^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/spinlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/completion.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/buffer_head.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/fs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/gfs2_ondisk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/prefetch.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/blkdev.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/rbtree.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/random.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include "gfs2.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include "incore.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include "glock.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include "glops.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #include "lops.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #include "meta_io.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #include "quota.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #include "rgrp.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #include "super.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #include "trans.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #include "util.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #include "log.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #include "inode.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #include "trace_gfs2.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #include "dir.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #define BFITNOENT ((u32)~0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #define NO_BLOCK ((u64)~0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) * These routines are used by the resource group routines (rgrp.c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) * to keep track of block allocation. Each block is represented by two
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) * 0 = Free
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) * 1 = Used (not metadata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) * 2 = Unlinked (still in use) inode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) * 3 = Used (metadata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) struct gfs2_extent {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) struct gfs2_rbm rbm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) u32 len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) static const char valid_change[16] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) /* current */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) /* n */ 0, 1, 1, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) /* e */ 1, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) /* w */ 0, 0, 0, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) 1, 0, 0, 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) const struct gfs2_inode *ip, bool nowrap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) * gfs2_setbit - Set a bit in the bitmaps
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) * @rbm: The position of the bit to set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) * @do_clone: Also set the clone bitmap, if it exists
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) * @new_state: the new state of the block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) unsigned char new_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) unsigned char *byte1, *byte2, *end, cur_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) struct gfs2_bitmap *bi = rbm_bi(rbm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) unsigned int buflen = bi->bi_bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) end = bi->bi_bh->b_data + bi->bi_offset + buflen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) BUG_ON(byte1 >= end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) if (unlikely(!valid_change[new_state * 4 + cur_state])) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) rbm->offset, cur_state, new_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) (unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) (unsigned long long)bi->bi_bh->b_blocknr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) bi->bi_offset, bi->bi_bytes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) (unsigned long long)gfs2_rbm_to_block(rbm));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) dump_stack();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) gfs2_consist_rgrpd(rbm->rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) *byte1 ^= (cur_state ^ new_state) << bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) if (do_clone && bi->bi_clone) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) *byte2 ^= (cur_state ^ new_state) << bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) * gfs2_testbit - test a bit in the bitmaps
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) * @rbm: The bit to test
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) * @use_clone: If true, test the clone bitmap, not the official bitmap.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) * not the "real" bitmaps, to avoid allocating recently freed blocks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) * Returns: The two bit block state of the requested bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) struct gfs2_bitmap *bi = rbm_bi(rbm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) const u8 *buffer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) const u8 *byte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) unsigned int bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) if (use_clone && bi->bi_clone)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) buffer = bi->bi_clone;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) buffer = bi->bi_bh->b_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) buffer += bi->bi_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) byte = buffer + (rbm->offset / GFS2_NBBY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) return (*byte >> bit) & GFS2_BIT_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) * gfs2_bit_search
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) * @ptr: Pointer to bitmap data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) * @state: The state we are searching for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) * We xor the bitmap data with a patter which is the bitwise opposite
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) * of what we are looking for, this gives rise to a pattern of ones
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) * wherever there is a match. Since we have two bits per entry, we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) * take this pattern, shift it down by one place and then and it with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) * the original. All the even bit positions (0,2,4, etc) then represent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) * successful matches, so we mask with 0x55555..... to remove the unwanted
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) * odd bit positions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) * This allows searching of a whole u64 at once (32 blocks) with a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) * single test (on 64 bit arches).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) u64 tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) static const u64 search[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) [0] = 0xffffffffffffffffULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) [1] = 0xaaaaaaaaaaaaaaaaULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) [2] = 0x5555555555555555ULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) [3] = 0x0000000000000000ULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) tmp = le64_to_cpu(*ptr) ^ search[state];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) tmp &= (tmp >> 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) tmp &= mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) return tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) * rs_cmp - multi-block reservation range compare
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) * @blk: absolute file system block number of the new reservation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) * @len: number of blocks in the new reservation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) * @rs: existing reservation to compare against
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) * returns: 1 if the block range is beyond the reach of the reservation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) * -1 if the block range is before the start of the reservation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) * 0 if the block range overlaps with the reservation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) if (blk >= startblk + rs->rs_free)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) if (blk + len - 1 < startblk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) * a block in a given allocation state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) * @buf: the buffer that holds the bitmaps
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) * @len: the length (in bytes) of the buffer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) * @goal: start search at this block's bit-pair (within @buffer)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) * @state: GFS2_BLKST_XXX the state of the block we're looking for.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) * Scope of @goal and returned block number is only within this bitmap buffer,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) * not entire rgrp or filesystem. @buffer will be offset from the actual
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) * beginning of a bitmap block buffer, skipping any header structures, but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) * headers are always a multiple of 64 bits long so that the buffer is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) * always aligned to a 64 bit boundary.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) * The size of the buffer is in bytes, but is it assumed that it is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) * always ok to read a complete multiple of 64 bits at the end
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) * of the block in case the end is no aligned to a natural boundary.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) * Return: the block number (bitmap buffer scope) that was found
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) u32 goal, u8 state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) u64 tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) u64 mask = 0x5555555555555555ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) u32 bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) /* Mask off bits we don't care about at the start of the search */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) mask <<= spoint;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) tmp = gfs2_bit_search(ptr, mask, state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) ptr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) while(tmp == 0 && ptr < end) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) ptr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) /* Mask off any bits which are more than len bytes from the start */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) if (ptr == end && (len & (sizeof(u64) - 1)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) /* Didn't find anything, so return */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) if (tmp == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) return BFITNOENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) ptr--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) bit = __ffs64(tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) bit /= 2; /* two bits per entry in the bitmap */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) * @rbm: The rbm with rgd already set correctly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) * @block: The block number (filesystem relative)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) * This sets the bi and offset members of an rbm based on a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) * resource group and a filesystem relative block number. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) * resource group must be set in the rbm on entry, the bi and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) * offset members will be set by this function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) * Returns: 0 on success, or an error code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) if (!rgrp_contains_block(rbm->rgd, block))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) return -E2BIG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) rbm->bii = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) rbm->offset = block - rbm->rgd->rd_data0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) /* Check if the block is within the first block */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) if (rbm->offset < rbm_bi(rbm)->bi_blocks)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) rbm->offset += (sizeof(struct gfs2_rgrp) -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) * gfs2_rbm_incr - increment an rbm structure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) * @rbm: The rbm with rgd already set correctly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) * This function takes an existing rbm structure and increments it to the next
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) * viable block offset.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) * Returns: If incrementing the offset would cause the rbm to go past the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) * end of the rgrp, true is returned, otherwise false.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) rbm->offset++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) rbm->offset = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) rbm->bii++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) * @rbm: Position to search (value/result)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) * @n_unaligned: Number of unaligned blocks to check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) * @len: Decremented for each block found (terminate on zero)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) * Returns: true if a non-free block is encountered
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) u32 n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) u8 res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) for (n = 0; n < n_unaligned; n++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) res = gfs2_testbit(rbm, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) if (res != GFS2_BLKST_FREE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) (*len)--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) if (*len == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) if (gfs2_rbm_incr(rbm))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) * gfs2_free_extlen - Return extent length of free blocks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) * @rrbm: Starting position
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) * @len: Max length to check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) * Starting at the block specified by the rbm, see how many free blocks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) * there are, not reading more than len blocks ahead. This can be done
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) * using memchr_inv when the blocks are byte aligned, but has to be done
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) * on a block by block basis in case of unaligned blocks. Also this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) * function can cope with bitmap boundaries (although it must stop on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) * a resource group boundary)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) * Returns: Number of free blocks in the extent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) struct gfs2_rbm rbm = *rrbm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) u32 n_unaligned = rbm.offset & 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) u32 size = len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) u32 bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) u32 chunk_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) u8 *ptr, *start, *end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) u64 block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) struct gfs2_bitmap *bi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) if (n_unaligned &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) n_unaligned = len & 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) /* Start is now byte aligned */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) while (len > 3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) bi = rbm_bi(&rbm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) start = bi->bi_bh->b_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) if (bi->bi_clone)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) start = bi->bi_clone;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) start += bi->bi_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) end = start + bi->bi_bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) BUG_ON(rbm.offset & 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) start += (rbm.offset / GFS2_NBBY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) bytes = min_t(u32, len / GFS2_NBBY, (end - start));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) ptr = memchr_inv(start, 0, bytes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) chunk_size *= GFS2_NBBY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) BUG_ON(len < chunk_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) len -= chunk_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) block = gfs2_rbm_to_block(&rbm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) n_unaligned = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) if (ptr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) n_unaligned = 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) n_unaligned = len & 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) /* Deal with any bits left over at the end */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) if (n_unaligned)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) return size - len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) * gfs2_bitcount - count the number of bits in a certain state
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) * @rgd: the resource group descriptor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) * @buffer: the buffer that holds the bitmaps
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) * @buflen: the length (in bytes) of the buffer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) * @state: the state of the block we're looking for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) * Returns: The number of bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) unsigned int buflen, u8 state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) const u8 *byte = buffer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) const u8 *end = buffer + buflen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) const u8 state1 = state << 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) const u8 state2 = state << 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) const u8 state3 = state << 6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) u32 count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) for (; byte < end; byte++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) if (((*byte) & 0x03) == state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) if (((*byte) & 0x0C) == state1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) if (((*byte) & 0x30) == state2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) if (((*byte) & 0xC0) == state3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) * gfs2_rgrp_verify - Verify that a resource group is consistent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) * @rgd: the rgrp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) struct gfs2_sbd *sdp = rgd->rd_sbd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) struct gfs2_bitmap *bi = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) u32 length = rgd->rd_length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) u32 count[4], tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) int buf, x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) memset(count, 0, 4 * sizeof(u32));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) /* Count # blocks in each of 4 possible allocation states */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) for (buf = 0; buf < length; buf++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) bi = rgd->rd_bits + buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) for (x = 0; x < 4; x++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) count[x] += gfs2_bitcount(rgd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) bi->bi_bh->b_data +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) bi->bi_offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) bi->bi_bytes, x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) if (count[0] != rgd->rd_free) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) gfs2_lm(sdp, "free data mismatch: %u != %u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) count[0], rgd->rd_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) gfs2_consist_rgrpd(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) if (count[1] != tmp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) gfs2_lm(sdp, "used data mismatch: %u != %u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) count[1], tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) gfs2_consist_rgrpd(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) if (count[2] + count[3] != rgd->rd_dinodes) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) gfs2_lm(sdp, "used metadata mismatch: %u != %u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) count[2] + count[3], rgd->rd_dinodes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) gfs2_consist_rgrpd(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) * @sdp: The GFS2 superblock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) * @blk: The data block number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) * @exact: True if this needs to be an exact match
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) * The @exact argument should be set to true by most callers. The exception
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) * is when we need to match blocks which are not represented by the rgrp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) * there for alignment purposes. Another way of looking at it is that @exact
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) * matches only valid data/metadata blocks, but with @exact false, it will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) * match any block within the extent of the rgrp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) * Returns: The resource group, or NULL if not found
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) struct rb_node *n, *next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) struct gfs2_rgrpd *cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) spin_lock(&sdp->sd_rindex_spin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) n = sdp->sd_rindex_tree.rb_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) while (n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) next = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) if (blk < cur->rd_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) next = n->rb_left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) else if (blk >= cur->rd_data0 + cur->rd_data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) next = n->rb_right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) if (next == NULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) spin_unlock(&sdp->sd_rindex_spin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) if (exact) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) if (blk < cur->rd_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) if (blk >= cur->rd_data0 + cur->rd_data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) return cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) n = next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) spin_unlock(&sdp->sd_rindex_spin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) * @sdp: The GFS2 superblock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) * Returns: The first rgrp in the filesystem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) const struct rb_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) struct gfs2_rgrpd *rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) spin_lock(&sdp->sd_rindex_spin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) n = rb_first(&sdp->sd_rindex_tree);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) spin_unlock(&sdp->sd_rindex_spin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) return rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) * gfs2_rgrpd_get_next - get the next RG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) * @rgd: the resource group descriptor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) * Returns: The next rgrp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) struct gfs2_sbd *sdp = rgd->rd_sbd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) const struct rb_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) spin_lock(&sdp->sd_rindex_spin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) n = rb_next(&rgd->rd_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) if (n == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) n = rb_first(&sdp->sd_rindex_tree);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) if (unlikely(&rgd->rd_node == n)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) spin_unlock(&sdp->sd_rindex_spin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) spin_unlock(&sdp->sd_rindex_spin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) return rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) void check_and_update_goal(struct gfs2_inode *ip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) ip->i_goal = ip->i_no_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) void gfs2_free_clones(struct gfs2_rgrpd *rgd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) int x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) for (x = 0; x < rgd->rd_length; x++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) struct gfs2_bitmap *bi = rgd->rd_bits + x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) kfree(bi->bi_clone);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) bi->bi_clone = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) const char *fs_id_buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) gfs2_print_dbg(seq, "%s B: n:%llu s:%llu b:%u f:%u\n", fs_id_buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) (unsigned long long)ip->i_no_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) rs->rs_rbm.offset, rs->rs_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) * __rs_deltree - remove a multi-block reservation from the rgd tree
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) * @rs: The reservation to remove
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) static void __rs_deltree(struct gfs2_blkreserv *rs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) struct gfs2_rgrpd *rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) if (!gfs2_rs_active(rs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) rgd = rs->rs_rbm.rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) rb_erase(&rs->rs_node, &rgd->rd_rstree);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) RB_CLEAR_NODE(&rs->rs_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) if (rs->rs_free) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) rs->rs_free - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) struct gfs2_bitmap *start, *last;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) /* return reserved blocks to the rgrp */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) /* The rgrp extent failure point is likely not to increase;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) it will only do so if the freed blocks are somehow
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) contiguous with a span of free blocks that follows. Still,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) it will force the number to be recalculated later. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) rgd->rd_extfail_pt += rs->rs_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) rs->rs_free = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) if (gfs2_rbm_from_block(&last_rbm, last_block))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) start = rbm_bi(&rs->rs_rbm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) last = rbm_bi(&last_rbm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) do
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) clear_bit(GBF_FULL, &start->bi_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) while (start++ != last);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) * @rs: The reservation to remove
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) struct gfs2_rgrpd *rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) rgd = rs->rs_rbm.rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) if (rgd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) spin_lock(&rgd->rd_rsspin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) __rs_deltree(rs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) BUG_ON(rs->rs_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) spin_unlock(&rgd->rd_rsspin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) * gfs2_rs_delete - delete a multi-block reservation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) * @ip: The inode for this reservation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) * @wcount: The inode's write count, or NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) down_write(&ip->i_rw_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) if ((wcount == NULL) || (atomic_read(wcount) <= 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) gfs2_rs_deltree(&ip->i_res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) up_write(&ip->i_rw_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) * return_all_reservations - return all reserved blocks back to the rgrp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) * @rgd: the rgrp that needs its space back
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) * We previously reserved a bunch of blocks for allocation. Now we need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) * give them back. This leave the reservation structures in tact, but removes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) * all of their corresponding "no-fly zones".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) static void return_all_reservations(struct gfs2_rgrpd *rgd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) struct rb_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) struct gfs2_blkreserv *rs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) spin_lock(&rgd->rd_rsspin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) while ((n = rb_first(&rgd->rd_rstree))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) __rs_deltree(rs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) spin_unlock(&rgd->rd_rsspin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) struct rb_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) struct gfs2_rgrpd *rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) struct gfs2_glock *gl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) while ((n = rb_first(&sdp->sd_rindex_tree))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) gl = rgd->rd_gl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) rb_erase(n, &sdp->sd_rindex_tree);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) if (gl) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) if (gl->gl_state != LM_ST_UNLOCKED) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) gfs2_glock_cb(gl, LM_ST_UNLOCKED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) flush_delayed_work(&gl->gl_work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) gfs2_rgrp_brelse(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) glock_clear_object(gl, rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) gfs2_glock_put(gl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) gfs2_free_clones(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) return_all_reservations(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) kfree(rgd->rd_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) rgd->rd_bits = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) kmem_cache_free(gfs2_rgrpd_cachep, rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) * gfs2_compute_bitstructs - Compute the bitmap sizes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) * @rgd: The resource group descriptor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) * Calculates bitmap descriptors, one for each block that contains bitmap data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) * Returns: errno
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) static int compute_bitstructs(struct gfs2_rgrpd *rgd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) struct gfs2_sbd *sdp = rgd->rd_sbd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) struct gfs2_bitmap *bi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) u32 bytes_left, bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) int x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) if (!length)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) if (!rgd->rd_bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) bytes_left = rgd->rd_bitbytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) for (x = 0; x < length; x++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) bi = rgd->rd_bits + x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) bi->bi_flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) /* small rgrp; bitmap stored completely in header block */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) if (length == 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) bytes = bytes_left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) bi->bi_offset = sizeof(struct gfs2_rgrp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) bi->bi_start = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) bi->bi_bytes = bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) bi->bi_blocks = bytes * GFS2_NBBY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) /* header block */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) } else if (x == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) bi->bi_offset = sizeof(struct gfs2_rgrp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) bi->bi_start = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) bi->bi_bytes = bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) bi->bi_blocks = bytes * GFS2_NBBY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) /* last block */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) } else if (x + 1 == length) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) bytes = bytes_left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) bi->bi_offset = sizeof(struct gfs2_meta_header);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) bi->bi_start = rgd->rd_bitbytes - bytes_left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) bi->bi_bytes = bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) bi->bi_blocks = bytes * GFS2_NBBY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) /* other blocks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) bytes = sdp->sd_sb.sb_bsize -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) sizeof(struct gfs2_meta_header);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) bi->bi_offset = sizeof(struct gfs2_meta_header);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) bi->bi_start = rgd->rd_bitbytes - bytes_left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) bi->bi_bytes = bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) bi->bi_blocks = bytes * GFS2_NBBY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) bytes_left -= bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) if (bytes_left) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) gfs2_consist_rgrpd(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) bi = rgd->rd_bits + (length - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) gfs2_lm(sdp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) "ri_addr = %llu\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) "ri_length = %u\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) "ri_data0 = %llu\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) "ri_data = %u\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) "ri_bitbytes = %u\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) "start=%u len=%u offset=%u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) (unsigned long long)rgd->rd_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) rgd->rd_length,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) (unsigned long long)rgd->rd_data0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) rgd->rd_data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) rgd->rd_bitbytes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) bi->bi_start, bi->bi_bytes, bi->bi_offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) gfs2_consist_rgrpd(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) * gfs2_ri_total - Total up the file system space, according to the rindex.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) * @sdp: the filesystem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) u64 gfs2_ri_total(struct gfs2_sbd *sdp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) u64 total_data = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) struct inode *inode = sdp->sd_rindex;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) struct gfs2_inode *ip = GFS2_I(inode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) char buf[sizeof(struct gfs2_rindex)];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) int error, rgrps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) for (rgrps = 0;; rgrps++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) loff_t pos = rgrps * sizeof(struct gfs2_rindex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) error = gfs2_internal_read(ip, buf, &pos,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) sizeof(struct gfs2_rindex));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) if (error != sizeof(struct gfs2_rindex))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) return total_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) static int rgd_insert(struct gfs2_rgrpd *rgd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) struct gfs2_sbd *sdp = rgd->rd_sbd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) /* Figure out where to put new node */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) while (*newn) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) rd_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) parent = *newn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) if (rgd->rd_addr < cur->rd_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) newn = &((*newn)->rb_left);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) else if (rgd->rd_addr > cur->rd_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) newn = &((*newn)->rb_right);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) return -EEXIST;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) rb_link_node(&rgd->rd_node, parent, newn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) sdp->sd_rgrps++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) * read_rindex_entry - Pull in a new resource index entry from the disk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) * @ip: Pointer to the rindex inode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) * Returns: 0 on success, > 0 on EOF, error code otherwise
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) static int read_rindex_entry(struct gfs2_inode *ip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) struct gfs2_rindex buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) int error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) struct gfs2_rgrpd *rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) if (pos >= i_size_read(&ip->i_inode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) error = gfs2_internal_read(ip, (char *)&buf, &pos,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) sizeof(struct gfs2_rindex));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) if (error != sizeof(struct gfs2_rindex))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) return (error == 0) ? 1 : error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896) error = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) if (!rgd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900) rgd->rd_sbd = sdp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) rgd->rd_addr = be64_to_cpu(buf.ri_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902) rgd->rd_length = be32_to_cpu(buf.ri_length);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) rgd->rd_data = be32_to_cpu(buf.ri_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) spin_lock_init(&rgd->rd_rsspin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) error = compute_bitstructs(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912) error = gfs2_glock_get(sdp, rgd->rd_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) if (rgd->rd_data > sdp->sd_max_rg_data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) sdp->sd_max_rg_data = rgd->rd_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921) spin_lock(&sdp->sd_rindex_spin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922) error = rgd_insert(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) spin_unlock(&sdp->sd_rindex_spin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) if (!error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925) glock_set_object(rgd->rd_gl, rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929) error = 0; /* someone else read in the rgrp; free it and ignore it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930) gfs2_glock_put(rgd->rd_gl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) kfree(rgd->rd_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934) rgd->rd_bits = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935) kmem_cache_free(gfs2_rgrpd_cachep, rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941) * @sdp: the GFS2 superblock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) * The purpose of this function is to select a subset of the resource groups
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944) * and mark them as PREFERRED. We do it in such a way that each node prefers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) * to use a unique set of rgrps to minimize glock contention.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947) static void set_rgrp_preferences(struct gfs2_sbd *sdp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949) struct gfs2_rgrpd *rgd, *first;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952) /* Skip an initial number of rgrps, based on this node's journal ID.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953) That should start each node out on its own set. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954) rgd = gfs2_rgrpd_get_first(sdp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955) for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 956) rgd = gfs2_rgrpd_get_next(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 957) first = rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 958)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 959) do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 960) rgd->rd_flags |= GFS2_RDF_PREFERRED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 961) for (i = 0; i < sdp->sd_journals; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 962) rgd = gfs2_rgrpd_get_next(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 963) if (!rgd || rgd == first)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 964) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 965) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 966) } while (rgd && rgd != first);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 967) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 968)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 969) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 970) * gfs2_ri_update - Pull in a new resource index from the disk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 971) * @ip: pointer to the rindex inode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 972) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 973) * Returns: 0 on successful update, error code otherwise
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 974) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 975)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 976) static int gfs2_ri_update(struct gfs2_inode *ip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 977) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 978) struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 979) int error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 980)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 981) do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 982) error = read_rindex_entry(ip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 983) } while (error == 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 984)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 985) if (error < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 986) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 987)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 988) if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 989) fs_err(sdp, "no resource groups found in the file system.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 990) return -ENOENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 991) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 992) set_rgrp_preferences(sdp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 993)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 994) sdp->sd_rindex_uptodate = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 995) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 996) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 997)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 998) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 999) * gfs2_rindex_update - Update the rindex if required
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) * @sdp: The GFS2 superblock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) * We grab a lock on the rindex inode to make sure that it doesn't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) * change whilst we are performing an operation. We keep this lock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) * for quite long periods of time compared to other locks. This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) * doesn't matter, since it is shared and it is very, very rarely
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) * accessed in the exclusive mode (i.e. only when expanding the filesystem).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) * This makes sure that we're using the latest copy of the resource index
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) * special file, which might have been updated if someone expanded the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) * filesystem (via gfs2_grow utility), which adds new resource groups.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) * Returns: 0 on succeess, error code otherwise
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) int gfs2_rindex_update(struct gfs2_sbd *sdp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) struct gfs2_glock *gl = ip->i_gl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) struct gfs2_holder ri_gh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) int error = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) int unlock_required = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) /* Read new copy from disk if we don't have the latest */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) if (!sdp->sd_rindex_uptodate) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) if (!gfs2_glock_is_locked_by_me(gl)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) unlock_required = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) if (!sdp->sd_rindex_uptodate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) error = gfs2_ri_update(ip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) if (unlock_required)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) gfs2_glock_dq_uninit(&ri_gh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) const struct gfs2_rgrp *str = buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) u32 rg_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) rg_flags = be32_to_cpu(str->rg_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) rg_flags &= ~GFS2_RDF_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) rgd->rd_flags &= GFS2_RDF_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) rgd->rd_flags |= rg_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) rgd->rd_free = be32_to_cpu(str->rg_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) /* rd_data0, rd_data and rd_bitbytes already set from rindex */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) const struct gfs2_rgrp *str = buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) rgl->rl_flags = str->rg_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) rgl->rl_free = str->rg_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) rgl->rl_dinodes = str->rg_dinodes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) rgl->rl_igeneration = str->rg_igeneration;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) rgl->__pad = 0UL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) struct gfs2_rgrp *str = buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) u32 crc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) str->rg_free = cpu_to_be32(rgd->rd_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) if (next == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) str->rg_skip = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) else if (next->rd_addr > rgd->rd_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) str->rg_data0 = cpu_to_be64(rgd->rd_data0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) str->rg_data = cpu_to_be32(rgd->rd_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) str->rg_crc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) str->rg_crc = cpu_to_be32(crc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) struct gfs2_sbd *sdp = rgd->rd_sbd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) int valid = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) if (rgl->rl_flags != str->rg_flags) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) (unsigned long long)rgd->rd_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) valid = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) if (rgl->rl_free != str->rg_free) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) (unsigned long long)rgd->rd_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) valid = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) if (rgl->rl_dinodes != str->rg_dinodes) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) (unsigned long long)rgd->rd_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) be32_to_cpu(rgl->rl_dinodes),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) be32_to_cpu(str->rg_dinodes));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) valid = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) if (rgl->rl_igeneration != str->rg_igeneration) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) (unsigned long long)rgd->rd_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) (unsigned long long)be64_to_cpu(rgl->rl_igeneration),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) (unsigned long long)be64_to_cpu(str->rg_igeneration));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) valid = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) return valid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) static u32 count_unlinked(struct gfs2_rgrpd *rgd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) struct gfs2_bitmap *bi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) const u32 length = rgd->rd_length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) const u8 *buffer = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) u32 i, goal, count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) goal = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) buffer = bi->bi_bh->b_data + bi->bi_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) WARN_ON(!buffer_uptodate(bi->bi_bh));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) while (goal < bi->bi_blocks) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) GFS2_BLKST_UNLINKED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) if (goal == BFITNOENT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) goal++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) * @rgd: the struct gfs2_rgrpd describing the RG to read in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) * Read in all of a Resource Group's header and bitmap blocks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) * Returns: errno
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) struct gfs2_sbd *sdp = rgd->rd_sbd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) struct gfs2_glock *gl = rgd->rd_gl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) unsigned int length = rgd->rd_length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) struct gfs2_bitmap *bi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) unsigned int x, y;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) int error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) if (rgd->rd_bits[0].bi_bh != NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) for (x = 0; x < length; x++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) bi = rgd->rd_bits + x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) for (y = length; y--;) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) bi = rgd->rd_bits + y;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) error = gfs2_meta_wait(sdp, bi->bi_bh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) GFS2_METATYPE_RG)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) error = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) for (x = 0; x < length; x++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) rgd->rd_free_clone = rgd->rd_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) /* max out the rgrp allocation failure point */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) rgd->rd_extfail_pt = rgd->rd_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) rgd->rd_bits[0].bi_bh->b_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) else if (sdp->sd_args.ar_rgrplvb) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) if (!gfs2_rgrp_lvb_valid(rgd)){
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) gfs2_consist_rgrpd(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) error = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) if (rgd->rd_rgl->rl_unlinked == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) rgd->rd_flags &= ~GFS2_RDF_CHECK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) while (x--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) bi = rgd->rd_bits + x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) brelse(bi->bi_bh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) bi->bi_bh = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) gfs2_assert_warn(sdp, !bi->bi_clone);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) u32 rl_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) if (rgd->rd_flags & GFS2_RDF_UPTODATE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) return gfs2_rgrp_bh_get(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) rl_flags &= ~GFS2_RDF_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) rgd->rd_flags &= GFS2_RDF_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) if (rgd->rd_rgl->rl_unlinked == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) rgd->rd_flags &= ~GFS2_RDF_CHECK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) rgd->rd_free_clone = rgd->rd_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) struct gfs2_sbd *sdp = rgd->rd_sbd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) return gfs2_rgrp_bh_get(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) * @rgd: The resource group
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) int x, length = rgd->rd_length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) for (x = 0; x < length; x++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) struct gfs2_bitmap *bi = rgd->rd_bits + x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) if (bi->bi_bh) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) brelse(bi->bi_bh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) bi->bi_bh = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) struct buffer_head *bh,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) struct super_block *sb = sdp->sd_vfs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) u64 blk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) sector_t start = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) sector_t nr_blks = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) int rv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) unsigned int x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) u32 trimmed = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) u8 diff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) for (x = 0; x < bi->bi_bytes; x++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) clone += bi->bi_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) clone += x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) if (bh) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) const u8 *orig = bh->b_data + bi->bi_offset + x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) diff = ~(*clone | (*clone >> 1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) diff &= 0x55;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) if (diff == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) while(diff) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) if (diff & 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) if (nr_blks == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) goto start_new_extent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) if ((start + nr_blks) != blk) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) if (nr_blks >= minlen) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) rv = sb_issue_discard(sb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) start, nr_blks,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) GFP_NOFS, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) if (rv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) trimmed += nr_blks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) nr_blks = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) start_new_extent:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) start = blk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) nr_blks++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) diff >>= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) blk++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) if (nr_blks >= minlen) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) if (rv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) trimmed += nr_blks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) if (ptrimmed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) *ptrimmed = trimmed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) if (sdp->sd_args.ar_discard)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) sdp->sd_args.ar_discard = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) * @filp: Any file on the filesystem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) * @argp: Pointer to the arguments (also used to pass result)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) * Returns: 0 on success, otherwise error code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) int gfs2_fitrim(struct file *filp, void __user *argp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) struct inode *inode = file_inode(filp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) struct gfs2_sbd *sdp = GFS2_SB(inode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) struct buffer_head *bh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) struct gfs2_rgrpd *rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) struct gfs2_rgrpd *rgd_end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) struct gfs2_holder gh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) struct fstrim_range r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) u64 amt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) u64 trimmed = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) u64 start, end, minlen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) unsigned int x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) if (!capable(CAP_SYS_ADMIN))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) return -EROFS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) if (!blk_queue_discard(q))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) return -EOPNOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) if (copy_from_user(&r, argp, sizeof(r)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) ret = gfs2_rindex_update(sdp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) start = r.start >> bs_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) end = start + (r.len >> bs_shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) minlen = max_t(u64, r.minlen, sdp->sd_sb.sb_bsize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) minlen = max_t(u64, minlen,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) q->limits.discard_granularity) >> bs_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) if (end <= start || minlen > sdp->sd_max_rg_data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) rgd = gfs2_blk2rgrpd(sdp, start, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) && (start > rgd_end->rd_data0 + rgd_end->rd_data))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) return -EINVAL; /* start is beyond the end of the fs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) while (1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) /* Trim each bitmap in the rgrp */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) for (x = 0; x < rgd->rd_length; x++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) struct gfs2_bitmap *bi = rgd->rd_bits + x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) ret = gfs2_rgrp_send_discards(sdp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) rgd->rd_data0, NULL, bi, minlen,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) &amt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) gfs2_glock_dq_uninit(&gh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) trimmed += amt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) /* Mark rgrp as having been trimmed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) if (ret == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) bh = rgd->rd_bits[0].bi_bh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) rgd->rd_flags |= GFS2_RGF_TRIMMED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) gfs2_trans_add_meta(rgd->rd_gl, bh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) gfs2_rgrp_out(rgd, bh->b_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) gfs2_trans_end(sdp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) gfs2_glock_dq_uninit(&gh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) if (rgd == rgd_end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) rgd = gfs2_rgrpd_get_next(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) r.len = trimmed << bs_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) if (copy_to_user(argp, &r, sizeof(r)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) * @ip: the inode structure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) static void rs_insert(struct gfs2_inode *ip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) struct rb_node **newn, *parent = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) struct gfs2_blkreserv *rs = &ip->i_res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) BUG_ON(gfs2_rs_active(rs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) spin_lock(&rgd->rd_rsspin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) newn = &rgd->rd_rstree.rb_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) while (*newn) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) struct gfs2_blkreserv *cur =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) rb_entry(*newn, struct gfs2_blkreserv, rs_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) parent = *newn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) rc = rs_cmp(fsblock, rs->rs_free, cur);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) if (rc > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) newn = &((*newn)->rb_right);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) else if (rc < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) newn = &((*newn)->rb_left);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) spin_unlock(&rgd->rd_rsspin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) WARN_ON(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) rb_link_node(&rs->rs_node, parent, newn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) /* Do our rgrp accounting for the reservation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) rgd->rd_reserved += rs->rs_free; /* blocks reserved */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) spin_unlock(&rgd->rd_rsspin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) trace_gfs2_rs(rs, TRACE_RS_INSERT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) * rgd_free - return the number of free blocks we can allocate.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) * @rgd: the resource group
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) * This function returns the number of free blocks for an rgrp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) * That's the clone-free blocks (blocks that are free, not including those
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) * still being used for unlinked files that haven't been deleted.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) * It also subtracts any blocks reserved by someone else, but does not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) * include free blocks that are still part of our current reservation,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) * because obviously we can (and will) allocate them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) u32 tot_reserved, tot_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) tot_reserved = rgd->rd_reserved - rs->rs_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) if (rgd->rd_free_clone < tot_reserved)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) tot_reserved = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) tot_free = rgd->rd_free_clone - tot_reserved;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) return tot_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) * rg_mblk_search - find a group of multiple free blocks to form a reservation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) * @rgd: the resource group descriptor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) * @ip: pointer to the inode for which we're reserving blocks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) * @ap: the allocation parameters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) const struct gfs2_alloc_parms *ap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) struct gfs2_rbm rbm = { .rgd = rgd, };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) u64 goal;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) struct gfs2_blkreserv *rs = &ip->i_res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) u32 extlen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) u32 free_blocks = rgd_free(rgd, rs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) struct inode *inode = &ip->i_inode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) if (S_ISDIR(inode->i_mode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) extlen = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) /* Find bitmap block that contains bits for goal block */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) if (rgrp_contains_block(rgd, ip->i_goal))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) goal = ip->i_goal;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) goal = rgd->rd_last_alloc + rgd->rd_data0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) if (ret == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) rs->rs_rbm = rbm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) rs->rs_free = extlen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) rs_insert(ip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) if (goal == rgd->rd_last_alloc + rgd->rd_data0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) rgd->rd_last_alloc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) * gfs2_next_unreserved_block - Return next block that is not reserved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) * @rgd: The resource group
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) * @block: The starting block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) * @length: The required length
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) * @ip: Ignore any reservations for this inode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) * If the block does not appear in any reservation, then return the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) * block number unchanged. If it does appear in the reservation, then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) * keep looking through the tree of reservations in order to find the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) * first block number which is not reserved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) u32 length,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) const struct gfs2_inode *ip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) struct gfs2_blkreserv *rs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) struct rb_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) spin_lock(&rgd->rd_rsspin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) n = rgd->rd_rstree.rb_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) while (n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) rc = rs_cmp(block, length, rs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) if (rc < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) n = n->rb_left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) else if (rc > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) n = n->rb_right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) if (n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) n = n->rb_right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) if (n == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) spin_unlock(&rgd->rd_rsspin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) return block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) * gfs2_reservation_check_and_update - Check for reservations during block alloc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) * @rbm: The current position in the resource group
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) * @ip: The inode for which we are searching for blocks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) * @minext: The minimum extent length
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) * @maxext: A pointer to the maximum extent structure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) * This checks the current position in the rgrp to see whether there is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) * a reservation covering this block. If not then this function is a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) * no-op. If there is, then the position is moved to the end of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) * contiguous reservation(s) so that we are pointing at the first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) * non-reserved block.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) const struct gfs2_inode *ip,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) u32 minext,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) struct gfs2_extent *maxext)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) u64 block = gfs2_rbm_to_block(rbm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) u32 extlen = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) u64 nblock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) * If we have a minimum extent length, then skip over any extent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) * which is less than the min extent length in size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) if (minext) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) extlen = gfs2_free_extlen(rbm, minext);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) if (extlen <= maxext->len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) * Check the extent which has been found against the reservations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) * and skip if parts of it are already reserved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) if (nblock == block) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) if (!minext || extlen >= minext)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) if (extlen > maxext->len) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) maxext->len = extlen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) maxext->rbm = *rbm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) nblock = block + extlen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671) ret = gfs2_rbm_from_block(rbm, nblock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) * gfs2_rbm_find - Look for blocks of a particular state
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) * @rbm: Value/result starting position and final position
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) * @state: The state which we want to find
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) * @minext: Pointer to the requested extent length (NULL for a single block)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) * This is updated to be the actual reservation size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) * @ip: If set, check for reservations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) * around until we've reached the starting point.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) * Side effects:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) * - If looking for free blocks, we set GBF_FULL on each bitmap which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) * has no free blocks in it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) * has come up short on a free block search.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) * Returns: 0 on success, -ENOSPC if there is no block of the requested state
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) const struct gfs2_inode *ip, bool nowrap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) struct buffer_head *bh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) int last_bii;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) u32 offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) u8 *buffer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) bool wrapped = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) struct gfs2_bitmap *bi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) * Determine the last bitmap to search. If we're not starting at the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) * beginning of a bitmap, we need to search that bitmap twice to scan
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) * the entire resource group.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) last_bii = rbm->bii - (rbm->offset == 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716) while(1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) bi = rbm_bi(rbm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) if ((ip == NULL || !gfs2_rs_active(&ip->i_res)) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719) test_bit(GBF_FULL, &bi->bi_flags) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720) (state == GFS2_BLKST_FREE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) goto next_bitmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) bh = bi->bi_bh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) buffer = bh->b_data + bi->bi_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) WARN_ON(!buffer_uptodate(bh));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) buffer = bi->bi_clone + bi->bi_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) if (offset == BFITNOENT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) if (state == GFS2_BLKST_FREE && rbm->offset == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) set_bit(GBF_FULL, &bi->bi_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) goto next_bitmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) rbm->offset = offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) if (ip == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) ret = gfs2_reservation_check_and_update(rbm, ip,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) minext ? *minext : 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) &maxext);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) if (ret == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) if (ret > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) goto next_iter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) if (ret == -E2BIG) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) rbm->bii = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) rbm->offset = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) goto res_covered_end_of_rgrp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) next_bitmap: /* Find next bitmap in the rgrp */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) rbm->offset = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) rbm->bii++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) if (rbm->bii == rbm->rgd->rd_length)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) rbm->bii = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) res_covered_end_of_rgrp:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) if (rbm->bii == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) if (wrapped)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) wrapped = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) if (nowrap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) next_iter:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) /* Have we scanned the entire resource group? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) if (wrapped && rbm->bii > last_bii)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) if (minext == NULL || state != GFS2_BLKST_FREE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) return -ENOSPC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774) /* If the extent was too small, and it's smaller than the smallest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) to have failed before, remember for future reference that it's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) useless to search this rgrp again for this amount or more. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) *minext < rbm->rgd->rd_extfail_pt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779) rbm->rgd->rd_extfail_pt = *minext;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) /* If the maximum extent we found is big enough to fulfill the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) minimum requirements, use it anyway. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) if (maxext.len) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784) *rbm = maxext.rbm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) *minext = maxext.len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) return -ENOSPC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) * @rgd: The rgrp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) * @last_unlinked: block address of the last dinode we unlinked
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) * @skip: block address we should explicitly not unlink
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798) * Returns: 0 if no error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799) * The inode, if one has been found, in inode.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802) static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) u64 block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805) struct gfs2_sbd *sdp = rgd->rd_sbd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) struct gfs2_glock *gl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) struct gfs2_inode *ip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) int error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809) int found = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810) struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) while (1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815) if (error == -ENOSPC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817) if (WARN_ON_ONCE(error))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) block = gfs2_rbm_to_block(&rbm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) if (gfs2_rbm_from_block(&rbm, block + 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825) if (block == skip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827) *last_unlinked = block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833) /* If the inode is already in cache, we can ignore it here
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834) * because the existing inode disposal code will deal with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) * it when all refs have gone away. Accessing gl_object like
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836) * this is not safe in general. Here it is ok because we do
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837) * not dereference the pointer, and we only need an approx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838) * answer to whether it is NULL or not.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840) ip = gl->gl_object;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842) if (ip || !gfs2_queue_delete_work(gl, 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) gfs2_glock_put(gl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) found++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) /* Limit reclaim to sensible number of tasks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) if (found > NR_CPUS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) rgd->rd_flags &= ~GFS2_RDF_CHECK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857) * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) * @rgd: The rgrp in question
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) * @loops: An indication of how picky we can be (0=very, 1=less so)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) * This function uses the recently added glock statistics in order to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862) * figure out whether a parciular resource group is suffering from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) * contention from multiple nodes. This is done purely on the basis
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) * of timings, since this is the only data we have to work with and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) * our aim here is to reject a resource group which is highly contended
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) * but (very important) not to do this too often in order to ensure that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867) * we do not land up introducing fragmentation by changing resource
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) * groups when not actually required.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870) * The calculation is fairly simple, we want to know whether the SRTTB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871) * (i.e. smoothed round trip time for blocking operations) to acquire
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872) * the lock for this rgrp's glock is significantly greater than the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873) * time taken for resource groups on average. We introduce a margin in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) * the form of the variable @var which is computed as the sum of the two
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875) * respective variences, and multiplied by a factor depending on @loops
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) * and whether we have a lot of data to base the decision on. This is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877) * then tested against the square difference of the means in order to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) * decide whether the result is statistically significant or not.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880) * Returns: A boolean verdict on the congestion status
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883) static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885) const struct gfs2_glock *gl = rgd->rd_gl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886) const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887) struct gfs2_lkstats *st;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888) u64 r_dcount, l_dcount;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889) u64 l_srttb, a_srttb = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890) s64 srttb_diff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) u64 sqr_diff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892) u64 var;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893) int cpu, nonzero = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) preempt_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896) for_each_present_cpu(cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898) if (st->stats[GFS2_LKS_SRTTB]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899) a_srttb += st->stats[GFS2_LKS_SRTTB];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900) nonzero++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903) st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904) if (nonzero)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905) do_div(a_srttb, nonzero);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906) r_dcount = st->stats[GFS2_LKS_DCOUNT];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907) var = st->stats[GFS2_LKS_SRTTVARB] +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908) gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909) preempt_enable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911) l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912) l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914) if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917) srttb_diff = a_srttb - l_srttb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918) sqr_diff = srttb_diff * srttb_diff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920) var *= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921) if (l_dcount < 8 || r_dcount < 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) var *= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923) if (loops == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) var *= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926) return ((srttb_diff < 0) && (sqr_diff > var));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) * gfs2_rgrp_used_recently
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931) * @rs: The block reservation with the rgrp to test
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932) * @msecs: The time limit in milliseconds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934) * Returns: True if the rgrp glock has been used within the time limit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936) static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) u64 msecs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939) u64 tdiff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942) rs->rs_rbm.rgd->rd_gl->gl_dstamp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) return tdiff > (msecs * 1000 * 1000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) u32 skip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) get_random_bytes(&skip, sizeof(skip));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) return skip % sdp->sd_rgrps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956) static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958) struct gfs2_rgrpd *rgd = *pos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959) struct gfs2_sbd *sdp = rgd->rd_sbd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) rgd = gfs2_rgrpd_get_next(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962) if (rgd == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) rgd = gfs2_rgrpd_get_first(sdp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964) *pos = rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) if (rgd != begin) /* If we didn't wrap */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) * fast_to_acquire - determine if a resource group will be fast to acquire
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) * If this is one of our preferred rgrps, it should be quicker to acquire,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974) * because we tried to set ourselves up as dlm lock master.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) struct gfs2_glock *gl = rgd->rd_gl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980) if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982) !test_bit(GLF_DEMOTE, &gl->gl_flags))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984) if (rgd->rd_flags & GFS2_RDF_PREFERRED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) * gfs2_inplace_reserve - Reserve space in the filesystem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) * @ip: the inode to reserve space for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992) * @ap: the allocation parameters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) * We try our best to find an rgrp that has at least ap->target blocks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) * available. After a couple of passes (loops == 2), the prospects of finding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) * such an rgrp diminish. At this stage, we return the first rgrp that has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) * at least ap->min_target blocks available. Either way, we set ap->allowed to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) * the number of blocks available in the chosen rgrp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) * Returns: 0 on success,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001) * -ENOMEM if a suitable rgrp can't be found
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) * errno otherwise
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005) int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007) struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) struct gfs2_rgrpd *begin = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009) struct gfs2_blkreserv *rs = &ip->i_res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) int error = 0, rg_locked, flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011) u64 last_unlinked = NO_BLOCK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012) int loops = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013) u32 free_blocks, skip = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015) if (sdp->sd_args.ar_rgrplvb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016) flags |= GL_SKIP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017) if (gfs2_assert_warn(sdp, ap->target))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019) if (gfs2_rs_active(rs)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020) begin = rs->rs_rbm.rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) } else if (rs->rs_rbm.rgd &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023) begin = rs->rs_rbm.rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) check_and_update_goal(ip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026) rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028) if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) skip = gfs2_orlov_skip(ip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) if (rs->rs_rbm.rgd == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031) return -EBADSLT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033) while (loops < 3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) rg_locked = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036) if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) rg_locked = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) if (skip && skip--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) goto next_rgrp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040) if (!gfs2_rs_active(rs)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) if (loops == 0 &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042) !fast_to_acquire(rs->rs_rbm.rgd))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) goto next_rgrp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) if ((loops < 2) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045) gfs2_rgrp_used_recently(rs, 1000) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) goto next_rgrp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049) error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050) LM_ST_EXCLUSIVE, flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051) &ip->i_rgd_gh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052) if (unlikely(error))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054) if (!gfs2_rs_active(rs) && (loops < 2) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055) gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) goto skip_rgrp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057) if (sdp->sd_args.ar_rgrplvb) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058) error = update_rgrp_lvb(rs->rs_rbm.rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059) if (unlikely(error)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060) gfs2_glock_dq_uninit(&ip->i_rgd_gh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066) /* Skip unusable resource groups */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067) if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068) GFS2_RDF_ERROR)) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069) (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) goto skip_rgrp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) if (sdp->sd_args.ar_rgrplvb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073) gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) /* Get a reservation if we don't already have one */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076) if (!gfs2_rs_active(rs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077) rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079) /* Skip rgrps when we can't get a reservation on first pass */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080) if (!gfs2_rs_active(rs) && (loops < 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) goto check_rgrp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083) /* If rgrp has enough free space, use it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084) free_blocks = rgd_free(rs->rs_rbm.rgd, rs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085) if (free_blocks >= ap->target ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086) (loops == 2 && ap->min_target &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087) free_blocks >= ap->min_target)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088) ap->allowed = free_blocks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091) check_rgrp:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092) /* Check for unlinked inodes which can be reclaimed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094) try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) ip->i_no_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096) skip_rgrp:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) /* Drop reservation, if we couldn't use reserved rgrp */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098) if (gfs2_rs_active(rs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) gfs2_rs_deltree(rs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101) /* Unlock rgrp if required */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) if (!rg_locked)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) gfs2_glock_dq_uninit(&ip->i_rgd_gh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104) next_rgrp:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) /* Find the next rgrp, and continue looking */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106) if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108) if (skip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111) /* If we've scanned all the rgrps, but found no free blocks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112) * then this checks for some less likely conditions before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113) * trying again.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115) loops++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116) /* Check that fs hasn't grown if writing to rindex */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117) if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118) error = gfs2_ri_update(ip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122) /* Flushing the log may release space */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123) if (loops == 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124) gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125) GFS2_LFC_INPLACE_RESERVE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128) return -ENOSPC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132) * gfs2_inplace_release - release an inplace reservation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133) * @ip: the inode the reservation was taken out on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135) * Release a reservation made by gfs2_inplace_reserve().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138) void gfs2_inplace_release(struct gfs2_inode *ip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140) if (gfs2_holder_initialized(&ip->i_rgd_gh))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141) gfs2_glock_dq_uninit(&ip->i_rgd_gh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2144) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2145) * gfs2_alloc_extent - allocate an extent from a given bitmap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2146) * @rbm: the resource group information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2147) * @dinode: TRUE if the first block we allocate is for a dinode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2148) * @n: The extent length (value/result)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2149) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2150) * Add the bitmap buffer to the transaction.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2151) * Set the found bits to @new_state to change block's allocation state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2152) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2153) static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2154) unsigned int *n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2155) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2156) struct gfs2_rbm pos = { .rgd = rbm->rgd, };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2157) const unsigned int elen = *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2158) u64 block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2159) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2160)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2161) *n = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2162) block = gfs2_rbm_to_block(rbm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2163) gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2164) gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2165) block++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2166) while (*n < elen) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2167) ret = gfs2_rbm_from_block(&pos, block);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2168) if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2169) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2170) gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2171) gfs2_setbit(&pos, true, GFS2_BLKST_USED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2172) (*n)++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2173) block++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2174) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2175) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2176)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2177) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2178) * rgblk_free - Change alloc state of given block(s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2179) * @sdp: the filesystem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2180) * @rgd: the resource group the blocks are in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2181) * @bstart: the start of a run of blocks to free
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2182) * @blen: the length of the block run (all must lie within ONE RG!)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2183) * @new_state: GFS2_BLKST_XXX the after-allocation block state
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2184) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2186) static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2187) u64 bstart, u32 blen, unsigned char new_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2188) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2189) struct gfs2_rbm rbm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2190) struct gfs2_bitmap *bi, *bi_prev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2191)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2192) rbm.rgd = rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2193) if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2194) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2195) while (blen--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2196) bi = rbm_bi(&rbm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2197) if (bi != bi_prev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2198) if (!bi->bi_clone) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2199) bi->bi_clone = kmalloc(bi->bi_bh->b_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2200) GFP_NOFS | __GFP_NOFAIL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2201) memcpy(bi->bi_clone + bi->bi_offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2202) bi->bi_bh->b_data + bi->bi_offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2203) bi->bi_bytes);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2204) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2205) gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2206) bi_prev = bi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2207) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2208) gfs2_setbit(&rbm, false, new_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2209) gfs2_rbm_incr(&rbm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2210) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2211) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2212)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2213) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2214) * gfs2_rgrp_dump - print out an rgrp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2215) * @seq: The iterator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2216) * @rgd: The rgrp in question
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2217) * @fs_id_buf: pointer to file system id (if requested)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2218) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2219) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2220)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2221) void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2222) const char *fs_id_buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2223) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2224) struct gfs2_blkreserv *trs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2225) const struct rb_node *n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2226)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2227) gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2228) fs_id_buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2229) (unsigned long long)rgd->rd_addr, rgd->rd_flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2230) rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2231) rgd->rd_reserved, rgd->rd_extfail_pt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2232) if (rgd->rd_sbd->sd_args.ar_rgrplvb) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2233) struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2234)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2235) gfs2_print_dbg(seq, "%s L: f:%02x b:%u i:%u\n", fs_id_buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2236) be32_to_cpu(rgl->rl_flags),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2237) be32_to_cpu(rgl->rl_free),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2238) be32_to_cpu(rgl->rl_dinodes));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2239) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2240) spin_lock(&rgd->rd_rsspin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2241) for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2242) trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2243) dump_rs(seq, trs, fs_id_buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2244) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2245) spin_unlock(&rgd->rd_rsspin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2246) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2247)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2248) static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2249) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2250) struct gfs2_sbd *sdp = rgd->rd_sbd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2251) char fs_id_buf[sizeof(sdp->sd_fsname) + 7];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2253) fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2254) (unsigned long long)rgd->rd_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2255) fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2256) sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2257) gfs2_rgrp_dump(NULL, rgd, fs_id_buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2258) rgd->rd_flags |= GFS2_RDF_ERROR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2259) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2260)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2261) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2262) * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2263) * @ip: The inode we have just allocated blocks for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2264) * @rbm: The start of the allocated blocks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2265) * @len: The extent length
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2266) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2267) * Adjusts a reservation after an allocation has taken place. If the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2268) * reservation does not match the allocation, or if it is now empty
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2269) * then it is removed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2270) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2271)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2272) static void gfs2_adjust_reservation(struct gfs2_inode *ip,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2273) const struct gfs2_rbm *rbm, unsigned len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2274) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2275) struct gfs2_blkreserv *rs = &ip->i_res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2276) struct gfs2_rgrpd *rgd = rbm->rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2277) unsigned rlen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2278) u64 block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2279) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2280)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2281) spin_lock(&rgd->rd_rsspin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2282) if (gfs2_rs_active(rs)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2283) if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2284) block = gfs2_rbm_to_block(rbm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2285) ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2286) rlen = min(rs->rs_free, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2287) rs->rs_free -= rlen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2288) rgd->rd_reserved -= rlen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2289) trace_gfs2_rs(rs, TRACE_RS_CLAIM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2290) if (rs->rs_free && !ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2291) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2292) /* We used up our block reservation, so we should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2293) reserve more blocks next time. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2294) atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2295) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2296) __rs_deltree(rs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2297) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2298) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2299) spin_unlock(&rgd->rd_rsspin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2300) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2301)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2302) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2303) * gfs2_set_alloc_start - Set starting point for block allocation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2304) * @rbm: The rbm which will be set to the required location
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2305) * @ip: The gfs2 inode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2306) * @dinode: Flag to say if allocation includes a new inode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2307) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2308) * This sets the starting point from the reservation if one is active
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2309) * otherwise it falls back to guessing a start point based on the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2310) * inode's goal block or the last allocation point in the rgrp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2311) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2312)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2313) static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2314) const struct gfs2_inode *ip, bool dinode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2315) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2316) u64 goal;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2317)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2318) if (gfs2_rs_active(&ip->i_res)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2319) *rbm = ip->i_res.rs_rbm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2320) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2321) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2322)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2323) if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2324) goal = ip->i_goal;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2325) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2326) goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2327)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2328) if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2329) rbm->bii = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2330) rbm->offset = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2331) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2332) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2333)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2334) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2335) * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2336) * @ip: the inode to allocate the block for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2337) * @bn: Used to return the starting block number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2338) * @nblocks: requested number of blocks/extent length (value/result)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2339) * @dinode: 1 if we're allocating a dinode block, else 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2340) * @generation: the generation number of the inode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2341) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2342) * Returns: 0 or error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2343) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2344)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2345) int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2346) bool dinode, u64 *generation)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2347) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2348) struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2349) struct buffer_head *dibh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2350) struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2351) unsigned int ndata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2352) u64 block; /* block, within the file system scope */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2353) int error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2354)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2355) gfs2_set_alloc_start(&rbm, ip, dinode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2356) error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2357)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2358) if (error == -ENOSPC) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2359) gfs2_set_alloc_start(&rbm, ip, dinode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2360) error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2361) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2362)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2363) /* Since all blocks are reserved in advance, this shouldn't happen */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2364) if (error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2365) fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2366) (unsigned long long)ip->i_no_addr, error, *nblocks,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2367) test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2368) rbm.rgd->rd_extfail_pt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2369) goto rgrp_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2370) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2371)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2372) gfs2_alloc_extent(&rbm, dinode, nblocks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2373) block = gfs2_rbm_to_block(&rbm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2374) rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2375) if (gfs2_rs_active(&ip->i_res))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2376) gfs2_adjust_reservation(ip, &rbm, *nblocks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2377) ndata = *nblocks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2378) if (dinode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2379) ndata--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2380)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2381) if (!dinode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2382) ip->i_goal = block + ndata - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2383) error = gfs2_meta_inode_buffer(ip, &dibh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2384) if (error == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2385) struct gfs2_dinode *di =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2386) (struct gfs2_dinode *)dibh->b_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2387) gfs2_trans_add_meta(ip->i_gl, dibh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2388) di->di_goal_meta = di->di_goal_data =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2389) cpu_to_be64(ip->i_goal);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2390) brelse(dibh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2391) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2392) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2393) if (rbm.rgd->rd_free < *nblocks) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2394) fs_warn(sdp, "nblocks=%u\n", *nblocks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2395) goto rgrp_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2396) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2397)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2398) rbm.rgd->rd_free -= *nblocks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2399) if (dinode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2400) rbm.rgd->rd_dinodes++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2401) *generation = rbm.rgd->rd_igeneration++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2402) if (*generation == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2403) *generation = rbm.rgd->rd_igeneration++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2404) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2405)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2406) gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2407) gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2408)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2409) gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2410) if (dinode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2411) gfs2_trans_remove_revoke(sdp, block, *nblocks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2412)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2413) gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2414)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2415) rbm.rgd->rd_free_clone -= *nblocks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2416) trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2417) dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2418) *bn = block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2419) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2420)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2421) rgrp_error:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2422) gfs2_rgrp_error(rbm.rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2423) return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2424) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2425)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2426) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2427) * __gfs2_free_blocks - free a contiguous run of block(s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2428) * @ip: the inode these blocks are being freed from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2429) * @rgd: the resource group the blocks are in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2430) * @bstart: first block of a run of contiguous blocks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2431) * @blen: the length of the block run
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2432) * @meta: 1 if the blocks represent metadata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2433) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2434) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2435)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2436) void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2437) u64 bstart, u32 blen, int meta)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2438) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2439) struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2440)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2441) rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2442) trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2443) rgd->rd_free += blen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2444) rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2445) gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2446) gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2447)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2448) /* Directories keep their data in the metadata address space */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2449) if (meta || ip->i_depth || gfs2_is_jdata(ip))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2450) gfs2_journal_wipe(ip, bstart, blen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2451) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2452)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2453) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2454) * gfs2_free_meta - free a contiguous run of data block(s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2455) * @ip: the inode these blocks are being freed from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2456) * @rgd: the resource group the blocks are in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2457) * @bstart: first block of a run of contiguous blocks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2458) * @blen: the length of the block run
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2459) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2460) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2461)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2462) void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2463) u64 bstart, u32 blen)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2464) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2465) struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2466)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2467) __gfs2_free_blocks(ip, rgd, bstart, blen, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2468) gfs2_statfs_change(sdp, 0, +blen, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2469) gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2470) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2471)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2472) void gfs2_unlink_di(struct inode *inode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2473) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2474) struct gfs2_inode *ip = GFS2_I(inode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2475) struct gfs2_sbd *sdp = GFS2_SB(inode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2476) struct gfs2_rgrpd *rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2477) u64 blkno = ip->i_no_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2478)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2479) rgd = gfs2_blk2rgrpd(sdp, blkno, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2480) if (!rgd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2481) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2482) rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2483) trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2484) gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2485) gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2486) be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2487) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2488)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2489) void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2490) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2491) struct gfs2_sbd *sdp = rgd->rd_sbd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2492)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2493) rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2494) if (!rgd->rd_dinodes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2495) gfs2_consist_rgrpd(rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2496) rgd->rd_dinodes--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2497) rgd->rd_free++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2498)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2499) gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2500) gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2501) be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2502)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2503) gfs2_statfs_change(sdp, 0, +1, -1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2504) trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2505) gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2506) gfs2_journal_wipe(ip, ip->i_no_addr, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2507) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2508)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2509) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2510) * gfs2_check_blk_type - Check the type of a block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2511) * @sdp: The superblock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2512) * @no_addr: The block number to check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2513) * @type: The block type we are looking for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2514) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2515) * Returns: 0 if the block type matches the expected type
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2516) * -ESTALE if it doesn't match
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2517) * or -ve errno if something went wrong while checking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2518) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2519)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2520) int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2521) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2522) struct gfs2_rgrpd *rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2523) struct gfs2_holder rgd_gh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2524) struct gfs2_rbm rbm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2525) int error = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2526)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2527) rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2528) if (!rgd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2529) goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2530)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2531) error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2532) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2533) goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2534)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2535) rbm.rgd = rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2536) error = gfs2_rbm_from_block(&rbm, no_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2537) if (!WARN_ON_ONCE(error)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2538) if (gfs2_testbit(&rbm, false) != type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2539) error = -ESTALE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2540) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2541)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2542) gfs2_glock_dq_uninit(&rgd_gh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2543)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2544) fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2545) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2546) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2547)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2548) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2549) * gfs2_rlist_add - add a RG to a list of RGs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2550) * @ip: the inode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2551) * @rlist: the list of resource groups
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2552) * @block: the block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2553) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2554) * Figure out what RG a block belongs to and add that RG to the list
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2555) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2556) * FIXME: Don't use NOFAIL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2557) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2558) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2559)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2560) void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2561) u64 block)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2562) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2563) struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2564) struct gfs2_rgrpd *rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2565) struct gfs2_rgrpd **tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2566) unsigned int new_space;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2567) unsigned int x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2568)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2569) if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2570) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2571)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2572) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2573) * The resource group last accessed is kept in the last position.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2574) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2575)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2576) if (rlist->rl_rgrps) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2577) rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2578) if (rgrp_contains_block(rgd, block))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2579) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2580) rgd = gfs2_blk2rgrpd(sdp, block, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2581) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2582) rgd = ip->i_res.rs_rbm.rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2583) if (!rgd || !rgrp_contains_block(rgd, block))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2584) rgd = gfs2_blk2rgrpd(sdp, block, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2585) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2586)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2587) if (!rgd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2588) fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2589) (unsigned long long)block);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2590) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2591) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2592)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2593) for (x = 0; x < rlist->rl_rgrps; x++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2594) if (rlist->rl_rgd[x] == rgd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2595) swap(rlist->rl_rgd[x],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2596) rlist->rl_rgd[rlist->rl_rgrps - 1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2597) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2598) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2599) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2600)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2601) if (rlist->rl_rgrps == rlist->rl_space) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2602) new_space = rlist->rl_space + 10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2603)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2604) tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2605) GFP_NOFS | __GFP_NOFAIL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2606)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2607) if (rlist->rl_rgd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2608) memcpy(tmp, rlist->rl_rgd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2609) rlist->rl_space * sizeof(struct gfs2_rgrpd *));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2610) kfree(rlist->rl_rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2611) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2612)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2613) rlist->rl_space = new_space;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2614) rlist->rl_rgd = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2615) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2616)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2617) rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2618) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2619)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2620) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2621) * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2622) * and initialize an array of glock holders for them
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2623) * @rlist: the list of resource groups
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2624) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2625) * FIXME: Don't use NOFAIL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2626) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2627) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2628)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2629) void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2630) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2631) unsigned int x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2632)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2633) rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2634) sizeof(struct gfs2_holder),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2635) GFP_NOFS | __GFP_NOFAIL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2636) for (x = 0; x < rlist->rl_rgrps; x++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2637) gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2638) LM_ST_EXCLUSIVE, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2639) &rlist->rl_ghs[x]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2640) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2641)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2642) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2643) * gfs2_rlist_free - free a resource group list
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2644) * @rlist: the list of resource groups
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2645) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2646) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2647)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2648) void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2649) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2650) unsigned int x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2651)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2652) kfree(rlist->rl_rgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2653)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2654) if (rlist->rl_ghs) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2655) for (x = 0; x < rlist->rl_rgrps; x++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2656) gfs2_holder_uninit(&rlist->rl_ghs[x]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2657) kfree(rlist->rl_ghs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2658) rlist->rl_ghs = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2659) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2660) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2661)