Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0-only
/*
* This file is part of UBIFS.
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
* Author: Adrian Hunter
*/
#include "ubifs.h"
/*
* An orphan is an inode number whose inode node has been committed to the index
* with a link count of zero. That happens when an open file is deleted
* (unlinked) and then a commit is run. In the normal course of events the inode
* would be deleted when the file is closed. However in the case of an unclean
* unmount, orphans need to be accounted for. After an unclean unmount, the
* orphans' inodes must be deleted which means either scanning the entire index
* looking for them, or keeping a list on flash somewhere. This unit implements
* the latter approach.
*
* The orphan area is a fixed number of LEBs situated between the LPT area and
* the main area. The number of orphan area LEBs is specified when the file
* system is created. The minimum number is 1. The size of the orphan area
* should be so that it can hold the maximum number of orphans that are expected
* to ever exist at one time.
*
* The number of orphans that can fit in a LEB is:
*
* (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
*
* For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
*
* Orphans are accumulated in a rb-tree. When an inode's link count drops to
* zero, the inode number is added to the rb-tree. It is removed from the tree
* when the inode is deleted. Any new orphans that are in the orphan tree when
* the commit is run, are written to the orphan area in 1 or more orphan nodes.
* If the orphan area is full, it is consolidated to make space. There is
* always enough space because validation prevents the user from creating more
* than the maximum number of orphans allowed.
*/
static int dbg_check_orphans(struct ubifs_info *c);
static struct ubifs_orphan *orphan_add(struct ubifs_info *c, ino_t inum,
<------><------><------><------> struct ubifs_orphan *parent_orphan)
{
<------>struct ubifs_orphan *orphan, *o;
<------>struct rb_node **p, *parent = NULL;
<------>orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
<------>if (!orphan)
<------><------>return ERR_PTR(-ENOMEM);
<------>orphan->inum = inum;
<------>orphan->new = 1;
<------>INIT_LIST_HEAD(&orphan->child_list);
<------>spin_lock(&c->orphan_lock);
<------>if (c->tot_orphans >= c->max_orphans) {
<------><------>spin_unlock(&c->orphan_lock);
<------><------>kfree(orphan);
<------><------>return ERR_PTR(-ENFILE);
<------>}
<------>p = &c->orph_tree.rb_node;
<------>while (*p) {
<------><------>parent = *p;
<------><------>o = rb_entry(parent, struct ubifs_orphan, rb);
<------><------>if (inum < o->inum)
<------><------><------>p = &(*p)->rb_left;
<------><------>else if (inum > o->inum)
<------><------><------>p = &(*p)->rb_right;
<------><------>else {
<------><------><------>ubifs_err(c, "orphaned twice");
<------><------><------>spin_unlock(&c->orphan_lock);
<------><------><------>kfree(orphan);
<------><------><------>return ERR_PTR(-EINVAL);
<------><------>}
<------>}
<------>c->tot_orphans += 1;
<------>c->new_orphans += 1;
<------>rb_link_node(&orphan->rb, parent, p);
<------>rb_insert_color(&orphan->rb, &c->orph_tree);
<------>list_add_tail(&orphan->list, &c->orph_list);
<------>list_add_tail(&orphan->new_list, &c->orph_new);
<------>if (parent_orphan) {
<------><------>list_add_tail(&orphan->child_list,
<------><------><------> &parent_orphan->child_list);
<------>}
<------>spin_unlock(&c->orphan_lock);
<------>dbg_gen("ino %lu", (unsigned long)inum);
<------>return orphan;
}
static struct ubifs_orphan *lookup_orphan(struct ubifs_info *c, ino_t inum)
{
<------>struct ubifs_orphan *o;
<------>struct rb_node *p;
<------>p = c->orph_tree.rb_node;
<------>while (p) {
<------><------>o = rb_entry(p, struct ubifs_orphan, rb);
<------><------>if (inum < o->inum)
<------><------><------>p = p->rb_left;
<------><------>else if (inum > o->inum)
<------><------><------>p = p->rb_right;
<------><------>else {
<------><------><------>return o;
<------><------>}
<------>}
<------>return NULL;
}
static void __orphan_drop(struct ubifs_info *c, struct ubifs_orphan *o)
{
<------>rb_erase(&o->rb, &c->orph_tree);
<------>list_del(&o->list);
<------>c->tot_orphans -= 1;
<------>if (o->new) {
<------><------>list_del(&o->new_list);
<------><------>c->new_orphans -= 1;
<------>}
<------>kfree(o);
}
static void orphan_delete(struct ubifs_info *c, struct ubifs_orphan *orph)
{
<------>if (orph->del) {
<------><------>dbg_gen("deleted twice ino %lu", (unsigned long)orph->inum);
<------><------>return;
<------>}
<------>if (orph->cmt) {
<------><------>orph->del = 1;
<------><------>orph->dnext = c->orph_dnext;
<------><------>c->orph_dnext = orph;
<------><------>dbg_gen("delete later ino %lu", (unsigned long)orph->inum);
<------><------>return;
<------>}
<------>__orphan_drop(c, orph);
}
/**
* ubifs_add_orphan - add an orphan.
* @c: UBIFS file-system description object
* @inum: orphan inode number
*
* Add an orphan. This function is called when an inodes link count drops to
* zero.
*/
int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
{
<------>int err = 0;
<------>ino_t xattr_inum;
<------>union ubifs_key key;
<------>struct ubifs_dent_node *xent, *pxent = NULL;
<------>struct fscrypt_name nm = {0};
<------>struct ubifs_orphan *xattr_orphan;
<------>struct ubifs_orphan *orphan;
<------>orphan = orphan_add(c, inum, NULL);
<------>if (IS_ERR(orphan))
<------><------>return PTR_ERR(orphan);
<------>lowest_xent_key(c, &key, inum);
<------>while (1) {
<------><------>xent = ubifs_tnc_next_ent(c, &key, &nm);
<------><------>if (IS_ERR(xent)) {
<------><------><------>err = PTR_ERR(xent);
<------><------><------>if (err == -ENOENT)
<------><------><------><------>break;
<------><------><------>kfree(pxent);
<------><------><------>return err;
<------><------>}
<------><------>fname_name(&nm) = xent->name;
<------><------>fname_len(&nm) = le16_to_cpu(xent->nlen);
<------><------>xattr_inum = le64_to_cpu(xent->inum);
<------><------>xattr_orphan = orphan_add(c, xattr_inum, orphan);
<------><------>if (IS_ERR(xattr_orphan)) {
<------><------><------>kfree(pxent);
<------><------><------>kfree(xent);
<------><------><------>return PTR_ERR(xattr_orphan);
<------><------>}
<------><------>kfree(pxent);
<------><------>pxent = xent;
<------><------>key_read(c, &xent->key, &key);
<------>}
<------>kfree(pxent);
<------>return 0;
}
/**
* ubifs_delete_orphan - delete an orphan.
* @c: UBIFS file-system description object
* @inum: orphan inode number
*
* Delete an orphan. This function is called when an inode is deleted.
*/
void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
{
<------>struct ubifs_orphan *orph, *child_orph, *tmp_o;
<------>spin_lock(&c->orphan_lock);
<------>orph = lookup_orphan(c, inum);
<------>if (!orph) {
<------><------>spin_unlock(&c->orphan_lock);
<------><------>ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum);
<------><------>dump_stack();
<------><------>return;
<------>}
<------>list_for_each_entry_safe(child_orph, tmp_o, &orph->child_list, child_list) {
<------><------>list_del(&child_orph->child_list);
<------><------>orphan_delete(c, child_orph);
<------>}
<------>
<------>orphan_delete(c, orph);
<------>spin_unlock(&c->orphan_lock);
}
/**
* ubifs_orphan_start_commit - start commit of orphans.
* @c: UBIFS file-system description object
*
* Start commit of orphans.
*/
int ubifs_orphan_start_commit(struct ubifs_info *c)
{
<------>struct ubifs_orphan *orphan, **last;
<------>spin_lock(&c->orphan_lock);
<------>last = &c->orph_cnext;
<------>list_for_each_entry(orphan, &c->orph_new, new_list) {
<------><------>ubifs_assert(c, orphan->new);
<------><------>ubifs_assert(c, !orphan->cmt);
<------><------>orphan->new = 0;
<------><------>orphan->cmt = 1;
<------><------>*last = orphan;
<------><------>last = &orphan->cnext;
<------>}
<------>*last = NULL;
<------>c->cmt_orphans = c->new_orphans;
<------>c->new_orphans = 0;
<------>dbg_cmt("%d orphans to commit", c->cmt_orphans);
<------>INIT_LIST_HEAD(&c->orph_new);
<------>if (c->tot_orphans == 0)
<------><------>c->no_orphs = 1;
<------>else
<------><------>c->no_orphs = 0;
<------>spin_unlock(&c->orphan_lock);
<------>return 0;
}
/**
* avail_orphs - calculate available space.
* @c: UBIFS file-system description object
*
* This function returns the number of orphans that can be written in the
* available space.
*/
static int avail_orphs(struct ubifs_info *c)
{
<------>int avail_lebs, avail, gap;
<------>avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
<------>avail = avail_lebs *
<------> ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
<------>gap = c->leb_size - c->ohead_offs;
<------>if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
<------><------>avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
<------>return avail;
}
/**
* tot_avail_orphs - calculate total space.
* @c: UBIFS file-system description object
*
* This function returns the number of orphans that can be written in half
* the total space. That leaves half the space for adding new orphans.
*/
static int tot_avail_orphs(struct ubifs_info *c)
{
<------>int avail_lebs, avail;
<------>avail_lebs = c->orph_lebs;
<------>avail = avail_lebs *
<------> ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
<------>return avail / 2;
}
/**
* do_write_orph_node - write a node to the orphan head.
* @c: UBIFS file-system description object
* @len: length of node
* @atomic: write atomically
*
* This function writes a node to the orphan head from the orphan buffer. If
* %atomic is not zero, then the write is done atomically. On success, %0 is
* returned, otherwise a negative error code is returned.
*/
static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
{
<------>int err = 0;
<------>if (atomic) {
<------><------>ubifs_assert(c, c->ohead_offs == 0);
<------><------>ubifs_prepare_node(c, c->orph_buf, len, 1);
<------><------>len = ALIGN(len, c->min_io_size);
<------><------>err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
<------>} else {
<------><------>if (c->ohead_offs == 0) {
<------><------><------>/* Ensure LEB has been unmapped */
<------><------><------>err = ubifs_leb_unmap(c, c->ohead_lnum);
<------><------><------>if (err)
<------><------><------><------>return err;
<------><------>}
<------><------>err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
<------><------><------><------> c->ohead_offs);
<------>}
<------>return err;
}
/**
* write_orph_node - write an orphan node.
* @c: UBIFS file-system description object
* @atomic: write atomically
*
* This function builds an orphan node from the cnext list and writes it to the
* orphan head. On success, %0 is returned, otherwise a negative error code
* is returned.
*/
static int write_orph_node(struct ubifs_info *c, int atomic)
{
<------>struct ubifs_orphan *orphan, *cnext;
<------>struct ubifs_orph_node *orph;
<------>int gap, err, len, cnt, i;
<------>ubifs_assert(c, c->cmt_orphans > 0);
<------>gap = c->leb_size - c->ohead_offs;
<------>if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
<------><------>c->ohead_lnum += 1;
<------><------>c->ohead_offs = 0;
<------><------>gap = c->leb_size;
<------><------>if (c->ohead_lnum > c->orph_last) {
<------><------><------>/*
<------><------><------> * We limit the number of orphans so that this should
<------><------><------> * never happen.
<------><------><------> */
<------><------><------>ubifs_err(c, "out of space in orphan area");
<------><------><------>return -EINVAL;
<------><------>}
<------>}
<------>cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
<------>if (cnt > c->cmt_orphans)
<------><------>cnt = c->cmt_orphans;
<------>len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
<------>ubifs_assert(c, c->orph_buf);
<------>orph = c->orph_buf;
<------>orph->ch.node_type = UBIFS_ORPH_NODE;
<------>spin_lock(&c->orphan_lock);
<------>cnext = c->orph_cnext;
<------>for (i = 0; i < cnt; i++) {
<------><------>orphan = cnext;
<------><------>ubifs_assert(c, orphan->cmt);
<------><------>orph->inos[i] = cpu_to_le64(orphan->inum);
<------><------>orphan->cmt = 0;
<------><------>cnext = orphan->cnext;
<------><------>orphan->cnext = NULL;
<------>}
<------>c->orph_cnext = cnext;
<------>c->cmt_orphans -= cnt;
<------>spin_unlock(&c->orphan_lock);
<------>if (c->cmt_orphans)
<------><------>orph->cmt_no = cpu_to_le64(c->cmt_no);
<------>else
<------><------>/* Mark the last node of the commit */
<------><------>orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
<------>ubifs_assert(c, c->ohead_offs + len <= c->leb_size);
<------>ubifs_assert(c, c->ohead_lnum >= c->orph_first);
<------>ubifs_assert(c, c->ohead_lnum <= c->orph_last);
<------>err = do_write_orph_node(c, len, atomic);
<------>c->ohead_offs += ALIGN(len, c->min_io_size);
<------>c->ohead_offs = ALIGN(c->ohead_offs, 8);
<------>return err;
}
/**
* write_orph_nodes - write orphan nodes until there are no more to commit.
* @c: UBIFS file-system description object
* @atomic: write atomically
*
* This function writes orphan nodes for all the orphans to commit. On success,
* %0 is returned, otherwise a negative error code is returned.
*/
static int write_orph_nodes(struct ubifs_info *c, int atomic)
{
<------>int err;
<------>while (c->cmt_orphans > 0) {
<------><------>err = write_orph_node(c, atomic);
<------><------>if (err)
<------><------><------>return err;
<------>}
<------>if (atomic) {
<------><------>int lnum;
<------><------>/* Unmap any unused LEBs after consolidation */
<------><------>for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
<------><------><------>err = ubifs_leb_unmap(c, lnum);
<------><------><------>if (err)
<------><------><------><------>return err;
<------><------>}
<------>}
<------>return 0;
}
/**
* consolidate - consolidate the orphan area.
* @c: UBIFS file-system description object
*
* This function enables consolidation by putting all the orphans into the list
* to commit. The list is in the order that the orphans were added, and the
* LEBs are written atomically in order, so at no time can orphans be lost by
* an unclean unmount.
*
* This function returns %0 on success and a negative error code on failure.
*/
static int consolidate(struct ubifs_info *c)
{
<------>int tot_avail = tot_avail_orphs(c), err = 0;
<------>spin_lock(&c->orphan_lock);
<------>dbg_cmt("there is space for %d orphans and there are %d",
<------><------>tot_avail, c->tot_orphans);
<------>if (c->tot_orphans - c->new_orphans <= tot_avail) {
<------><------>struct ubifs_orphan *orphan, **last;
<------><------>int cnt = 0;
<------><------>/* Change the cnext list to include all non-new orphans */
<------><------>last = &c->orph_cnext;
<------><------>list_for_each_entry(orphan, &c->orph_list, list) {
<------><------><------>if (orphan->new)
<------><------><------><------>continue;
<------><------><------>orphan->cmt = 1;
<------><------><------>*last = orphan;
<------><------><------>last = &orphan->cnext;
<------><------><------>cnt += 1;
<------><------>}
<------><------>*last = NULL;
<------><------>ubifs_assert(c, cnt == c->tot_orphans - c->new_orphans);
<------><------>c->cmt_orphans = cnt;
<------><------>c->ohead_lnum = c->orph_first;
<------><------>c->ohead_offs = 0;
<------>} else {
<------><------>/*
<------><------> * We limit the number of orphans so that this should
<------><------> * never happen.
<------><------> */
<------><------>ubifs_err(c, "out of space in orphan area");
<------><------>err = -EINVAL;
<------>}
<------>spin_unlock(&c->orphan_lock);
<------>return err;
}
/**
* commit_orphans - commit orphans.
* @c: UBIFS file-system description object
*
* This function commits orphans to flash. On success, %0 is returned,
* otherwise a negative error code is returned.
*/
static int commit_orphans(struct ubifs_info *c)
{
<------>int avail, atomic = 0, err;
<------>ubifs_assert(c, c->cmt_orphans > 0);
<------>avail = avail_orphs(c);
<------>if (avail < c->cmt_orphans) {
<------><------>/* Not enough space to write new orphans, so consolidate */
<------><------>err = consolidate(c);
<------><------>if (err)
<------><------><------>return err;
<------><------>atomic = 1;
<------>}
<------>err = write_orph_nodes(c, atomic);
<------>return err;
}
/**
* erase_deleted - erase the orphans marked for deletion.
* @c: UBIFS file-system description object
*
* During commit, the orphans being committed cannot be deleted, so they are
* marked for deletion and deleted by this function. Also, the recovery
* adds killed orphans to the deletion list, and therefore they are deleted
* here too.
*/
static void erase_deleted(struct ubifs_info *c)
{
<------>struct ubifs_orphan *orphan, *dnext;
<------>spin_lock(&c->orphan_lock);
<------>dnext = c->orph_dnext;
<------>while (dnext) {
<------><------>orphan = dnext;
<------><------>dnext = orphan->dnext;
<------><------>ubifs_assert(c, !orphan->new);
<------><------>ubifs_assert(c, orphan->del);
<------><------>rb_erase(&orphan->rb, &c->orph_tree);
<------><------>list_del(&orphan->list);
<------><------>c->tot_orphans -= 1;
<------><------>dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
<------><------>kfree(orphan);
<------>}
<------>c->orph_dnext = NULL;
<------>spin_unlock(&c->orphan_lock);
}
/**
* ubifs_orphan_end_commit - end commit of orphans.
* @c: UBIFS file-system description object
*
* End commit of orphans.
*/
int ubifs_orphan_end_commit(struct ubifs_info *c)
{
<------>int err;
<------>if (c->cmt_orphans != 0) {
<------><------>err = commit_orphans(c);
<------><------>if (err)
<------><------><------>return err;
<------>}
<------>erase_deleted(c);
<------>err = dbg_check_orphans(c);
<------>return err;
}
/**
* ubifs_clear_orphans - erase all LEBs used for orphans.
* @c: UBIFS file-system description object
*
* If recovery is not required, then the orphans from the previous session
* are not needed. This function locates the LEBs used to record
* orphans, and un-maps them.
*/
int ubifs_clear_orphans(struct ubifs_info *c)
{
<------>int lnum, err;
<------>for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
<------><------>err = ubifs_leb_unmap(c, lnum);
<------><------>if (err)
<------><------><------>return err;
<------>}
<------>c->ohead_lnum = c->orph_first;
<------>c->ohead_offs = 0;
<------>return 0;
}
/**
* insert_dead_orphan - insert an orphan.
* @c: UBIFS file-system description object
* @inum: orphan inode number
*
* This function is a helper to the 'do_kill_orphans()' function. The orphan
* must be kept until the next commit, so it is added to the rb-tree and the
* deletion list.
*/
static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
{
<------>struct ubifs_orphan *orphan, *o;
<------>struct rb_node **p, *parent = NULL;
<------>orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
<------>if (!orphan)
<------><------>return -ENOMEM;
<------>orphan->inum = inum;
<------>p = &c->orph_tree.rb_node;
<------>while (*p) {
<------><------>parent = *p;
<------><------>o = rb_entry(parent, struct ubifs_orphan, rb);
<------><------>if (inum < o->inum)
<------><------><------>p = &(*p)->rb_left;
<------><------>else if (inum > o->inum)
<------><------><------>p = &(*p)->rb_right;
<------><------>else {
<------><------><------>/* Already added - no problem */
<------><------><------>kfree(orphan);
<------><------><------>return 0;
<------><------>}
<------>}
<------>c->tot_orphans += 1;
<------>rb_link_node(&orphan->rb, parent, p);
<------>rb_insert_color(&orphan->rb, &c->orph_tree);
<------>list_add_tail(&orphan->list, &c->orph_list);
<------>orphan->del = 1;
<------>orphan->dnext = c->orph_dnext;
<------>c->orph_dnext = orphan;
<------>dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
<------><------>c->new_orphans, c->tot_orphans);
<------>return 0;
}
/**
* do_kill_orphans - remove orphan inodes from the index.
* @c: UBIFS file-system description object
* @sleb: scanned LEB
* @last_cmt_no: cmt_no of last orphan node read is passed and returned here
* @outofdate: whether the LEB is out of date is returned here
* @last_flagged: whether the end orphan node is encountered
*
* This function is a helper to the 'kill_orphans()' function. It goes through
* every orphan node in a LEB and for every inode number recorded, removes
* all keys for that inode from the TNC.
*/
static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
<------><------><------> unsigned long long *last_cmt_no, int *outofdate,
<------><------><------> int *last_flagged)
{
<------>struct ubifs_scan_node *snod;
<------>struct ubifs_orph_node *orph;
<------>struct ubifs_ino_node *ino = NULL;
<------>unsigned long long cmt_no;
<------>ino_t inum;
<------>int i, n, err, first = 1;
<------>ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
<------>if (!ino)
<------><------>return -ENOMEM;
<------>list_for_each_entry(snod, &sleb->nodes, list) {
<------><------>if (snod->type != UBIFS_ORPH_NODE) {
<------><------><------>ubifs_err(c, "invalid node type %d in orphan area at %d:%d",
<------><------><------><------> snod->type, sleb->lnum, snod->offs);
<------><------><------>ubifs_dump_node(c, snod->node);
<------><------><------>err = -EINVAL;
<------><------><------>goto out_free;
<------><------>}
<------><------>orph = snod->node;
<------><------>/* Check commit number */
<------><------>cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
<------><------>/*
<------><------> * The commit number on the master node may be less, because
<------><------> * of a failed commit. If there are several failed commits in a
<------><------> * row, the commit number written on orphan nodes will continue
<------><------> * to increase (because the commit number is adjusted here) even
<------><------> * though the commit number on the master node stays the same
<------><------> * because the master node has not been re-written.
<------><------> */
<------><------>if (cmt_no > c->cmt_no)
<------><------><------>c->cmt_no = cmt_no;
<------><------>if (cmt_no < *last_cmt_no && *last_flagged) {
<------><------><------>/*
<------><------><------> * The last orphan node had a higher commit number and
<------><------><------> * was flagged as the last written for that commit
<------><------><------> * number. That makes this orphan node, out of date.
<------><------><------> */
<------><------><------>if (!first) {
<------><------><------><------>ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d",
<------><------><------><------><------> cmt_no, sleb->lnum, snod->offs);
<------><------><------><------>ubifs_dump_node(c, snod->node);
<------><------><------><------>err = -EINVAL;
<------><------><------><------>goto out_free;
<------><------><------>}
<------><------><------>dbg_rcvry("out of date LEB %d", sleb->lnum);
<------><------><------>*outofdate = 1;
<------><------><------>err = 0;
<------><------><------>goto out_free;
<------><------>}
<------><------>if (first)
<------><------><------>first = 0;
<------><------>n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
<------><------>for (i = 0; i < n; i++) {
<------><------><------>union ubifs_key key1, key2;
<------><------><------>inum = le64_to_cpu(orph->inos[i]);
<------><------><------>ino_key_init(c, &key1, inum);
<------><------><------>err = ubifs_tnc_lookup(c, &key1, ino);
<------><------><------>if (err && err != -ENOENT)
<------><------><------><------>goto out_free;
<------><------><------>/*
<------><------><------> * Check whether an inode can really get deleted.
<------><------><------> * linkat() with O_TMPFILE allows rebirth of an inode.
<------><------><------> */
<------><------><------>if (err == 0 && ino->nlink == 0) {
<------><------><------><------>dbg_rcvry("deleting orphaned inode %lu",
<------><------><------><------><------> (unsigned long)inum);
<------><------><------><------>lowest_ino_key(c, &key1, inum);
<------><------><------><------>highest_ino_key(c, &key2, inum);
<------><------><------><------>err = ubifs_tnc_remove_range(c, &key1, &key2);
<------><------><------><------>if (err)
<------><------><------><------><------>goto out_ro;
<------><------><------>}
<------><------><------>err = insert_dead_orphan(c, inum);
<------><------><------>if (err)
<------><------><------><------>goto out_free;
<------><------>}
<------><------>*last_cmt_no = cmt_no;
<------><------>if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
<------><------><------>dbg_rcvry("last orph node for commit %llu at %d:%d",
<------><------><------><------> cmt_no, sleb->lnum, snod->offs);
<------><------><------>*last_flagged = 1;
<------><------>} else
<------><------><------>*last_flagged = 0;
<------>}
<------>err = 0;
out_free:
<------>kfree(ino);
<------>return err;
out_ro:
<------>ubifs_ro_mode(c, err);
<------>kfree(ino);
<------>return err;
}
/**
* kill_orphans - remove all orphan inodes from the index.
* @c: UBIFS file-system description object
*
* If recovery is required, then orphan inodes recorded during the previous
* session (which ended with an unclean unmount) must be deleted from the index.
* This is done by updating the TNC, but since the index is not updated until
* the next commit, the LEBs where the orphan information is recorded are not
* erased until the next commit.
*/
static int kill_orphans(struct ubifs_info *c)
{
<------>unsigned long long last_cmt_no = 0;
<------>int lnum, err = 0, outofdate = 0, last_flagged = 0;
<------>c->ohead_lnum = c->orph_first;
<------>c->ohead_offs = 0;
<------>/* Check no-orphans flag and skip this if no orphans */
<------>if (c->no_orphs) {
<------><------>dbg_rcvry("no orphans");
<------><------>return 0;
<------>}
<------>/*
<------> * Orph nodes always start at c->orph_first and are written to each
<------> * successive LEB in turn. Generally unused LEBs will have been unmapped
<------> * but may contain out of date orphan nodes if the unmap didn't go
<------> * through. In addition, the last orphan node written for each commit is
<------> * marked (top bit of orph->cmt_no is set to 1). It is possible that
<------> * there are orphan nodes from the next commit (i.e. the commit did not
<------> * complete successfully). In that case, no orphans will have been lost
<------> * due to the way that orphans are written, and any orphans added will
<------> * be valid orphans anyway and so can be deleted.
<------> */
<------>for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
<------><------>struct ubifs_scan_leb *sleb;
<------><------>dbg_rcvry("LEB %d", lnum);
<------><------>sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
<------><------>if (IS_ERR(sleb)) {
<------><------><------>if (PTR_ERR(sleb) == -EUCLEAN)
<------><------><------><------>sleb = ubifs_recover_leb(c, lnum, 0,
<------><------><------><------><------><------><------> c->sbuf, -1);
<------><------><------>if (IS_ERR(sleb)) {
<------><------><------><------>err = PTR_ERR(sleb);
<------><------><------><------>break;
<------><------><------>}
<------><------>}
<------><------>err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
<------><------><------><------> &last_flagged);
<------><------>if (err || outofdate) {
<------><------><------>ubifs_scan_destroy(sleb);
<------><------><------>break;
<------><------>}
<------><------>if (sleb->endpt) {
<------><------><------>c->ohead_lnum = lnum;
<------><------><------>c->ohead_offs = sleb->endpt;
<------><------>}
<------><------>ubifs_scan_destroy(sleb);
<------>}
<------>return err;
}
/**
* ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
* @c: UBIFS file-system description object
* @unclean: indicates recovery from unclean unmount
* @read_only: indicates read only mount
*
* This function is called when mounting to erase orphans from the previous
* session. If UBIFS was not unmounted cleanly, then the inodes recorded as
* orphans are deleted.
*/
int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
{
<------>int err = 0;
<------>c->max_orphans = tot_avail_orphs(c);
<------>if (!read_only) {
<------><------>c->orph_buf = vmalloc(c->leb_size);
<------><------>if (!c->orph_buf)
<------><------><------>return -ENOMEM;
<------>}
<------>if (unclean)
<------><------>err = kill_orphans(c);
<------>else if (!read_only)
<------><------>err = ubifs_clear_orphans(c);
<------>return err;
}
/*
* Everything below is related to debugging.
*/
struct check_orphan {
<------>struct rb_node rb;
<------>ino_t inum;
};
struct check_info {
<------>unsigned long last_ino;
<------>unsigned long tot_inos;
<------>unsigned long missing;
<------>unsigned long long leaf_cnt;
<------>struct ubifs_ino_node *node;
<------>struct rb_root root;
};
static bool dbg_find_orphan(struct ubifs_info *c, ino_t inum)
{
<------>bool found = false;
<------>spin_lock(&c->orphan_lock);
<------>found = !!lookup_orphan(c, inum);
<------>spin_unlock(&c->orphan_lock);
<------>return found;
}
static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
{
<------>struct check_orphan *orphan, *o;
<------>struct rb_node **p, *parent = NULL;
<------>orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
<------>if (!orphan)
<------><------>return -ENOMEM;
<------>orphan->inum = inum;
<------>p = &root->rb_node;
<------>while (*p) {
<------><------>parent = *p;
<------><------>o = rb_entry(parent, struct check_orphan, rb);
<------><------>if (inum < o->inum)
<------><------><------>p = &(*p)->rb_left;
<------><------>else if (inum > o->inum)
<------><------><------>p = &(*p)->rb_right;
<------><------>else {
<------><------><------>kfree(orphan);
<------><------><------>return 0;
<------><------>}
<------>}
<------>rb_link_node(&orphan->rb, parent, p);
<------>rb_insert_color(&orphan->rb, root);
<------>return 0;
}
static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
{
<------>struct check_orphan *o;
<------>struct rb_node *p;
<------>p = root->rb_node;
<------>while (p) {
<------><------>o = rb_entry(p, struct check_orphan, rb);
<------><------>if (inum < o->inum)
<------><------><------>p = p->rb_left;
<------><------>else if (inum > o->inum)
<------><------><------>p = p->rb_right;
<------><------>else
<------><------><------>return 1;
<------>}
<------>return 0;
}
static void dbg_free_check_tree(struct rb_root *root)
{
<------>struct check_orphan *o, *n;
<------>rbtree_postorder_for_each_entry_safe(o, n, root, rb)
<------><------>kfree(o);
}
static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
<------><------><------> void *priv)
{
<------>struct check_info *ci = priv;
<------>ino_t inum;
<------>int err;
<------>inum = key_inum(c, &zbr->key);
<------>if (inum != ci->last_ino) {
<------><------>/* Lowest node type is the inode node, so it comes first */
<------><------>if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
<------><------><------>ubifs_err(c, "found orphan node ino %lu, type %d",
<------><------><------><------> (unsigned long)inum, key_type(c, &zbr->key));
<------><------>ci->last_ino = inum;
<------><------>ci->tot_inos += 1;
<------><------>err = ubifs_tnc_read_node(c, zbr, ci->node);
<------><------>if (err) {
<------><------><------>ubifs_err(c, "node read failed, error %d", err);
<------><------><------>return err;
<------><------>}
<------><------>if (ci->node->nlink == 0)
<------><------><------>/* Must be recorded as an orphan */
<------><------><------>if (!dbg_find_check_orphan(&ci->root, inum) &&
<------><------><------> !dbg_find_orphan(c, inum)) {
<------><------><------><------>ubifs_err(c, "missing orphan, ino %lu",
<------><------><------><------><------> (unsigned long)inum);
<------><------><------><------>ci->missing += 1;
<------><------><------>}
<------>}
<------>ci->leaf_cnt += 1;
<------>return 0;
}
static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
{
<------>struct ubifs_scan_node *snod;
<------>struct ubifs_orph_node *orph;
<------>ino_t inum;
<------>int i, n, err;
<------>list_for_each_entry(snod, &sleb->nodes, list) {
<------><------>cond_resched();
<------><------>if (snod->type != UBIFS_ORPH_NODE)
<------><------><------>continue;
<------><------>orph = snod->node;
<------><------>n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
<------><------>for (i = 0; i < n; i++) {
<------><------><------>inum = le64_to_cpu(orph->inos[i]);
<------><------><------>err = dbg_ins_check_orphan(&ci->root, inum);
<------><------><------>if (err)
<------><------><------><------>return err;
<------><------>}
<------>}
<------>return 0;
}
static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
{
<------>int lnum, err = 0;
<------>void *buf;
<------>/* Check no-orphans flag and skip this if no orphans */
<------>if (c->no_orphs)
<------><------>return 0;
<------>buf = __vmalloc(c->leb_size, GFP_NOFS);
<------>if (!buf) {
<------><------>ubifs_err(c, "cannot allocate memory to check orphans");
<------><------>return 0;
<------>}
<------>for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
<------><------>struct ubifs_scan_leb *sleb;
<------><------>sleb = ubifs_scan(c, lnum, 0, buf, 0);
<------><------>if (IS_ERR(sleb)) {
<------><------><------>err = PTR_ERR(sleb);
<------><------><------>break;
<------><------>}
<------><------>err = dbg_read_orphans(ci, sleb);
<------><------>ubifs_scan_destroy(sleb);
<------><------>if (err)
<------><------><------>break;
<------>}
<------>vfree(buf);
<------>return err;
}
static int dbg_check_orphans(struct ubifs_info *c)
{
<------>struct check_info ci;
<------>int err;
<------>if (!dbg_is_chk_orph(c))
<------><------>return 0;
<------>ci.last_ino = 0;
<------>ci.tot_inos = 0;
<------>ci.missing = 0;
<------>ci.leaf_cnt = 0;
<------>ci.root = RB_ROOT;
<------>ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
<------>if (!ci.node) {
<------><------>ubifs_err(c, "out of memory");
<------><------>return -ENOMEM;
<------>}
<------>err = dbg_scan_orphans(c, &ci);
<------>if (err)
<------><------>goto out;
<------>err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
<------>if (err) {
<------><------>ubifs_err(c, "cannot scan TNC, error %d", err);
<------><------>goto out;
<------>}
<------>if (ci.missing) {
<------><------>ubifs_err(c, "%lu missing orphan(s)", ci.missing);
<------><------>err = -EINVAL;
<------><------>goto out;
<------>}
<------>dbg_cmt("last inode number is %lu", ci.last_ino);
<------>dbg_cmt("total number of inodes is %lu", ci.tot_inos);
<------>dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
out:
<------>dbg_free_check_tree(&ci.root);
<------>kfree(ci.node);
<------>return err;
}