Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /* -*- mode: c; c-basic-offset: 8; -*-
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * vim: noexpandtab sw=8 ts=8 sts=0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * blockcheck.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * Checksum and ECC codes for the OCFS2 userspace library.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  * Copyright (C) 2006, 2008 Oracle.  All rights reserved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/crc32.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/buffer_head.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/bitops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/debugfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/fs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <asm/byteorder.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <cluster/masklog.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #include "ocfs2.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #include "blockcheck.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  * We use the following conventions:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)  * d = # data bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)  * p = # parity bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)  * c = # total code bits (d + p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39)  * Calculate the bit offset in the hamming code buffer based on the bit's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)  * offset in the data buffer.  Since the hamming code reserves all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)  * power-of-two bits for parity, the data bit number and the code bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)  * number are offset by all the parity bits beforehand.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44)  * Recall that bit numbers in hamming code are 1-based.  This function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45)  * takes the 0-based data bit from the caller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47)  * An example.  Take bit 1 of the data buffer.  1 is a power of two (2^0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48)  * so it's a parity bit.  2 is a power of two (2^1), so it's a parity bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49)  * 3 is not a power of two.  So bit 1 of the data buffer ends up as bit 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)  * in the code buffer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52)  * The caller can pass in *p if it wants to keep track of the most recent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53)  * number of parity bits added.  This allows the function to start the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54)  * calculation at the last place.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) static unsigned int calc_code_bit(unsigned int i, unsigned int *p_cache)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	unsigned int b, p = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 	 * Data bits are 0-based, but we're talking code bits, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	 * are 1-based.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	b = i + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	/* Use the cache if it is there */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 	if (p_cache)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 		p = *p_cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69)         b += p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	 * For every power of two below our bit number, bump our bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	 * We compare with (b + 1) because we have to compare with what b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	 * would be _if_ it were bumped up by the parity bit.  Capice?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	 * p is set above.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	for (; (1 << p) < (b + 1); p++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 		b++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	if (p_cache)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 		*p_cache = p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	return b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89)  * This is the low level encoder function.  It can be called across
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90)  * multiple hunks just like the crc32 code.  'd' is the number of bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91)  * _in_this_hunk_.  nr is the bit offset of this hunk.  So, if you had
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92)  * two 512B buffers, you would do it like so:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94)  * parity = ocfs2_hamming_encode(0, buf1, 512 * 8, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95)  * parity = ocfs2_hamming_encode(parity, buf2, 512 * 8, 512 * 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97)  * If you just have one buffer, use ocfs2_hamming_encode_block().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) u32 ocfs2_hamming_encode(u32 parity, void *data, unsigned int d, unsigned int nr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	unsigned int i, b, p = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	BUG_ON(!d);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	 * b is the hamming code bit number.  Hamming code specifies a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	 * 1-based array, but C uses 0-based.  So 'i' is for C, and 'b' is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	 * for the algorithm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	 * The i++ in the for loop is so that the start offset passed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	 * to ocfs2_find_next_bit_set() is one greater than the previously
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	 * found bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	for (i = 0; (i = ocfs2_find_next_bit(data, d, i)) < d; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 		 * i is the offset in this hunk, nr + i is the total bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 		 * offset.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 		b = calc_code_bit(nr + i, &p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 		 * Data bits in the resultant code are checked by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 		 * parity bits that are part of the bit number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 		 * representation.  Huh?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 		 * <wikipedia href="https://en.wikipedia.org/wiki/Hamming_code">
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 		 * In other words, the parity bit at position 2^k
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 		 * checks bits in positions having bit k set in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 		 * their binary representation.  Conversely, for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 		 * instance, bit 13, i.e. 1101(2), is checked by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		 * bits 1000(2) = 8, 0100(2)=4 and 0001(2) = 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 		 * </wikipedia>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 		 * Note that 'k' is the _code_ bit number.  'b' in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 		 * our loop.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 		parity ^= b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	/* While the data buffer was treated as little endian, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	 * return value is in host endian. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	return parity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) u32 ocfs2_hamming_encode_block(void *data, unsigned int blocksize)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	return ocfs2_hamming_encode(0, data, blocksize * 8, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)  * Like ocfs2_hamming_encode(), this can handle hunks.  nr is the bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)  * offset of the current hunk.  If bit to be fixed is not part of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154)  * current hunk, this does nothing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)  * If you only have one hunk, use ocfs2_hamming_fix_block().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) void ocfs2_hamming_fix(void *data, unsigned int d, unsigned int nr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 		       unsigned int fix)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	unsigned int i, b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	BUG_ON(!d);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	 * If the bit to fix has an hweight of 1, it's a parity bit.  One
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	 * busted parity bit is its own error.  Nothing to do here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	if (hweight32(fix) == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	 * nr + d is the bit right past the data hunk we're looking at.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	 * If fix after that, nothing to do
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	if (fix >= calc_code_bit(nr + d, NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	 * nr is the offset in the data hunk we're starting at.  Let's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	 * start b at the offset in the code buffer.  See hamming_encode()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	 * for a more detailed description of 'b'.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	b = calc_code_bit(nr, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	/* If the fix is before this hunk, nothing to do */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	if (fix < b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	for (i = 0; i < d; i++, b++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 		/* Skip past parity bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 		while (hweight32(b) == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 			b++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 		 * i is the offset in this data hunk.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 		 * nr + i is the offset in the total data buffer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 		 * b is the offset in the total code buffer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 		 * Thus, when b == fix, bit i in the current hunk needs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 		 * fixing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 		if (b == fix)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 		{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 			if (ocfs2_test_bit(i, data))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 				ocfs2_clear_bit(i, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 				ocfs2_set_bit(i, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) void ocfs2_hamming_fix_block(void *data, unsigned int blocksize,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 			     unsigned int fix)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	ocfs2_hamming_fix(data, blocksize * 8, 0, fix);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222)  * Debugfs handling.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) #ifdef CONFIG_DEBUG_FS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) static int blockcheck_u64_get(void *data, u64 *val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	*val = *(u64 *)data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) DEFINE_SIMPLE_ATTRIBUTE(blockcheck_fops, blockcheck_u64_get, NULL, "%llu\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) static void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	if (stats) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 		debugfs_remove_recursive(stats->b_debug_dir);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 		stats->b_debug_dir = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) static void ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 					   struct dentry *parent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	struct dentry *dir;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	dir = debugfs_create_dir("blockcheck", parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 	stats->b_debug_dir = dir;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	debugfs_create_file("blocks_checked", S_IFREG | S_IRUSR, dir,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 			    &stats->b_check_count, &blockcheck_fops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	debugfs_create_file("checksums_failed", S_IFREG | S_IRUSR, dir,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 			    &stats->b_failure_count, &blockcheck_fops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	debugfs_create_file("ecc_recoveries", S_IFREG | S_IRUSR, dir,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 			    &stats->b_recover_count, &blockcheck_fops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) static inline void ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 						  struct dentry *parent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) static inline void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) #endif  /* CONFIG_DEBUG_FS */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) /* Always-called wrappers for starting and stopping the debugfs files */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) void ocfs2_blockcheck_stats_debugfs_install(struct ocfs2_blockcheck_stats *stats,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 					    struct dentry *parent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	ocfs2_blockcheck_debug_install(stats, parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) void ocfs2_blockcheck_stats_debugfs_remove(struct ocfs2_blockcheck_stats *stats)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	ocfs2_blockcheck_debug_remove(stats);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) static void ocfs2_blockcheck_inc_check(struct ocfs2_blockcheck_stats *stats)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	u64 new_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	if (!stats)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	spin_lock(&stats->b_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	stats->b_check_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	new_count = stats->b_check_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	spin_unlock(&stats->b_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	if (!new_count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 		mlog(ML_NOTICE, "Block check count has wrapped\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) static void ocfs2_blockcheck_inc_failure(struct ocfs2_blockcheck_stats *stats)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	u64 new_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	if (!stats)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	spin_lock(&stats->b_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	stats->b_failure_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	new_count = stats->b_failure_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	spin_unlock(&stats->b_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	if (!new_count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 		mlog(ML_NOTICE, "Checksum failure count has wrapped\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) static void ocfs2_blockcheck_inc_recover(struct ocfs2_blockcheck_stats *stats)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	u64 new_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	if (!stats)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	spin_lock(&stats->b_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	stats->b_recover_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	new_count = stats->b_recover_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	spin_unlock(&stats->b_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	if (!new_count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 		mlog(ML_NOTICE, "ECC recovery count has wrapped\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334)  * These are the low-level APIs for using the ocfs2_block_check structure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338)  * This function generates check information for a block.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339)  * data is the block to be checked.  bc is a pointer to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340)  * ocfs2_block_check structure describing the crc32 and the ecc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342)  * bc should be a pointer inside data, as the function will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343)  * take care of zeroing it before calculating the check information.  If
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344)  * bc does not point inside data, the caller must make sure any inline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345)  * ocfs2_block_check structures are zeroed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347)  * The data buffer must be in on-disk endian (little endian for ocfs2).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348)  * bc will be filled with little-endian values and will be ready to go to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349)  * disk.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) void ocfs2_block_check_compute(void *data, size_t blocksize,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 			       struct ocfs2_block_check *bc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	u32 crc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	u32 ecc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	memset(bc, 0, sizeof(struct ocfs2_block_check));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 	crc = crc32_le(~0, data, blocksize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	ecc = ocfs2_hamming_encode_block(data, blocksize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	 * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 	 * larger than 16 bits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	BUG_ON(ecc > USHRT_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	bc->bc_crc32e = cpu_to_le32(crc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	bc->bc_ecc = cpu_to_le16((u16)ecc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373)  * This function validates existing check information.  Like _compute,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374)  * the function will take care of zeroing bc before calculating check codes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375)  * If bc is not a pointer inside data, the caller must have zeroed any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376)  * inline ocfs2_block_check structures.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378)  * Again, the data passed in should be the on-disk endian.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) int ocfs2_block_check_validate(void *data, size_t blocksize,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 			       struct ocfs2_block_check *bc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 			       struct ocfs2_blockcheck_stats *stats)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	int rc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 	u32 bc_crc32e;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	u16 bc_ecc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	u32 crc, ecc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	ocfs2_blockcheck_inc_check(stats);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	bc_crc32e = le32_to_cpu(bc->bc_crc32e);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	bc_ecc = le16_to_cpu(bc->bc_ecc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	memset(bc, 0, sizeof(struct ocfs2_block_check));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	/* Fast path - if the crc32 validates, we're good to go */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 	crc = crc32_le(~0, data, blocksize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 	if (crc == bc_crc32e)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	ocfs2_blockcheck_inc_failure(stats);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 	mlog(ML_ERROR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	     "CRC32 failed: stored: 0x%x, computed 0x%x. Applying ECC.\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	     (unsigned int)bc_crc32e, (unsigned int)crc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 	/* Ok, try ECC fixups */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	ecc = ocfs2_hamming_encode_block(data, blocksize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 	ocfs2_hamming_fix_block(data, blocksize, ecc ^ bc_ecc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 	/* And check the crc32 again */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 	crc = crc32_le(~0, data, blocksize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 	if (crc == bc_crc32e) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 		ocfs2_blockcheck_inc_recover(stats);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 	mlog(ML_ERROR, "Fixed CRC32 failed: stored: 0x%x, computed 0x%x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	     (unsigned int)bc_crc32e, (unsigned int)crc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 	rc = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 	bc->bc_crc32e = cpu_to_le32(bc_crc32e);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 	bc->bc_ecc = cpu_to_le16(bc_ecc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430)  * This function generates check information for a list of buffer_heads.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431)  * bhs is the blocks to be checked.  bc is a pointer to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432)  * ocfs2_block_check structure describing the crc32 and the ecc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434)  * bc should be a pointer inside data, as the function will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435)  * take care of zeroing it before calculating the check information.  If
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436)  * bc does not point inside data, the caller must make sure any inline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437)  * ocfs2_block_check structures are zeroed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439)  * The data buffer must be in on-disk endian (little endian for ocfs2).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440)  * bc will be filled with little-endian values and will be ready to go to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441)  * disk.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) void ocfs2_block_check_compute_bhs(struct buffer_head **bhs, int nr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 				   struct ocfs2_block_check *bc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 	u32 crc, ecc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 	BUG_ON(nr < 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 	if (!nr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	memset(bc, 0, sizeof(struct ocfs2_block_check));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 	for (i = 0, crc = ~0, ecc = 0; i < nr; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 		crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 		 * The number of bits in a buffer is obviously b_size*8.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 		 * The offset of this buffer is b_size*i, so the bit offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 		 * of this buffer is b_size*8*i.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 		ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 						bhs[i]->b_size * 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 						bhs[i]->b_size * 8 * i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 	 * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 	 * larger than 16 bits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 	BUG_ON(ecc > USHRT_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 	bc->bc_crc32e = cpu_to_le32(crc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 	bc->bc_ecc = cpu_to_le16((u16)ecc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479)  * This function validates existing check information on a list of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480)  * buffer_heads.  Like _compute_bhs, the function will take care of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481)  * zeroing bc before calculating check codes.  If bc is not a pointer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482)  * inside data, the caller must have zeroed any inline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483)  * ocfs2_block_check structures.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485)  * Again, the data passed in should be the on-disk endian.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) int ocfs2_block_check_validate_bhs(struct buffer_head **bhs, int nr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 				   struct ocfs2_block_check *bc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 				   struct ocfs2_blockcheck_stats *stats)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 	int i, rc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 	u32 bc_crc32e;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 	u16 bc_ecc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 	u32 crc, ecc, fix;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 	BUG_ON(nr < 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 	if (!nr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 	ocfs2_blockcheck_inc_check(stats);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 	bc_crc32e = le32_to_cpu(bc->bc_crc32e);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 	bc_ecc = le16_to_cpu(bc->bc_ecc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 	memset(bc, 0, sizeof(struct ocfs2_block_check));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 	/* Fast path - if the crc32 validates, we're good to go */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 	for (i = 0, crc = ~0; i < nr; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 		crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 	if (crc == bc_crc32e)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 	ocfs2_blockcheck_inc_failure(stats);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 	mlog(ML_ERROR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 	     "CRC32 failed: stored: %u, computed %u.  Applying ECC.\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 	     (unsigned int)bc_crc32e, (unsigned int)crc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 	/* Ok, try ECC fixups */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 	for (i = 0, ecc = 0; i < nr; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 		 * The number of bits in a buffer is obviously b_size*8.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 		 * The offset of this buffer is b_size*i, so the bit offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 		 * of this buffer is b_size*8*i.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 		ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 						bhs[i]->b_size * 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 						bhs[i]->b_size * 8 * i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 	fix = ecc ^ bc_ecc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 	for (i = 0; i < nr; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 		 * Try the fix against each buffer.  It will only affect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 		 * one of them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 		ocfs2_hamming_fix(bhs[i]->b_data, bhs[i]->b_size * 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 				  bhs[i]->b_size * 8 * i, fix);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 	/* And check the crc32 again */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 	for (i = 0, crc = ~0; i < nr; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 		crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 	if (crc == bc_crc32e) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 		ocfs2_blockcheck_inc_recover(stats);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 	mlog(ML_ERROR, "Fixed CRC32 failed: stored: %u, computed %u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 	     (unsigned int)bc_crc32e, (unsigned int)crc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 	rc = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 	bc->bc_crc32e = cpu_to_le32(bc_crc32e);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 	bc->bc_ecc = cpu_to_le16(bc_ecc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561)  * These are the main API.  They check the superblock flag before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562)  * calling the underlying operations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564)  * They expect the buffer(s) to be in disk format.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) void ocfs2_compute_meta_ecc(struct super_block *sb, void *data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 			    struct ocfs2_block_check *bc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 	if (ocfs2_meta_ecc(OCFS2_SB(sb)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 		ocfs2_block_check_compute(data, sb->s_blocksize, bc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) int ocfs2_validate_meta_ecc(struct super_block *sb, void *data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 			    struct ocfs2_block_check *bc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 	int rc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 	struct ocfs2_super *osb = OCFS2_SB(sb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 	if (ocfs2_meta_ecc(osb))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 		rc = ocfs2_block_check_validate(data, sb->s_blocksize, bc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 						&osb->osb_ecc_stats);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) void ocfs2_compute_meta_ecc_bhs(struct super_block *sb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 				struct buffer_head **bhs, int nr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 				struct ocfs2_block_check *bc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 	if (ocfs2_meta_ecc(OCFS2_SB(sb)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 		ocfs2_block_check_compute_bhs(bhs, nr, bc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) int ocfs2_validate_meta_ecc_bhs(struct super_block *sb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 				struct buffer_head **bhs, int nr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 				struct ocfs2_block_check *bc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 	int rc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 	struct ocfs2_super *osb = OCFS2_SB(sb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 	if (ocfs2_meta_ecc(osb))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 		rc = ocfs2_block_check_validate_bhs(bhs, nr, bc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 						    &osb->osb_ecc_stats);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607)