^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /* Software floating-point emulation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) Basic one-word fraction declaration and manipulation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) This file is part of the GNU C Library.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) Contributed by Richard Henderson (rth@cygnus.com),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) Jakub Jelinek (jj@ultra.linux.cz),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) David S. Miller (davem@redhat.com) and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) Peter Maydell (pmaydell@chiark.greenend.org.uk).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) The GNU C Library is free software; you can redistribute it and/or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) modify it under the terms of the GNU Library General Public License as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) published by the Free Software Foundation; either version 2 of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) License, or (at your option) any later version.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) The GNU C Library is distributed in the hope that it will be useful,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) but WITHOUT ANY WARRANTY; without even the implied warranty of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) Library General Public License for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) You should have received a copy of the GNU Library General Public
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) License along with the GNU C Library; see the file COPYING.LIB. If
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) not, write to the Free Software Foundation, Inc.,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #ifndef __MATH_EMU_OP_1_H__
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #define __MATH_EMU_OP_1_H__
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #define _FP_FRAC_DECL_1(X) _FP_W_TYPE X##_f=0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #define _FP_FRAC_COPY_1(D,S) (D##_f = S##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #define _FP_FRAC_SET_1(X,I) (X##_f = I)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #define _FP_FRAC_HIGH_1(X) (X##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #define _FP_FRAC_LOW_1(X) (X##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #define _FP_FRAC_WORD_1(X,w) (X##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #define _FP_FRAC_ADDI_1(X,I) (X##_f += I)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #define _FP_FRAC_SLL_1(X,N) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) if (__builtin_constant_p(N) && (N) == 1) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) X##_f += X##_f; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) else \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) X##_f <<= (N); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) #define _FP_FRAC_SRL_1(X,N) (X##_f >>= N)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) /* Right shift with sticky-lsb. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) #define _FP_FRAC_SRS_1(X,N,sz) __FP_FRAC_SRS_1(X##_f, N, sz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) #define __FP_FRAC_SRS_1(X,N,sz) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1 \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) #define _FP_FRAC_ADD_1(R,X,Y) (R##_f = X##_f + Y##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) #define _FP_FRAC_SUB_1(R,X,Y) (R##_f = X##_f - Y##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) #define _FP_FRAC_DEC_1(X,Y) (X##_f -= Y##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) #define _FP_FRAC_CLZ_1(z, X) __FP_CLZ(z, X##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) /* Predicates */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) #define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE)X##_f < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) #define _FP_FRAC_ZEROP_1(X) (X##_f == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) #define _FP_FRAC_OVERP_1(fs,X) (X##_f & _FP_OVERFLOW_##fs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) #define _FP_FRAC_CLEAR_OVERP_1(fs,X) (X##_f &= ~_FP_OVERFLOW_##fs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) #define _FP_FRAC_EQ_1(X, Y) (X##_f == Y##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) #define _FP_FRAC_GE_1(X, Y) (X##_f >= Y##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) #define _FP_FRAC_GT_1(X, Y) (X##_f > Y##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) #define _FP_ZEROFRAC_1 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) #define _FP_MINFRAC_1 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) #define _FP_MAXFRAC_1 (~(_FP_WS_TYPE)0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) * Unpack the raw bits of a native fp value. Do not classify or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) * normalize the data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) #define _FP_UNPACK_RAW_1(fs, X, val) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) union _FP_UNION_##fs _flo; _flo.flt = (val); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) X##_f = _flo.bits.frac; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) X##_e = _flo.bits.exp; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) X##_s = _flo.bits.sign; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) #define _FP_UNPACK_RAW_1_P(fs, X, val) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) union _FP_UNION_##fs *_flo = \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) (union _FP_UNION_##fs *)(val); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) X##_f = _flo->bits.frac; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) X##_e = _flo->bits.exp; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) X##_s = _flo->bits.sign; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) * Repack the raw bits of a native fp value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) #define _FP_PACK_RAW_1(fs, val, X) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) union _FP_UNION_##fs _flo; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) _flo.bits.frac = X##_f; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) _flo.bits.exp = X##_e; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) _flo.bits.sign = X##_s; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) (val) = _flo.flt; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) #define _FP_PACK_RAW_1_P(fs, val, X) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) union _FP_UNION_##fs *_flo = \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) (union _FP_UNION_##fs *)(val); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) _flo->bits.frac = X##_f; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) _flo->bits.exp = X##_e; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) _flo->bits.sign = X##_s; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) * Multiplication algorithms:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) multiplication immediately. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) R##_f = X##_f * Y##_f; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) /* Normalize since we know where the msb of the multiplicands \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) were (bit B), we know that the msb of the of the product is \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) at either 2B or 2B-1. */ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) _FP_W_TYPE _Z_f0, _Z_f1; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) doit(_Z_f1, _Z_f0, X##_f, Y##_f); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) /* Normalize since we know where the msb of the multiplicands \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) were (bit B), we know that the msb of the of the product is \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) at either 2B or 2B-1. */ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) R##_f = _Z_f0; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) /* Finally, a simple widening multiply algorithm. What fun! */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) /* split the words in half */ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) _xh = X##_f >> (_FP_W_TYPE_SIZE/2); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) _yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) /* multiply the pieces */ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) _z_f0 = _xl * _yl; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) _a_f0 = _xh * _yl; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) _a_f1 = _xl * _yh; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) _z_f1 = _xh * _yh; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) /* reassemble into two full words */ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) if ((_a_f0 += _a_f1) < _a_f1) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) _FP_FRAC_ADD_2(_z, _z, _a); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) /* normalize */ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) R##_f = _z_f0; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) * Division algorithms:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) division immediately. Give this macro either _FP_DIV_HELP_imm for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) choose will depend on what the compiler does with divrem4. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) _FP_W_TYPE _q, _r; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) X##_f <<= (X##_f < Y##_f \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) ? R##_e--, _FP_WFRACBITS_##fs \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) : _FP_WFRACBITS_##fs - 1); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) doit(_q, _r, X##_f, Y##_f); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) R##_f = _q | (_r != 0); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) that may be useful in this situation. This first is for a primitive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) that requires normalization, the second for one that does not. Look
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) _FP_W_TYPE _nh, _nl, _q, _r, _y; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) /* Normalize Y -- i.e. make the most significant bit set. */ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) _y = Y##_f << _FP_WFRACXBITS_##fs; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) /* Shift X op correspondingly high, that is, up one full word. */ \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) if (X##_f < Y##_f) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) R##_e--; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) _nl = 0; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) _nh = X##_f; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) } \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) else \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) _nl = X##_f << (_FP_W_TYPE_SIZE - 1); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) _nh = X##_f >> 1; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) } \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) udiv_qrnnd(_q, _r, _nh, _nl, _y); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) R##_f = _q | (_r != 0); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) _FP_W_TYPE _nh, _nl, _q, _r; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) if (X##_f < Y##_f) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) R##_e--; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) _nl = X##_f << _FP_WFRACBITS_##fs; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) _nh = X##_f >> _FP_WFRACXBITS_##fs; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) } \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) else \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) _nl = X##_f << (_FP_WFRACBITS_##fs - 1); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) } \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) udiv_qrnnd(_q, _r, _nh, _nl, Y##_f); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) R##_f = _q | (_r != 0); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) * Square root algorithms:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) * We have just one right now, maybe Newton approximation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) * should be added for those machines where division is fast.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) #define _FP_SQRT_MEAT_1(R, S, T, X, q) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) while (q != _FP_WORK_ROUND) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) T##_f = S##_f + q; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) if (T##_f <= X##_f) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) S##_f = T##_f + q; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) X##_f -= T##_f; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) R##_f += q; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) } \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) _FP_FRAC_SLL_1(X, 1); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) q >>= 1; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) } \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) if (X##_f) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) if (S##_f < X##_f) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) R##_f |= _FP_WORK_ROUND; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) R##_f |= _FP_WORK_STICKY; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) } \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) * Assembly/disassembly for converting to/from integral types.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) * No shifting or overflow handled here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) #define _FP_FRAC_ASSEMBLE_1(r, X, rsize) (r = X##_f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = r)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) * Convert FP values between word sizes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) #define _FP_FRAC_CONV_1_1(dfs, sfs, D, S) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) D##_f = S##_f; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) if (S##_c != FP_CLS_NAN) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) _FP_WFRACBITS_##sfs); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) else \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) _FP_FRAC_SRL_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs)); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) } \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) else \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) #endif /* __MATH_EMU_OP_1_H__ */