Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2017 Christoph Hellwig.
*/
#include "xfs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_inode.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_trace.h"
/*
* In-core extent record layout:
*
* +-------+----------------------------+
* | 00:53 | all 54 bits of startoff |
* | 54:63 | low 10 bits of startblock |
* +-------+----------------------------+
* | 00:20 | all 21 bits of length |
* | 21 | unwritten extent bit |
* | 22:63 | high 42 bits of startblock |
* +-------+----------------------------+
*/
#define XFS_IEXT_STARTOFF_MASK xfs_mask64lo(BMBT_STARTOFF_BITLEN)
#define XFS_IEXT_LENGTH_MASK xfs_mask64lo(BMBT_BLOCKCOUNT_BITLEN)
#define XFS_IEXT_STARTBLOCK_MASK xfs_mask64lo(BMBT_STARTBLOCK_BITLEN)
struct xfs_iext_rec {
<------>uint64_t lo;
<------>uint64_t hi;
};
/*
* Given that the length can't be a zero, only an empty hi value indicates an
* unused record.
*/
static bool xfs_iext_rec_is_empty(struct xfs_iext_rec *rec)
{
<------>return rec->hi == 0;
}
static inline void xfs_iext_rec_clear(struct xfs_iext_rec *rec)
{
<------>rec->lo = 0;
<------>rec->hi = 0;
}
static void
xfs_iext_set(
<------>struct xfs_iext_rec *rec,
<------>struct xfs_bmbt_irec *irec)
{
<------>ASSERT((irec->br_startoff & ~XFS_IEXT_STARTOFF_MASK) == 0);
<------>ASSERT((irec->br_blockcount & ~XFS_IEXT_LENGTH_MASK) == 0);
<------>ASSERT((irec->br_startblock & ~XFS_IEXT_STARTBLOCK_MASK) == 0);
<------>rec->lo = irec->br_startoff & XFS_IEXT_STARTOFF_MASK;
<------>rec->hi = irec->br_blockcount & XFS_IEXT_LENGTH_MASK;
<------>rec->lo |= (irec->br_startblock << 54);
<------>rec->hi |= ((irec->br_startblock & ~xfs_mask64lo(10)) << (22 - 10));
<------>if (irec->br_state == XFS_EXT_UNWRITTEN)
<------><------>rec->hi |= (1 << 21);
}
static void
xfs_iext_get(
<------>struct xfs_bmbt_irec *irec,
<------>struct xfs_iext_rec *rec)
{
<------>irec->br_startoff = rec->lo & XFS_IEXT_STARTOFF_MASK;
<------>irec->br_blockcount = rec->hi & XFS_IEXT_LENGTH_MASK;
<------>irec->br_startblock = rec->lo >> 54;
<------>irec->br_startblock |= (rec->hi & xfs_mask64hi(42)) >> (22 - 10);
<------>if (rec->hi & (1 << 21))
<------><------>irec->br_state = XFS_EXT_UNWRITTEN;
<------>else
<------><------>irec->br_state = XFS_EXT_NORM;
}
enum {
<------>NODE_SIZE = 256,
<------>KEYS_PER_NODE = NODE_SIZE / (sizeof(uint64_t) + sizeof(void *)),
<------>RECS_PER_LEAF = (NODE_SIZE - (2 * sizeof(struct xfs_iext_leaf *))) /
<------><------><------><------>sizeof(struct xfs_iext_rec),
};
/*
* In-core extent btree block layout:
*
* There are two types of blocks in the btree: leaf and inner (non-leaf) blocks.
*
* The leaf blocks are made up by %KEYS_PER_NODE extent records, which each
* contain the startoffset, blockcount, startblock and unwritten extent flag.
* See above for the exact format, followed by pointers to the previous and next
* leaf blocks (if there are any).
*
* The inner (non-leaf) blocks first contain KEYS_PER_NODE lookup keys, followed
* by an equal number of pointers to the btree blocks at the next lower level.
*
* +-------+-------+-------+-------+-------+----------+----------+
* Leaf: | rec 1 | rec 2 | rec 3 | rec 4 | rec N | prev-ptr | next-ptr |
* +-------+-------+-------+-------+-------+----------+----------+
*
* +-------+-------+-------+-------+-------+-------+------+-------+
* Inner: | key 1 | key 2 | key 3 | key N | ptr 1 | ptr 2 | ptr3 | ptr N |
* +-------+-------+-------+-------+-------+-------+------+-------+
*/
struct xfs_iext_node {
<------>uint64_t keys[KEYS_PER_NODE];
#define XFS_IEXT_KEY_INVALID (1ULL << 63)
<------>void *ptrs[KEYS_PER_NODE];
};
struct xfs_iext_leaf {
<------>struct xfs_iext_rec recs[RECS_PER_LEAF];
<------>struct xfs_iext_leaf *prev;
<------>struct xfs_iext_leaf *next;
};
inline xfs_extnum_t xfs_iext_count(struct xfs_ifork *ifp)
{
<------>return ifp->if_bytes / sizeof(struct xfs_iext_rec);
}
static inline int xfs_iext_max_recs(struct xfs_ifork *ifp)
{
<------>if (ifp->if_height == 1)
<------><------>return xfs_iext_count(ifp);
<------>return RECS_PER_LEAF;
}
static inline struct xfs_iext_rec *cur_rec(struct xfs_iext_cursor *cur)
{
<------>return &cur->leaf->recs[cur->pos];
}
static inline bool xfs_iext_valid(struct xfs_ifork *ifp,
<------><------>struct xfs_iext_cursor *cur)
{
<------>if (!cur->leaf)
<------><------>return false;
<------>if (cur->pos < 0 || cur->pos >= xfs_iext_max_recs(ifp))
<------><------>return false;
<------>if (xfs_iext_rec_is_empty(cur_rec(cur)))
<------><------>return false;
<------>return true;
}
static void *
xfs_iext_find_first_leaf(
<------>struct xfs_ifork *ifp)
{
<------>struct xfs_iext_node *node = ifp->if_u1.if_root;
<------>int height;
<------>if (!ifp->if_height)
<------><------>return NULL;
<------>for (height = ifp->if_height; height > 1; height--) {
<------><------>node = node->ptrs[0];
<------><------>ASSERT(node);
<------>}
<------>return node;
}
static void *
xfs_iext_find_last_leaf(
<------>struct xfs_ifork *ifp)
{
<------>struct xfs_iext_node *node = ifp->if_u1.if_root;
<------>int height, i;
<------>if (!ifp->if_height)
<------><------>return NULL;
<------>for (height = ifp->if_height; height > 1; height--) {
<------><------>for (i = 1; i < KEYS_PER_NODE; i++)
<------><------><------>if (!node->ptrs[i])
<------><------><------><------>break;
<------><------>node = node->ptrs[i - 1];
<------><------>ASSERT(node);
<------>}
<------>return node;
}
void
xfs_iext_first(
<------>struct xfs_ifork *ifp,
<------>struct xfs_iext_cursor *cur)
{
<------>cur->pos = 0;
<------>cur->leaf = xfs_iext_find_first_leaf(ifp);
}
void
xfs_iext_last(
<------>struct xfs_ifork *ifp,
<------>struct xfs_iext_cursor *cur)
{
<------>int i;
<------>cur->leaf = xfs_iext_find_last_leaf(ifp);
<------>if (!cur->leaf) {
<------><------>cur->pos = 0;
<------><------>return;
<------>}
<------>for (i = 1; i < xfs_iext_max_recs(ifp); i++) {
<------><------>if (xfs_iext_rec_is_empty(&cur->leaf->recs[i]))
<------><------><------>break;
<------>}
<------>cur->pos = i - 1;
}
void
xfs_iext_next(
<------>struct xfs_ifork *ifp,
<------>struct xfs_iext_cursor *cur)
{
<------>if (!cur->leaf) {
<------><------>ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
<------><------>xfs_iext_first(ifp, cur);
<------><------>return;
<------>}
<------>ASSERT(cur->pos >= 0);
<------>ASSERT(cur->pos < xfs_iext_max_recs(ifp));
<------>cur->pos++;
<------>if (ifp->if_height > 1 && !xfs_iext_valid(ifp, cur) &&
<------> cur->leaf->next) {
<------><------>cur->leaf = cur->leaf->next;
<------><------>cur->pos = 0;
<------>}
}
void
xfs_iext_prev(
<------>struct xfs_ifork *ifp,
<------>struct xfs_iext_cursor *cur)
{
<------>if (!cur->leaf) {
<------><------>ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
<------><------>xfs_iext_last(ifp, cur);
<------><------>return;
<------>}
<------>ASSERT(cur->pos >= 0);
<------>ASSERT(cur->pos <= RECS_PER_LEAF);
recurse:
<------>do {
<------><------>cur->pos--;
<------><------>if (xfs_iext_valid(ifp, cur))
<------><------><------>return;
<------>} while (cur->pos > 0);
<------>if (ifp->if_height > 1 && cur->leaf->prev) {
<------><------>cur->leaf = cur->leaf->prev;
<------><------>cur->pos = RECS_PER_LEAF;
<------><------>goto recurse;
<------>}
}
static inline int
xfs_iext_key_cmp(
<------>struct xfs_iext_node *node,
<------>int n,
<------>xfs_fileoff_t offset)
{
<------>if (node->keys[n] > offset)
<------><------>return 1;
<------>if (node->keys[n] < offset)
<------><------>return -1;
<------>return 0;
}
static inline int
xfs_iext_rec_cmp(
<------>struct xfs_iext_rec *rec,
<------>xfs_fileoff_t offset)
{
<------>uint64_t rec_offset = rec->lo & XFS_IEXT_STARTOFF_MASK;
<------>uint32_t rec_len = rec->hi & XFS_IEXT_LENGTH_MASK;
<------>if (rec_offset > offset)
<------><------>return 1;
<------>if (rec_offset + rec_len <= offset)
<------><------>return -1;
<------>return 0;
}
static void *
xfs_iext_find_level(
<------>struct xfs_ifork *ifp,
<------>xfs_fileoff_t offset,
<------>int level)
{
<------>struct xfs_iext_node *node = ifp->if_u1.if_root;
<------>int height, i;
<------>if (!ifp->if_height)
<------><------>return NULL;
<------>for (height = ifp->if_height; height > level; height--) {
<------><------>for (i = 1; i < KEYS_PER_NODE; i++)
<------><------><------>if (xfs_iext_key_cmp(node, i, offset) > 0)
<------><------><------><------>break;
<------><------>node = node->ptrs[i - 1];
<------><------>if (!node)
<------><------><------>break;
<------>}
<------>return node;
}
static int
xfs_iext_node_pos(
<------>struct xfs_iext_node *node,
<------>xfs_fileoff_t offset)
{
<------>int i;
<------>for (i = 1; i < KEYS_PER_NODE; i++) {
<------><------>if (xfs_iext_key_cmp(node, i, offset) > 0)
<------><------><------>break;
<------>}
<------>return i - 1;
}
static int
xfs_iext_node_insert_pos(
<------>struct xfs_iext_node *node,
<------>xfs_fileoff_t offset)
{
<------>int i;
<------>for (i = 0; i < KEYS_PER_NODE; i++) {
<------><------>if (xfs_iext_key_cmp(node, i, offset) > 0)
<------><------><------>return i;
<------>}
<------>return KEYS_PER_NODE;
}
static int
xfs_iext_node_nr_entries(
<------>struct xfs_iext_node *node,
<------>int start)
{
<------>int i;
<------>for (i = start; i < KEYS_PER_NODE; i++) {
<------><------>if (node->keys[i] == XFS_IEXT_KEY_INVALID)
<------><------><------>break;
<------>}
<------>return i;
}
static int
xfs_iext_leaf_nr_entries(
<------>struct xfs_ifork *ifp,
<------>struct xfs_iext_leaf *leaf,
<------>int start)
{
<------>int i;
<------>for (i = start; i < xfs_iext_max_recs(ifp); i++) {
<------><------>if (xfs_iext_rec_is_empty(&leaf->recs[i]))
<------><------><------>break;
<------>}
<------>return i;
}
static inline uint64_t
xfs_iext_leaf_key(
<------>struct xfs_iext_leaf *leaf,
<------>int n)
{
<------>return leaf->recs[n].lo & XFS_IEXT_STARTOFF_MASK;
}
static void
xfs_iext_grow(
<------>struct xfs_ifork *ifp)
{
<------>struct xfs_iext_node *node = kmem_zalloc(NODE_SIZE, KM_NOFS);
<------>int i;
<------>if (ifp->if_height == 1) {
<------><------>struct xfs_iext_leaf *prev = ifp->if_u1.if_root;
<------><------>node->keys[0] = xfs_iext_leaf_key(prev, 0);
<------><------>node->ptrs[0] = prev;
<------>} else {
<------><------>struct xfs_iext_node *prev = ifp->if_u1.if_root;
<------><------>ASSERT(ifp->if_height > 1);
<------><------>node->keys[0] = prev->keys[0];
<------><------>node->ptrs[0] = prev;
<------>}
<------>for (i = 1; i < KEYS_PER_NODE; i++)
<------><------>node->keys[i] = XFS_IEXT_KEY_INVALID;
<------>ifp->if_u1.if_root = node;
<------>ifp->if_height++;
}
static void
xfs_iext_update_node(
<------>struct xfs_ifork *ifp,
<------>xfs_fileoff_t old_offset,
<------>xfs_fileoff_t new_offset,
<------>int level,
<------>void *ptr)
{
<------>struct xfs_iext_node *node = ifp->if_u1.if_root;
<------>int height, i;
<------>for (height = ifp->if_height; height > level; height--) {
<------><------>for (i = 0; i < KEYS_PER_NODE; i++) {
<------><------><------>if (i > 0 && xfs_iext_key_cmp(node, i, old_offset) > 0)
<------><------><------><------>break;
<------><------><------>if (node->keys[i] == old_offset)
<------><------><------><------>node->keys[i] = new_offset;
<------><------>}
<------><------>node = node->ptrs[i - 1];
<------><------>ASSERT(node);
<------>}
<------>ASSERT(node == ptr);
}
static struct xfs_iext_node *
xfs_iext_split_node(
<------>struct xfs_iext_node **nodep,
<------>int *pos,
<------>int *nr_entries)
{
<------>struct xfs_iext_node *node = *nodep;
<------>struct xfs_iext_node *new = kmem_zalloc(NODE_SIZE, KM_NOFS);
<------>const int nr_move = KEYS_PER_NODE / 2;
<------>int nr_keep = nr_move + (KEYS_PER_NODE & 1);
<------>int i = 0;
<------>/* for sequential append operations just spill over into the new node */
<------>if (*pos == KEYS_PER_NODE) {
<------><------>*nodep = new;
<------><------>*pos = 0;
<------><------>*nr_entries = 0;
<------><------>goto done;
<------>}
<------>for (i = 0; i < nr_move; i++) {
<------><------>new->keys[i] = node->keys[nr_keep + i];
<------><------>new->ptrs[i] = node->ptrs[nr_keep + i];
<------><------>node->keys[nr_keep + i] = XFS_IEXT_KEY_INVALID;
<------><------>node->ptrs[nr_keep + i] = NULL;
<------>}
<------>if (*pos >= nr_keep) {
<------><------>*nodep = new;
<------><------>*pos -= nr_keep;
<------><------>*nr_entries = nr_move;
<------>} else {
<------><------>*nr_entries = nr_keep;
<------>}
done:
<------>for (; i < KEYS_PER_NODE; i++)
<------><------>new->keys[i] = XFS_IEXT_KEY_INVALID;
<------>return new;
}
static void
xfs_iext_insert_node(
<------>struct xfs_ifork *ifp,
<------>uint64_t offset,
<------>void *ptr,
<------>int level)
{
<------>struct xfs_iext_node *node, *new;
<------>int i, pos, nr_entries;
again:
<------>if (ifp->if_height < level)
<------><------>xfs_iext_grow(ifp);
<------>new = NULL;
<------>node = xfs_iext_find_level(ifp, offset, level);
<------>pos = xfs_iext_node_insert_pos(node, offset);
<------>nr_entries = xfs_iext_node_nr_entries(node, pos);
<------>ASSERT(pos >= nr_entries || xfs_iext_key_cmp(node, pos, offset) != 0);
<------>ASSERT(nr_entries <= KEYS_PER_NODE);
<------>if (nr_entries == KEYS_PER_NODE)
<------><------>new = xfs_iext_split_node(&node, &pos, &nr_entries);
<------>/*
<------> * Update the pointers in higher levels if the first entry changes
<------> * in an existing node.
<------> */
<------>if (node != new && pos == 0 && nr_entries > 0)
<------><------>xfs_iext_update_node(ifp, node->keys[0], offset, level, node);
<------>for (i = nr_entries; i > pos; i--) {
<------><------>node->keys[i] = node->keys[i - 1];
<------><------>node->ptrs[i] = node->ptrs[i - 1];
<------>}
<------>node->keys[pos] = offset;
<------>node->ptrs[pos] = ptr;
<------>if (new) {
<------><------>offset = new->keys[0];
<------><------>ptr = new;
<------><------>level++;
<------><------>goto again;
<------>}
}
static struct xfs_iext_leaf *
xfs_iext_split_leaf(
<------>struct xfs_iext_cursor *cur,
<------>int *nr_entries)
{
<------>struct xfs_iext_leaf *leaf = cur->leaf;
<------>struct xfs_iext_leaf *new = kmem_zalloc(NODE_SIZE, KM_NOFS);
<------>const int nr_move = RECS_PER_LEAF / 2;
<------>int nr_keep = nr_move + (RECS_PER_LEAF & 1);
<------>int i;
<------>/* for sequential append operations just spill over into the new node */
<------>if (cur->pos == RECS_PER_LEAF) {
<------><------>cur->leaf = new;
<------><------>cur->pos = 0;
<------><------>*nr_entries = 0;
<------><------>goto done;
<------>}
<------>for (i = 0; i < nr_move; i++) {
<------><------>new->recs[i] = leaf->recs[nr_keep + i];
<------><------>xfs_iext_rec_clear(&leaf->recs[nr_keep + i]);
<------>}
<------>if (cur->pos >= nr_keep) {
<------><------>cur->leaf = new;
<------><------>cur->pos -= nr_keep;
<------><------>*nr_entries = nr_move;
<------>} else {
<------><------>*nr_entries = nr_keep;
<------>}
done:
<------>if (leaf->next)
<------><------>leaf->next->prev = new;
<------>new->next = leaf->next;
<------>new->prev = leaf;
<------>leaf->next = new;
<------>return new;
}
static void
xfs_iext_alloc_root(
<------>struct xfs_ifork *ifp,
<------>struct xfs_iext_cursor *cur)
{
<------>ASSERT(ifp->if_bytes == 0);
<------>ifp->if_u1.if_root = kmem_zalloc(sizeof(struct xfs_iext_rec), KM_NOFS);
<------>ifp->if_height = 1;
<------>/* now that we have a node step into it */
<------>cur->leaf = ifp->if_u1.if_root;
<------>cur->pos = 0;
}
static void
xfs_iext_realloc_root(
<------>struct xfs_ifork *ifp,
<------>struct xfs_iext_cursor *cur)
{
<------>int64_t new_size = ifp->if_bytes + sizeof(struct xfs_iext_rec);
<------>void *new;
<------>/* account for the prev/next pointers */
<------>if (new_size / sizeof(struct xfs_iext_rec) == RECS_PER_LEAF)
<------><------>new_size = NODE_SIZE;
<------>new = krealloc(ifp->if_u1.if_root, new_size, GFP_NOFS | __GFP_NOFAIL);
<------>memset(new + ifp->if_bytes, 0, new_size - ifp->if_bytes);
<------>ifp->if_u1.if_root = new;
<------>cur->leaf = new;
}
/*
* Increment the sequence counter on extent tree changes. If we are on a COW
* fork, this allows the writeback code to skip looking for a COW extent if the
* COW fork hasn't changed. We use WRITE_ONCE here to ensure the update to the
* sequence counter is seen before the modifications to the extent tree itself
* take effect.
*/
static inline void xfs_iext_inc_seq(struct xfs_ifork *ifp)
{
<------>WRITE_ONCE(ifp->if_seq, READ_ONCE(ifp->if_seq) + 1);
}
void
xfs_iext_insert(
<------>struct xfs_inode *ip,
<------>struct xfs_iext_cursor *cur,
<------>struct xfs_bmbt_irec *irec,
<------>int state)
{
<------>struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
<------>xfs_fileoff_t offset = irec->br_startoff;
<------>struct xfs_iext_leaf *new = NULL;
<------>int nr_entries, i;
<------>xfs_iext_inc_seq(ifp);
<------>if (ifp->if_height == 0)
<------><------>xfs_iext_alloc_root(ifp, cur);
<------>else if (ifp->if_height == 1)
<------><------>xfs_iext_realloc_root(ifp, cur);
<------>nr_entries = xfs_iext_leaf_nr_entries(ifp, cur->leaf, cur->pos);
<------>ASSERT(nr_entries <= RECS_PER_LEAF);
<------>ASSERT(cur->pos >= nr_entries ||
<------> xfs_iext_rec_cmp(cur_rec(cur), irec->br_startoff) != 0);
<------>if (nr_entries == RECS_PER_LEAF)
<------><------>new = xfs_iext_split_leaf(cur, &nr_entries);
<------>/*
<------> * Update the pointers in higher levels if the first entry changes
<------> * in an existing node.
<------> */
<------>if (cur->leaf != new && cur->pos == 0 && nr_entries > 0) {
<------><------>xfs_iext_update_node(ifp, xfs_iext_leaf_key(cur->leaf, 0),
<------><------><------><------>offset, 1, cur->leaf);
<------>}
<------>for (i = nr_entries; i > cur->pos; i--)
<------><------>cur->leaf->recs[i] = cur->leaf->recs[i - 1];
<------>xfs_iext_set(cur_rec(cur), irec);
<------>ifp->if_bytes += sizeof(struct xfs_iext_rec);
<------>trace_xfs_iext_insert(ip, cur, state, _RET_IP_);
<------>if (new)
<------><------>xfs_iext_insert_node(ifp, xfs_iext_leaf_key(new, 0), new, 2);
}
static struct xfs_iext_node *
xfs_iext_rebalance_node(
<------>struct xfs_iext_node *parent,
<------>int *pos,
<------>struct xfs_iext_node *node,
<------>int nr_entries)
{
<------>/*
<------> * If the neighbouring nodes are completely full, or have different
<------> * parents, we might never be able to merge our node, and will only
<------> * delete it once the number of entries hits zero.
<------> */
<------>if (nr_entries == 0)
<------><------>return node;
<------>if (*pos > 0) {
<------><------>struct xfs_iext_node *prev = parent->ptrs[*pos - 1];
<------><------>int nr_prev = xfs_iext_node_nr_entries(prev, 0), i;
<------><------>if (nr_prev + nr_entries <= KEYS_PER_NODE) {
<------><------><------>for (i = 0; i < nr_entries; i++) {
<------><------><------><------>prev->keys[nr_prev + i] = node->keys[i];
<------><------><------><------>prev->ptrs[nr_prev + i] = node->ptrs[i];
<------><------><------>}
<------><------><------>return node;
<------><------>}
<------>}
<------>if (*pos + 1 < xfs_iext_node_nr_entries(parent, *pos)) {
<------><------>struct xfs_iext_node *next = parent->ptrs[*pos + 1];
<------><------>int nr_next = xfs_iext_node_nr_entries(next, 0), i;
<------><------>if (nr_entries + nr_next <= KEYS_PER_NODE) {
<------><------><------>/*
<------><------><------> * Merge the next node into this node so that we don't
<------><------><------> * have to do an additional update of the keys in the
<------><------><------> * higher levels.
<------><------><------> */
<------><------><------>for (i = 0; i < nr_next; i++) {
<------><------><------><------>node->keys[nr_entries + i] = next->keys[i];
<------><------><------><------>node->ptrs[nr_entries + i] = next->ptrs[i];
<------><------><------>}
<------><------><------>++*pos;
<------><------><------>return next;
<------><------>}
<------>}
<------>return NULL;
}
static void
xfs_iext_remove_node(
<------>struct xfs_ifork *ifp,
<------>xfs_fileoff_t offset,
<------>void *victim)
{
<------>struct xfs_iext_node *node, *parent;
<------>int level = 2, pos, nr_entries, i;
<------>ASSERT(level <= ifp->if_height);
<------>node = xfs_iext_find_level(ifp, offset, level);
<------>pos = xfs_iext_node_pos(node, offset);
again:
<------>ASSERT(node->ptrs[pos]);
<------>ASSERT(node->ptrs[pos] == victim);
<------>kmem_free(victim);
<------>nr_entries = xfs_iext_node_nr_entries(node, pos) - 1;
<------>offset = node->keys[0];
<------>for (i = pos; i < nr_entries; i++) {
<------><------>node->keys[i] = node->keys[i + 1];
<------><------>node->ptrs[i] = node->ptrs[i + 1];
<------>}
<------>node->keys[nr_entries] = XFS_IEXT_KEY_INVALID;
<------>node->ptrs[nr_entries] = NULL;
<------>if (pos == 0 && nr_entries > 0) {
<------><------>xfs_iext_update_node(ifp, offset, node->keys[0], level, node);
<------><------>offset = node->keys[0];
<------>}
<------>if (nr_entries >= KEYS_PER_NODE / 2)
<------><------>return;
<------>if (level < ifp->if_height) {
<------><------>/*
<------><------> * If we aren't at the root yet try to find a neighbour node to
<------><------> * merge with (or delete the node if it is empty), and then
<------><------> * recurse up to the next level.
<------><------> */
<------><------>level++;
<------><------>parent = xfs_iext_find_level(ifp, offset, level);
<------><------>pos = xfs_iext_node_pos(parent, offset);
<------><------>ASSERT(pos != KEYS_PER_NODE);
<------><------>ASSERT(parent->ptrs[pos] == node);
<------><------>node = xfs_iext_rebalance_node(parent, &pos, node, nr_entries);
<------><------>if (node) {
<------><------><------>victim = node;
<------><------><------>node = parent;
<------><------><------>goto again;
<------><------>}
<------>} else if (nr_entries == 1) {
<------><------>/*
<------><------> * If we are at the root and only one entry is left we can just
<------><------> * free this node and update the root pointer.
<------><------> */
<------><------>ASSERT(node == ifp->if_u1.if_root);
<------><------>ifp->if_u1.if_root = node->ptrs[0];
<------><------>ifp->if_height--;
<------><------>kmem_free(node);
<------>}
}
static void
xfs_iext_rebalance_leaf(
<------>struct xfs_ifork *ifp,
<------>struct xfs_iext_cursor *cur,
<------>struct xfs_iext_leaf *leaf,
<------>xfs_fileoff_t offset,
<------>int nr_entries)
{
<------>/*
<------> * If the neighbouring nodes are completely full we might never be able
<------> * to merge our node, and will only delete it once the number of
<------> * entries hits zero.
<------> */
<------>if (nr_entries == 0)
<------><------>goto remove_node;
<------>if (leaf->prev) {
<------><------>int nr_prev = xfs_iext_leaf_nr_entries(ifp, leaf->prev, 0), i;
<------><------>if (nr_prev + nr_entries <= RECS_PER_LEAF) {
<------><------><------>for (i = 0; i < nr_entries; i++)
<------><------><------><------>leaf->prev->recs[nr_prev + i] = leaf->recs[i];
<------><------><------>if (cur->leaf == leaf) {
<------><------><------><------>cur->leaf = leaf->prev;
<------><------><------><------>cur->pos += nr_prev;
<------><------><------>}
<------><------><------>goto remove_node;
<------><------>}
<------>}
<------>if (leaf->next) {
<------><------>int nr_next = xfs_iext_leaf_nr_entries(ifp, leaf->next, 0), i;
<------><------>if (nr_entries + nr_next <= RECS_PER_LEAF) {
<------><------><------>/*
<------><------><------> * Merge the next node into this node so that we don't
<------><------><------> * have to do an additional update of the keys in the
<------><------><------> * higher levels.
<------><------><------> */
<------><------><------>for (i = 0; i < nr_next; i++) {
<------><------><------><------>leaf->recs[nr_entries + i] =
<------><------><------><------><------>leaf->next->recs[i];
<------><------><------>}
<------><------><------>if (cur->leaf == leaf->next) {
<------><------><------><------>cur->leaf = leaf;
<------><------><------><------>cur->pos += nr_entries;
<------><------><------>}
<------><------><------>offset = xfs_iext_leaf_key(leaf->next, 0);
<------><------><------>leaf = leaf->next;
<------><------><------>goto remove_node;
<------><------>}
<------>}
<------>return;
remove_node:
<------>if (leaf->prev)
<------><------>leaf->prev->next = leaf->next;
<------>if (leaf->next)
<------><------>leaf->next->prev = leaf->prev;
<------>xfs_iext_remove_node(ifp, offset, leaf);
}
static void
xfs_iext_free_last_leaf(
<------>struct xfs_ifork *ifp)
{
<------>ifp->if_height--;
<------>kmem_free(ifp->if_u1.if_root);
<------>ifp->if_u1.if_root = NULL;
}
void
xfs_iext_remove(
<------>struct xfs_inode *ip,
<------>struct xfs_iext_cursor *cur,
<------>int state)
{
<------>struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
<------>struct xfs_iext_leaf *leaf = cur->leaf;
<------>xfs_fileoff_t offset = xfs_iext_leaf_key(leaf, 0);
<------>int i, nr_entries;
<------>trace_xfs_iext_remove(ip, cur, state, _RET_IP_);
<------>ASSERT(ifp->if_height > 0);
<------>ASSERT(ifp->if_u1.if_root != NULL);
<------>ASSERT(xfs_iext_valid(ifp, cur));
<------>xfs_iext_inc_seq(ifp);
<------>nr_entries = xfs_iext_leaf_nr_entries(ifp, leaf, cur->pos) - 1;
<------>for (i = cur->pos; i < nr_entries; i++)
<------><------>leaf->recs[i] = leaf->recs[i + 1];
<------>xfs_iext_rec_clear(&leaf->recs[nr_entries]);
<------>ifp->if_bytes -= sizeof(struct xfs_iext_rec);
<------>if (cur->pos == 0 && nr_entries > 0) {
<------><------>xfs_iext_update_node(ifp, offset, xfs_iext_leaf_key(leaf, 0), 1,
<------><------><------><------>leaf);
<------><------>offset = xfs_iext_leaf_key(leaf, 0);
<------>} else if (cur->pos == nr_entries) {
<------><------>if (ifp->if_height > 1 && leaf->next)
<------><------><------>cur->leaf = leaf->next;
<------><------>else
<------><------><------>cur->leaf = NULL;
<------><------>cur->pos = 0;
<------>}
<------>if (nr_entries >= RECS_PER_LEAF / 2)
<------><------>return;
<------>if (ifp->if_height > 1)
<------><------>xfs_iext_rebalance_leaf(ifp, cur, leaf, offset, nr_entries);
<------>else if (nr_entries == 0)
<------><------>xfs_iext_free_last_leaf(ifp);
}
/*
* Lookup the extent covering bno.
*
* If there is an extent covering bno return the extent index, and store the
* expanded extent structure in *gotp, and the extent cursor in *cur.
* If there is no extent covering bno, but there is an extent after it (e.g.
* it lies in a hole) return that extent in *gotp and its cursor in *cur
* instead.
* If bno is beyond the last extent return false, and return an invalid
* cursor value.
*/
bool
xfs_iext_lookup_extent(
<------>struct xfs_inode *ip,
<------>struct xfs_ifork *ifp,
<------>xfs_fileoff_t offset,
<------>struct xfs_iext_cursor *cur,
<------>struct xfs_bmbt_irec *gotp)
{
<------>XFS_STATS_INC(ip->i_mount, xs_look_exlist);
<------>cur->leaf = xfs_iext_find_level(ifp, offset, 1);
<------>if (!cur->leaf) {
<------><------>cur->pos = 0;
<------><------>return false;
<------>}
<------>for (cur->pos = 0; cur->pos < xfs_iext_max_recs(ifp); cur->pos++) {
<------><------>struct xfs_iext_rec *rec = cur_rec(cur);
<------><------>if (xfs_iext_rec_is_empty(rec))
<------><------><------>break;
<------><------>if (xfs_iext_rec_cmp(rec, offset) >= 0)
<------><------><------>goto found;
<------>}
<------>/* Try looking in the next node for an entry > offset */
<------>if (ifp->if_height == 1 || !cur->leaf->next)
<------><------>return false;
<------>cur->leaf = cur->leaf->next;
<------>cur->pos = 0;
<------>if (!xfs_iext_valid(ifp, cur))
<------><------>return false;
found:
<------>xfs_iext_get(gotp, cur_rec(cur));
<------>return true;
}
/*
* Returns the last extent before end, and if this extent doesn't cover
* end, update end to the end of the extent.
*/
bool
xfs_iext_lookup_extent_before(
<------>struct xfs_inode *ip,
<------>struct xfs_ifork *ifp,
<------>xfs_fileoff_t *end,
<------>struct xfs_iext_cursor *cur,
<------>struct xfs_bmbt_irec *gotp)
{
<------>/* could be optimized to not even look up the next on a match.. */
<------>if (xfs_iext_lookup_extent(ip, ifp, *end - 1, cur, gotp) &&
<------> gotp->br_startoff <= *end - 1)
<------><------>return true;
<------>if (!xfs_iext_prev_extent(ifp, cur, gotp))
<------><------>return false;
<------>*end = gotp->br_startoff + gotp->br_blockcount;
<------>return true;
}
void
xfs_iext_update_extent(
<------>struct xfs_inode *ip,
<------>int state,
<------>struct xfs_iext_cursor *cur,
<------>struct xfs_bmbt_irec *new)
{
<------>struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
<------>xfs_iext_inc_seq(ifp);
<------>if (cur->pos == 0) {
<------><------>struct xfs_bmbt_irec old;
<------><------>xfs_iext_get(&old, cur_rec(cur));
<------><------>if (new->br_startoff != old.br_startoff) {
<------><------><------>xfs_iext_update_node(ifp, old.br_startoff,
<------><------><------><------><------>new->br_startoff, 1, cur->leaf);
<------><------>}
<------>}
<------>trace_xfs_bmap_pre_update(ip, cur, state, _RET_IP_);
<------>xfs_iext_set(cur_rec(cur), new);
<------>trace_xfs_bmap_post_update(ip, cur, state, _RET_IP_);
}
/*
* Return true if the cursor points at an extent and return the extent structure
* in gotp. Else return false.
*/
bool
xfs_iext_get_extent(
<------>struct xfs_ifork *ifp,
<------>struct xfs_iext_cursor *cur,
<------>struct xfs_bmbt_irec *gotp)
{
<------>if (!xfs_iext_valid(ifp, cur))
<------><------>return false;
<------>xfs_iext_get(gotp, cur_rec(cur));
<------>return true;
}
/*
* This is a recursive function, because of that we need to be extremely
* careful with stack usage.
*/
static void
xfs_iext_destroy_node(
<------>struct xfs_iext_node *node,
<------>int level)
{
<------>int i;
<------>if (level > 1) {
<------><------>for (i = 0; i < KEYS_PER_NODE; i++) {
<------><------><------>if (node->keys[i] == XFS_IEXT_KEY_INVALID)
<------><------><------><------>break;
<------><------><------>xfs_iext_destroy_node(node->ptrs[i], level - 1);
<------><------>}
<------>}
<------>kmem_free(node);
}
void
xfs_iext_destroy(
<------>struct xfs_ifork *ifp)
{
<------>xfs_iext_destroy_node(ifp->if_u1.if_root, ifp->if_height);
<------>ifp->if_bytes = 0;
<------>ifp->if_height = 0;
<------>ifp->if_u1.if_root = NULL;
}