Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Copyright (c) 2006-2007 Silicon Graphics, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * All Rights Reserved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) #include "xfs.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) #include "xfs_mru_cache.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * The MRU Cache data structure consists of a data store, an array of lists and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  * a lock to protect its internal state.  At initialisation time, the client
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  * supplies an element lifetime in milliseconds and a group count, as well as a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  * function pointer to call when deleting elements.  A data structure for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  * queueing up work in the form of timed callbacks is also included.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  * The group count controls how many lists are created, and thereby how finely
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  * the elements are grouped in time.  When reaping occurs, all the elements in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  * all the lists whose time has expired are deleted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20)  * To give an example of how this works in practice, consider a client that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21)  * initialises an MRU Cache with a lifetime of ten seconds and a group count of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22)  * five.  Five internal lists will be created, each representing a two second
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23)  * period in time.  When the first element is added, time zero for the data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)  * structure is initialised to the current time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)  * All the elements added in the first two seconds are appended to the first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  * list.  Elements added in the third second go into the second list, and so on.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  * If an element is accessed at any point, it is removed from its list and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  * inserted at the head of the current most-recently-used list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  * The reaper function will have nothing to do until at least twelve seconds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)  * have elapsed since the first element was added.  The reason for this is that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)  * if it were called at t=11s, there could be elements in the first list that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)  * have only been inactive for nine seconds, so it still does nothing.  If it is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35)  * called anywhere between t=12 and t=14 seconds, it will delete all the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36)  * elements that remain in the first list.  It's therefore possible for elements
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)  * to remain in the data store even after they've been inactive for up to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)  * (t + t/g) seconds, where t is the inactive element lifetime and g is the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39)  * number of groups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)  * The above example assumes that the reaper function gets called at least once
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)  * every (t/g) seconds.  If it is called less frequently, unused elements will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43)  * accumulate in the reap list until the reaper function is eventually called.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44)  * The current implementation uses work queue callbacks to carefully time the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45)  * reaper function calls, so this should happen rarely, if at all.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47)  * From a design perspective, the primary reason for the choice of a list array
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48)  * representing discrete time intervals is that it's only practical to reap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49)  * expired elements in groups of some appreciable size.  This automatically
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)  * introduces a granularity to element lifetimes, so there's no point storing an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51)  * individual timeout with each element that specifies a more precise reap time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52)  * The bonus is a saving of sizeof(long) bytes of memory per element stored.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54)  * The elements could have been stored in just one list, but an array of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55)  * counters or pointers would need to be maintained to allow them to be divided
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56)  * up into discrete time groups.  More critically, the process of touching or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57)  * removing an element would involve walking large portions of the entire list,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58)  * which would have a detrimental effect on performance.  The additional memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59)  * requirement for the array of list heads is minimal.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61)  * When an element is touched or deleted, it needs to be removed from its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62)  * current list.  Doubly linked lists are used to make the list maintenance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63)  * portion of these operations O(1).  Since reaper timing can be imprecise,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64)  * inserts and lookups can occur when there are no free lists available.  When
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65)  * this happens, all the elements on the LRU list need to be migrated to the end
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66)  * of the reap list.  To keep the list maintenance portion of these operations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)  * O(1) also, list tails need to be accessible without walking the entire list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68)  * This is the reason why doubly linked list heads are used.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72)  * An MRU Cache is a dynamic data structure that stores its elements in a way
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73)  * that allows efficient lookups, but also groups them into discrete time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74)  * intervals based on insertion time.  This allows elements to be efficiently
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75)  * and automatically reaped after a fixed period of inactivity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77)  * When a client data pointer is stored in the MRU Cache it needs to be added to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78)  * both the data store and to one of the lists.  It must also be possible to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79)  * access each of these entries via the other, i.e. to:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81)  *    a) Walk a list, removing the corresponding data store entry for each item.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82)  *    b) Look up a data store entry, then access its list entry directly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84)  * To achieve both of these goals, each entry must contain both a list entry and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85)  * a key, in addition to the user's data pointer.  Note that it's not a good
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86)  * idea to have the client embed one of these structures at the top of their own
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87)  * data structure, because inserting the same item more than once would most
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88)  * likely result in a loop in one of the lists.  That's a sure-fire recipe for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89)  * an infinite loop in the code.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) struct xfs_mru_cache {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	struct radix_tree_root	store;     /* Core storage data structure.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	struct list_head	*lists;    /* Array of lists, one per grp.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	struct list_head	reap_list; /* Elements overdue for reaping. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	spinlock_t		lock;      /* Lock to protect this struct.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	unsigned int		grp_count; /* Number of discrete groups.    */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	unsigned int		grp_time;  /* Time period spanned by grps.  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	unsigned int		lru_grp;   /* Group containing time zero.   */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	unsigned long		time_zero; /* Time first element was added. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	xfs_mru_cache_free_func_t free_func; /* Function pointer for freeing. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	struct delayed_work	work;      /* Workqueue data for reaping.   */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	unsigned int		queued;	   /* work has been queued */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	void			*data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) static struct workqueue_struct	*xfs_mru_reap_wq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)  * When inserting, destroying or reaping, it's first necessary to update the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)  * lists relative to a particular time.  In the case of destroying, that time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)  * will be well in the future to ensure that all items are moved to the reap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)  * list.  In all other cases though, the time will be the current time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)  * This function enters a loop, moving the contents of the LRU list to the reap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115)  * list again and again until either a) the lists are all empty, or b) time zero
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)  * has been advanced sufficiently to be within the immediate element lifetime.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118)  * Case a) above is detected by counting how many groups are migrated and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119)  * stopping when they've all been moved.  Case b) is detected by monitoring the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)  * time_zero field, which is updated as each group is migrated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)  * The return value is the earliest time that more migration could be needed, or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)  * zero if there's no need to schedule more work because the lists are empty.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) STATIC unsigned long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) _xfs_mru_cache_migrate(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	struct xfs_mru_cache	*mru,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	unsigned long		now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	unsigned int		grp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	unsigned int		migrated = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	struct list_head	*lru_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	/* Nothing to do if the data store is empty. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	if (!mru->time_zero)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	/* While time zero is older than the time spanned by all the lists. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	while (mru->time_zero <= now - mru->grp_count * mru->grp_time) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 		 * If the LRU list isn't empty, migrate its elements to the tail
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 		 * of the reap list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 		lru_list = mru->lists + mru->lru_grp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 		if (!list_empty(lru_list))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 			list_splice_init(lru_list, mru->reap_list.prev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 		 * Advance the LRU group number, freeing the old LRU list to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 		 * become the new MRU list; advance time zero accordingly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 		mru->lru_grp = (mru->lru_grp + 1) % mru->grp_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 		mru->time_zero += mru->grp_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 		 * If reaping is so far behind that all the elements on all the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 		 * lists have been migrated to the reap list, it's now empty.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 		if (++migrated == mru->grp_count) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 			mru->lru_grp = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 			mru->time_zero = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	/* Find the first non-empty list from the LRU end. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	for (grp = 0; grp < mru->grp_count; grp++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 		/* Check the grp'th list from the LRU end. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 		lru_list = mru->lists + ((mru->lru_grp + grp) % mru->grp_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 		if (!list_empty(lru_list))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 			return mru->time_zero +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 			       (mru->grp_count + grp) * mru->grp_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	/* All the lists must be empty. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	mru->lru_grp = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	mru->time_zero = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184)  * When inserting or doing a lookup, an element needs to be inserted into the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)  * MRU list.  The lists must be migrated first to ensure that they're
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186)  * up-to-date, otherwise the new element could be given a shorter lifetime in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)  * the cache than it should.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) STATIC void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) _xfs_mru_cache_list_insert(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	struct xfs_mru_cache	*mru,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	struct xfs_mru_cache_elem *elem)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	unsigned int		grp = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	unsigned long		now = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	 * If the data store is empty, initialise time zero, leave grp set to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	 * zero and start the work queue timer if necessary.  Otherwise, set grp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	 * to the number of group times that have elapsed since time zero.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	if (!_xfs_mru_cache_migrate(mru, now)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 		mru->time_zero = now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 		if (!mru->queued) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 			mru->queued = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 			queue_delayed_work(xfs_mru_reap_wq, &mru->work,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 			                   mru->grp_count * mru->grp_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 		grp = (now - mru->time_zero) / mru->grp_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 		grp = (mru->lru_grp + grp) % mru->grp_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	/* Insert the element at the tail of the corresponding list. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	list_add_tail(&elem->list_node, mru->lists + grp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219)  * When destroying or reaping, all the elements that were migrated to the reap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220)  * list need to be deleted.  For each element this involves removing it from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221)  * data store, removing it from the reap list, calling the client's free
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222)  * function and deleting the element from the element zone.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224)  * We get called holding the mru->lock, which we drop and then reacquire.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225)  * Sparse need special help with this to tell it we know what we are doing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) STATIC void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) _xfs_mru_cache_clear_reap_list(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	struct xfs_mru_cache	*mru)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 		__releases(mru->lock) __acquires(mru->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	struct xfs_mru_cache_elem *elem, *next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	struct list_head	tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	INIT_LIST_HEAD(&tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	list_for_each_entry_safe(elem, next, &mru->reap_list, list_node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 		/* Remove the element from the data store. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 		radix_tree_delete(&mru->store, elem->key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 		 * remove to temp list so it can be freed without
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 		 * needing to hold the lock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 		list_move(&elem->list_node, &tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	spin_unlock(&mru->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	list_for_each_entry_safe(elem, next, &tmp, list_node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 		list_del_init(&elem->list_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 		mru->free_func(mru->data, elem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	spin_lock(&mru->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258)  * We fire the reap timer every group expiry interval so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259)  * we always have a reaper ready to run. This makes shutdown
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)  * and flushing of the reaper easy to do. Hence we need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261)  * keep when the next reap must occur so we can determine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262)  * at each interval whether there is anything we need to do.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) STATIC void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) _xfs_mru_cache_reap(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	struct work_struct	*work)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	struct xfs_mru_cache	*mru =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 		container_of(work, struct xfs_mru_cache, work.work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	unsigned long		now, next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	ASSERT(mru && mru->lists);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	if (!mru || !mru->lists)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	spin_lock(&mru->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	next = _xfs_mru_cache_migrate(mru, jiffies);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	_xfs_mru_cache_clear_reap_list(mru);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	mru->queued = next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	if ((mru->queued > 0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 		now = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 		if (next <= now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 			next = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 			next -= now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 		queue_delayed_work(xfs_mru_reap_wq, &mru->work, next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	spin_unlock(&mru->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) xfs_mru_cache_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	xfs_mru_reap_wq = alloc_workqueue("xfs_mru_cache",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 				WQ_MEM_RECLAIM|WQ_FREEZABLE, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	if (!xfs_mru_reap_wq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) xfs_mru_cache_uninit(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	destroy_workqueue(xfs_mru_reap_wq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310)  * To initialise a struct xfs_mru_cache pointer, call xfs_mru_cache_create()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311)  * with the address of the pointer, a lifetime value in milliseconds, a group
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312)  * count and a free function to use when deleting elements.  This function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313)  * returns 0 if the initialisation was successful.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) xfs_mru_cache_create(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	struct xfs_mru_cache	**mrup,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	void			*data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	unsigned int		lifetime_ms,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 	unsigned int		grp_count,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	xfs_mru_cache_free_func_t free_func)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	struct xfs_mru_cache	*mru = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	int			err = 0, grp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	unsigned int		grp_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	if (mrup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 		*mrup = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	if (!mrup || !grp_count || !lifetime_ms || !free_func)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	if (!(grp_time = msecs_to_jiffies(lifetime_ms) / grp_count))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	if (!(mru = kmem_zalloc(sizeof(*mru), 0)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 	/* An extra list is needed to avoid reaping up to a grp_time early. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	mru->grp_count = grp_count + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 	mru->lists = kmem_zalloc(mru->grp_count * sizeof(*mru->lists), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	if (!mru->lists) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 		err = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 		goto exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	for (grp = 0; grp < mru->grp_count; grp++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 		INIT_LIST_HEAD(mru->lists + grp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 	 * We use GFP_KERNEL radix tree preload and do inserts under a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	 * spinlock so GFP_ATOMIC is appropriate for the radix tree itself.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	INIT_RADIX_TREE(&mru->store, GFP_ATOMIC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	INIT_LIST_HEAD(&mru->reap_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	spin_lock_init(&mru->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	INIT_DELAYED_WORK(&mru->work, _xfs_mru_cache_reap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	mru->grp_time  = grp_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	mru->free_func = free_func;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	mru->data = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	*mrup = mru;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) exit:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	if (err && mru && mru->lists)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 		kmem_free(mru->lists);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	if (err && mru)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 		kmem_free(mru);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375)  * Call xfs_mru_cache_flush() to flush out all cached entries, calling their
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376)  * free functions as they're deleted.  When this function returns, the caller is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377)  * guaranteed that all the free functions for all the elements have finished
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378)  * executing and the reaper is not running.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) xfs_mru_cache_flush(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	struct xfs_mru_cache	*mru)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	if (!mru || !mru->lists)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	spin_lock(&mru->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	if (mru->queued) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 		spin_unlock(&mru->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 		cancel_delayed_work_sync(&mru->work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 		spin_lock(&mru->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	_xfs_mru_cache_migrate(mru, jiffies + mru->grp_count * mru->grp_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	_xfs_mru_cache_clear_reap_list(mru);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 	spin_unlock(&mru->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) xfs_mru_cache_destroy(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 	struct xfs_mru_cache	*mru)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	if (!mru || !mru->lists)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	xfs_mru_cache_flush(mru);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	kmem_free(mru->lists);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 	kmem_free(mru);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414)  * To insert an element, call xfs_mru_cache_insert() with the data store, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415)  * element's key and the client data pointer.  This function returns 0 on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416)  * success or ENOMEM if memory for the data element couldn't be allocated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) xfs_mru_cache_insert(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 	struct xfs_mru_cache	*mru,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 	unsigned long		key,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 	struct xfs_mru_cache_elem *elem)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 	int			error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 	ASSERT(mru && mru->lists);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 	if (!mru || !mru->lists)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 	if (radix_tree_preload(GFP_NOFS))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 	INIT_LIST_HEAD(&elem->list_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	elem->key = key;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 	spin_lock(&mru->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 	error = radix_tree_insert(&mru->store, key, elem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 	radix_tree_preload_end();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 	if (!error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 		_xfs_mru_cache_list_insert(mru, elem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 	spin_unlock(&mru->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447)  * To remove an element without calling the free function, call
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448)  * xfs_mru_cache_remove() with the data store and the element's key.  On success
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449)  * the client data pointer for the removed element is returned, otherwise this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450)  * function will return a NULL pointer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) struct xfs_mru_cache_elem *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) xfs_mru_cache_remove(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	struct xfs_mru_cache	*mru,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 	unsigned long		key)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 	struct xfs_mru_cache_elem *elem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 	ASSERT(mru && mru->lists);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 	if (!mru || !mru->lists)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 	spin_lock(&mru->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 	elem = radix_tree_delete(&mru->store, key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 	if (elem)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 		list_del(&elem->list_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	spin_unlock(&mru->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 	return elem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473)  * To remove and element and call the free function, call xfs_mru_cache_delete()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474)  * with the data store and the element's key.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) xfs_mru_cache_delete(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 	struct xfs_mru_cache	*mru,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	unsigned long		key)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 	struct xfs_mru_cache_elem *elem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 	elem = xfs_mru_cache_remove(mru, key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 	if (elem)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 		mru->free_func(mru->data, elem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489)  * To look up an element using its key, call xfs_mru_cache_lookup() with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490)  * data store and the element's key.  If found, the element will be moved to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491)  * head of the MRU list to indicate that it's been touched.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493)  * The internal data structures are protected by a spinlock that is STILL HELD
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494)  * when this function returns.  Call xfs_mru_cache_done() to release it.  Note
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495)  * that it is not safe to call any function that might sleep in the interim.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497)  * The implementation could have used reference counting to avoid this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498)  * restriction, but since most clients simply want to get, set or test a member
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499)  * of the returned data structure, the extra per-element memory isn't warranted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501)  * If the element isn't found, this function returns NULL and the spinlock is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502)  * released.  xfs_mru_cache_done() should NOT be called when this occurs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504)  * Because sparse isn't smart enough to know about conditional lock return
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505)  * status, we need to help it get it right by annotating the path that does
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506)  * not release the lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) struct xfs_mru_cache_elem *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) xfs_mru_cache_lookup(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 	struct xfs_mru_cache	*mru,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 	unsigned long		key)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 	struct xfs_mru_cache_elem *elem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 	ASSERT(mru && mru->lists);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 	if (!mru || !mru->lists)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 	spin_lock(&mru->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 	elem = radix_tree_lookup(&mru->store, key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 	if (elem) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 		list_del(&elem->list_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 		_xfs_mru_cache_list_insert(mru, elem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 		__release(mru_lock); /* help sparse not be stupid */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 		spin_unlock(&mru->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 	return elem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532)  * To release the internal data structure spinlock after having performed an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533)  * xfs_mru_cache_lookup() or an xfs_mru_cache_peek(), call xfs_mru_cache_done()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534)  * with the data store pointer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) xfs_mru_cache_done(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 	struct xfs_mru_cache	*mru)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 		__releases(mru->lock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 	spin_unlock(&mru->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) }