Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /* Software floating-point emulation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2)    Basic one-word fraction declaration and manipulation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)    Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)    This file is part of the GNU C Library.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)    Contributed by Richard Henderson (rth@cygnus.com),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) 		  Jakub Jelinek (jj@ultra.linux.cz),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) 		  David S. Miller (davem@redhat.com) and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) 		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)    The GNU C Library is free software; you can redistribute it and/or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)    modify it under the terms of the GNU Library General Public License as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)    published by the Free Software Foundation; either version 2 of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)    License, or (at your option) any later version.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)    The GNU C Library is distributed in the hope that it will be useful,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)    but WITHOUT ANY WARRANTY; without even the implied warranty of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)    Library General Public License for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20)    You should have received a copy of the GNU Library General Public
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21)    License along with the GNU C Library; see the file COPYING.LIB.  If
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22)    not, write to the Free Software Foundation, Inc.,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23)    59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #ifndef    __MATH_EMU_OP_1_H__
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #define    __MATH_EMU_OP_1_H__
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #define _FP_FRAC_DECL_1(X)	_FP_W_TYPE X##_f=0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define _FP_FRAC_COPY_1(D,S)	(D##_f = S##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #define _FP_FRAC_SET_1(X,I)	(X##_f = I)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #define _FP_FRAC_HIGH_1(X)	(X##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #define _FP_FRAC_LOW_1(X)	(X##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define _FP_FRAC_WORD_1(X,w)	(X##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) #define _FP_FRAC_ADDI_1(X,I)	(X##_f += I)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) #define _FP_FRAC_SLL_1(X,N)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)   do {						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)     if (__builtin_constant_p(N) && (N) == 1)	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39)       X##_f += X##_f;				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)     else					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)       X##_f <<= (N);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)   } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) #define _FP_FRAC_SRL_1(X,N)	(X##_f >>= N)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) /* Right shift with sticky-lsb.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) #define _FP_FRAC_SRS_1(X,N,sz)	__FP_FRAC_SRS_1(X##_f, N, sz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #define __FP_FRAC_SRS_1(X,N,sz)						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49)    (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 		     ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #define _FP_FRAC_ADD_1(R,X,Y)	(R##_f = X##_f + Y##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) #define _FP_FRAC_SUB_1(R,X,Y)	(R##_f = X##_f - Y##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) #define _FP_FRAC_DEC_1(X,Y)	(X##_f -= Y##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) #define _FP_FRAC_CLZ_1(z, X)	__FP_CLZ(z, X##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) /* Predicates */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) #define _FP_FRAC_NEGP_1(X)	((_FP_WS_TYPE)X##_f < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) #define _FP_FRAC_ZEROP_1(X)	(X##_f == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) #define _FP_FRAC_OVERP_1(fs,X)	(X##_f & _FP_OVERFLOW_##fs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) #define _FP_FRAC_CLEAR_OVERP_1(fs,X)	(X##_f &= ~_FP_OVERFLOW_##fs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) #define _FP_FRAC_EQ_1(X, Y)	(X##_f == Y##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) #define _FP_FRAC_GE_1(X, Y)	(X##_f >= Y##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) #define _FP_FRAC_GT_1(X, Y)	(X##_f > Y##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) #define _FP_ZEROFRAC_1		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) #define _FP_MINFRAC_1		1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) #define _FP_MAXFRAC_1		(~(_FP_WS_TYPE)0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71)  * Unpack the raw bits of a native fp value.  Do not classify or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72)  * normalize the data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) #define _FP_UNPACK_RAW_1(fs, X, val)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76)   do {								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77)     union _FP_UNION_##fs _flo; _flo.flt = (val);		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79)     X##_f = _flo.bits.frac;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80)     X##_e = _flo.bits.exp;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81)     X##_s = _flo.bits.sign;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82)   } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) #define _FP_UNPACK_RAW_1_P(fs, X, val)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85)   do {								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86)     union _FP_UNION_##fs *_flo =				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87)       (union _FP_UNION_##fs *)(val);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89)     X##_f = _flo->bits.frac;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90)     X##_e = _flo->bits.exp;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91)     X##_s = _flo->bits.sign;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92)   } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95)  * Repack the raw bits of a native fp value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) #define _FP_PACK_RAW_1(fs, val, X)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99)   do {								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)     union _FP_UNION_##fs _flo;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)     _flo.bits.frac = X##_f;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)     _flo.bits.exp  = X##_e;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)     _flo.bits.sign = X##_s;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)     (val) = _flo.flt;						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)   } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) #define _FP_PACK_RAW_1_P(fs, val, X)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)   do {								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)     union _FP_UNION_##fs *_flo =				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)       (union _FP_UNION_##fs *)(val);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)     _flo->bits.frac = X##_f;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115)     _flo->bits.exp  = X##_e;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)     _flo->bits.sign = X##_s;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)   } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121)  * Multiplication algorithms:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125)    multiplication immediately.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128)   do {									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)     R##_f = X##_f * Y##_f;						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130)     /* Normalize since we know where the msb of the multiplicands	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)        were (bit B), we know that the msb of the of the product is	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)        at either 2B or 2B-1.  */					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133)     _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits);			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)   } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)   do {									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140)     _FP_W_TYPE _Z_f0, _Z_f1;						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)     doit(_Z_f1, _Z_f0, X##_f, Y##_f);					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)     /* Normalize since we know where the msb of the multiplicands	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143)        were (bit B), we know that the msb of the of the product is	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144)        at either 2B or 2B-1.  */					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)     _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits);			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)     R##_f = _Z_f0;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)   } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) /* Finally, a simple widening multiply algorithm.  What fun!  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)   do {									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)     _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1;		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)     /* split the words in half */					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)     _xh = X##_f >> (_FP_W_TYPE_SIZE/2);					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157)     _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)     _yh = Y##_f >> (_FP_W_TYPE_SIZE/2);					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)     _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161)     /* multiply the pieces */						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162)     _z_f0 = _xl * _yl;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)     _a_f0 = _xh * _yl;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164)     _a_f1 = _xl * _yh;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165)     _z_f1 = _xh * _yh;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167)     /* reassemble into two full words */				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168)     if ((_a_f0 += _a_f1) < _a_f1)					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169)       _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2);			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170)     _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171)     _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)     _FP_FRAC_ADD_2(_z, _z, _a);						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)     /* normalize */							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175)     _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits);			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)     R##_f = _z_f0;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)   } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181)  * Division algorithms:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)    division immediately.  Give this macro either _FP_DIV_HELP_imm for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186)    C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)    choose will depend on what the compiler does with divrem4.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190)   do {							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191)     _FP_W_TYPE _q, _r;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192)     X##_f <<= (X##_f < Y##_f				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	       ? R##_e--, _FP_WFRACBITS_##fs		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	       : _FP_WFRACBITS_##fs - 1);		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)     doit(_q, _r, X##_f, Y##_f);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)     R##_f = _q | (_r != 0);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)   } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200)    that may be useful in this situation.  This first is for a primitive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201)    that requires normalization, the second for one that does not.  Look
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202)    for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205)   do {									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206)     _FP_W_TYPE _nh, _nl, _q, _r, _y;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208)     /* Normalize Y -- i.e. make the most significant bit set.  */	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209)     _y = Y##_f << _FP_WFRACXBITS_##fs;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211)     /* Shift X op correspondingly high, that is, up one full word.  */	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212)     if (X##_f < Y##_f)							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)       {									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	R##_e--;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	_nl = 0;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	_nh = X##_f;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217)       }									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218)     else								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219)       {									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	_nl = X##_f << (_FP_W_TYPE_SIZE - 1);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	_nh = X##_f >> 1;						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222)       }									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223)     									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224)     udiv_qrnnd(_q, _r, _nh, _nl, _y);					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225)     R##_f = _q | (_r != 0);						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)   } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229)   do {							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)     _FP_W_TYPE _nh, _nl, _q, _r;			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231)     if (X##_f < Y##_f)					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232)       {							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	R##_e--;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	_nl = X##_f << _FP_WFRACBITS_##fs;		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	_nh = X##_f >> _FP_WFRACXBITS_##fs;		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236)       }							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237)     else						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238)       {							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	_nl = X##_f << (_FP_WFRACBITS_##fs - 1);	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241)       }							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242)     udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243)     R##_f = _q | (_r != 0);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244)   } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245)   
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246)   
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248)  * Square root algorithms:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249)  * We have just one right now, maybe Newton approximation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)  * should be added for those machines where division is fast.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)  
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) #define _FP_SQRT_MEAT_1(R, S, T, X, q)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254)   do {							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)     while (q != _FP_WORK_ROUND)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256)       {							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)         T##_f = S##_f + q;				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258)         if (T##_f <= X##_f)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259)           {						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)             S##_f = T##_f + q;				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261)             X##_f -= T##_f;				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262)             R##_f += q;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263)           }						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264)         _FP_FRAC_SLL_1(X, 1);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265)         q >>= 1;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266)       }							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267)     if (X##_f)						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268)       {							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	if (S##_f < X##_f)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	  R##_f |= _FP_WORK_ROUND;			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	R##_f |= _FP_WORK_STICKY;			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)       }							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273)   } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276)  * Assembly/disassembly for converting to/from integral types.  
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277)  * No shifting or overflow handled here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) #define _FP_FRAC_ASSEMBLE_1(r, X, rsize)	(r = X##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)	(X##_f = r)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285)  * Convert FP values between word sizes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) #define _FP_FRAC_CONV_1_1(dfs, sfs, D, S)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289)   do {									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290)     D##_f = S##_f;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291)     if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292)       {									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	if (S##_c != FP_CLS_NAN)					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	  _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs),	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 			 _FP_WFRACBITS_##sfs);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	else								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 	  _FP_FRAC_SRL_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs));	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298)       }									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299)     else								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300)       D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs;		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301)   } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) #endif /* __MATH_EMU_OP_1_H__ */