get();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) static inline void red_end_of_idle_period(struct red_vars *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	v->qidlestart = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) static inline void red_restart(struct red_vars *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	red_end_of_idle_period(v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	v->qavg = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	v->qcount = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 							 const struct red_vars *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	long us_idle = min_t(s64, delta, p->Scell_max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	int  shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	 * The problem: ideally, average length queue recalcultion should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	 * be done over constant clock intervals. This is too expensive, so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	 * that the calculation is driven by outgoing packets.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	 * When the queue is idle we have to model this clock by hand.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	 * SF+VJ proposed to "generate":
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 	 *	m = idletime / (average_pkt_size / bandwidth)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	 * dummy packets as a burst after idle time, i.e.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	 * 	v->qavg *= (1-W)^m
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	 * This is an apparently overcomplicated solution (f.e. we have to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	 * precompute a table to make this calculation in reasonable time)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	 * I believe that a simpler model may be used here,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	 * but it is field for experiments.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	if (shift)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 		return v->qavg >> shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 		/* Approximate initial part of exponent with linear function:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 		 * 	(1-W)^m ~= 1-mW + ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 		 * Seems, it is the best solution to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 		 * problem of too coarse exponent tabulation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 		us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 		if (us_idle < (v->qavg >> 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 			return v->qavg - us_idle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 			return v->qavg >> 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 						       const struct red_vars *v,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 						       unsigned int backlog)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	 * NOTE: v->qavg is fixed point number with point at Wlog.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	 * The formula below is equvalent to floating point
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	 * version:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	 * 	qavg = qavg*(1-W) + backlog*W;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	 * --ANK (980924)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	return v->qavg + (backlog - (v->qavg >> p->Wlog));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) static inline unsigned long red_calc_qavg(const struct red_parms *p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 					  const struct red_vars *v,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 					  unsigned int backlog)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	if (!red_is_idling(v))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 		return red_calc_qavg_no_idle_time(p, v, backlog);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 		return red_calc_qavg_from_idle_time(p, v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) static inline u32 red_random(const struct red_parms *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	return reciprocal_divide(prandom_u32(), p->max_P_reciprocal);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) static inline int red_mark_probability(const struct red_parms *p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 				       const struct red_vars *v,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 				       unsigned long qavg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 	/* The formula used below causes questions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 	   OK. qR is random number in the interval
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 		(0..1/max_P)*(qth_max-qth_min)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 	   i.e. 0..(2^Plog). If we used floating point
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 	   arithmetics, it would be: (2^Plog)*rnd_num,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	   where rnd_num is less 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	   Taking into account, that qavg have fixed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	   point at Wlog, two lines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	   below have the following floating point equivalent:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	   max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	   Any questions? --ANK (980924)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 	return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	RED_BELOW_MIN_THRESH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	RED_BETWEEN_TRESH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	RED_ABOVE_MAX_TRESH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	if (qavg < p->qth_min)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 		return RED_BELOW_MIN_THRESH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	else if (qavg >= p->qth_max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 		return RED_ABOVE_MAX_TRESH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 		return RED_BETWEEN_TRESH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 	RED_DONT_MARK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 	RED_PROB_MARK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 	RED_HARD_MARK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) static inline int red_action(const struct red_parms *p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 			     struct red_vars *v,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 			     unsigned long qavg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 	switch (red_cmp_thresh(p, qavg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 		case RED_BELOW_MIN_THRESH:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 			v->qcount = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 			return RED_DONT_MARK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 		case RED_BETWEEN_TRESH:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 			if (++v->qcount) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 				if (red_mark_probability(p, v, qavg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 					v->qcount = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 					v->qR = red_random(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 					return RED_PROB_MARK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 			} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 				v->qR = red_random(p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 			return RED_DONT_MARK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 		case RED_ABOVE_MAX_TRESH:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 			v->qcount = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 			return RED_HARD_MARK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 	BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 	return RED_DONT_MARK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 	unsigned long qavg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 	u32 max_p_delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 	qavg = v->qavg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 	if (red_is_idling(v))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 		qavg = red_calc_qavg_from_idle_time(p, v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	/* v->qavg is fixed point number with point at Wlog */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 	qavg >>= p->Wlog;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 	if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 		p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 	else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 		p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 	max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 	max_p_delta = max(max_p_delta, 1U);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 	p->max_P_reciprocal = reciprocal_value(max_p_delta);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) #endif