Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0
/*
* This contains functions for filename crypto management
*
* Copyright (C) 2015, Google, Inc.
* Copyright (C) 2015, Motorola Mobility
*
* Written by Uday Savagaonkar, 2014.
* Modified by Jaegeuk Kim, 2015.
*
* This has not yet undergone a rigorous security audit.
*/
#include <linux/namei.h>
#include <linux/scatterlist.h>
#include <crypto/hash.h>
#include <crypto/sha.h>
#include <crypto/skcipher.h>
#include "fscrypt_private.h"
/*
* struct fscrypt_nokey_name - identifier for directory entry when key is absent
*
* When userspace lists an encrypted directory without access to the key, the
* filesystem must present a unique "no-key name" for each filename that allows
* it to find the directory entry again if requested. Naively, that would just
* mean using the ciphertext filenames. However, since the ciphertext filenames
* can contain illegal characters ('\0' and '/'), they must be encoded in some
* way. We use base64. But that can cause names to exceed NAME_MAX (255
* bytes), so we also need to use a strong hash to abbreviate long names.
*
* The filesystem may also need another kind of hash, the "dirhash", to quickly
* find the directory entry. Since filesystems normally compute the dirhash
* over the on-disk filename (i.e. the ciphertext), it's not computable from
* no-key names that abbreviate the ciphertext using the strong hash to fit in
* NAME_MAX. It's also not computable if it's a keyed hash taken over the
* plaintext (but it may still be available in the on-disk directory entry);
* casefolded directories use this type of dirhash. At least in these cases,
* each no-key name must include the name's dirhash too.
*
* To meet all these requirements, we base64-encode the following
* variable-length structure. It contains the dirhash, or 0's if the filesystem
* didn't provide one; up to 149 bytes of the ciphertext name; and for
* ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes.
*
* This ensures that each no-key name contains everything needed to find the
* directory entry again, contains only legal characters, doesn't exceed
* NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only
* take the performance hit of SHA-256 on very long filenames (which are rare).
*/
struct fscrypt_nokey_name {
<------>u32 dirhash[2];
<------>u8 bytes[149];
<------>u8 sha256[SHA256_DIGEST_SIZE];
}; /* 189 bytes => 252 bytes base64-encoded, which is <= NAME_MAX (255) */
/*
* Decoded size of max-size nokey name, i.e. a name that was abbreviated using
* the strong hash and thus includes the 'sha256' field. This isn't simply
* sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included.
*/
#define FSCRYPT_NOKEY_NAME_MAX offsetofend(struct fscrypt_nokey_name, sha256)
static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
{
<------>if (str->len == 1 && str->name[0] == '.')
<------><------>return true;
<------>if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
<------><------>return true;
<------>return false;
}
/**
* fscrypt_fname_encrypt() - encrypt a filename
* @inode: inode of the parent directory (for regular filenames)
* or of the symlink (for symlink targets)
* @iname: the filename to encrypt
* @out: (output) the encrypted filename
* @olen: size of the encrypted filename. It must be at least @iname->len.
* Any extra space is filled with NUL padding before encryption.
*
* Return: 0 on success, -errno on failure
*/
int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
<------><------><------> u8 *out, unsigned int olen)
{
<------>struct skcipher_request *req = NULL;
<------>DECLARE_CRYPTO_WAIT(wait);
<------>const struct fscrypt_info *ci = inode->i_crypt_info;
<------>struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
<------>union fscrypt_iv iv;
<------>struct scatterlist sg;
<------>int res;
<------>/*
<------> * Copy the filename to the output buffer for encrypting in-place and
<------> * pad it with the needed number of NUL bytes.
<------> */
<------>if (WARN_ON(olen < iname->len))
<------><------>return -ENOBUFS;
<------>memcpy(out, iname->name, iname->len);
<------>memset(out + iname->len, 0, olen - iname->len);
<------>/* Initialize the IV */
<------>fscrypt_generate_iv(&iv, 0, ci);
<------>/* Set up the encryption request */
<------>req = skcipher_request_alloc(tfm, GFP_NOFS);
<------>if (!req)
<------><------>return -ENOMEM;
<------>skcipher_request_set_callback(req,
<------><------><------>CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
<------><------><------>crypto_req_done, &wait);
<------>sg_init_one(&sg, out, olen);
<------>skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);
<------>/* Do the encryption */
<------>res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
<------>skcipher_request_free(req);
<------>if (res < 0) {
<------><------>fscrypt_err(inode, "Filename encryption failed: %d", res);
<------><------>return res;
<------>}
<------>return 0;
}
/**
* fname_decrypt() - decrypt a filename
* @inode: inode of the parent directory (for regular filenames)
* or of the symlink (for symlink targets)
* @iname: the encrypted filename to decrypt
* @oname: (output) the decrypted filename. The caller must have allocated
* enough space for this, e.g. using fscrypt_fname_alloc_buffer().
*
* Return: 0 on success, -errno on failure
*/
static int fname_decrypt(const struct inode *inode,
<------><------><------> const struct fscrypt_str *iname,
<------><------><------> struct fscrypt_str *oname)
{
<------>struct skcipher_request *req = NULL;
<------>DECLARE_CRYPTO_WAIT(wait);
<------>struct scatterlist src_sg, dst_sg;
<------>const struct fscrypt_info *ci = inode->i_crypt_info;
<------>struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
<------>union fscrypt_iv iv;
<------>int res;
<------>/* Allocate request */
<------>req = skcipher_request_alloc(tfm, GFP_NOFS);
<------>if (!req)
<------><------>return -ENOMEM;
<------>skcipher_request_set_callback(req,
<------><------>CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
<------><------>crypto_req_done, &wait);
<------>/* Initialize IV */
<------>fscrypt_generate_iv(&iv, 0, ci);
<------>/* Create decryption request */
<------>sg_init_one(&src_sg, iname->name, iname->len);
<------>sg_init_one(&dst_sg, oname->name, oname->len);
<------>skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv);
<------>res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
<------>skcipher_request_free(req);
<------>if (res < 0) {
<------><------>fscrypt_err(inode, "Filename decryption failed: %d", res);
<------><------>return res;
<------>}
<------>oname->len = strnlen(oname->name, iname->len);
<------>return 0;
}
static const char lookup_table[65] =
<------>"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
#define BASE64_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3)
/**
* base64_encode() - base64-encode some bytes
* @src: the bytes to encode
* @len: number of bytes to encode
* @dst: (output) the base64-encoded string. Not NUL-terminated.
*
* Encodes the input string using characters from the set [A-Za-z0-9+,].
* The encoded string is roughly 4/3 times the size of the input string.
*
* Return: length of the encoded string
*/
static int base64_encode(const u8 *src, int len, char *dst)
{
<------>int i, bits = 0, ac = 0;
<------>char *cp = dst;
<------>for (i = 0; i < len; i++) {
<------><------>ac += src[i] << bits;
<------><------>bits += 8;
<------><------>do {
<------><------><------>*cp++ = lookup_table[ac & 0x3f];
<------><------><------>ac >>= 6;
<------><------><------>bits -= 6;
<------><------>} while (bits >= 6);
<------>}
<------>if (bits)
<------><------>*cp++ = lookup_table[ac & 0x3f];
<------>return cp - dst;
}
static int base64_decode(const char *src, int len, u8 *dst)
{
<------>int i, bits = 0, ac = 0;
<------>const char *p;
<------>u8 *cp = dst;
<------>for (i = 0; i < len; i++) {
<------><------>p = strchr(lookup_table, src[i]);
<------><------>if (p == NULL || src[i] == 0)
<------><------><------>return -2;
<------><------>ac += (p - lookup_table) << bits;
<------><------>bits += 6;
<------><------>if (bits >= 8) {
<------><------><------>*cp++ = ac & 0xff;
<------><------><------>ac >>= 8;
<------><------><------>bits -= 8;
<------><------>}
<------>}
<------>if (ac)
<------><------>return -1;
<------>return cp - dst;
}
bool fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
<------><------><------><------> u32 orig_len, u32 max_len,
<------><------><------><------> u32 *encrypted_len_ret)
{
<------>int padding = 4 << (fscrypt_policy_flags(policy) &
<------><------><------> FSCRYPT_POLICY_FLAGS_PAD_MASK);
<------>u32 encrypted_len;
<------>if (orig_len > max_len)
<------><------>return false;
<------>encrypted_len = max(orig_len, (u32)FS_CRYPTO_BLOCK_SIZE);
<------>encrypted_len = round_up(encrypted_len, padding);
<------>*encrypted_len_ret = min(encrypted_len, max_len);
<------>return true;
}
/**
* fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames
* @max_encrypted_len: maximum length of encrypted filenames the buffer will be
* used to present
* @crypto_str: (output) buffer to allocate
*
* Allocate a buffer that is large enough to hold any decrypted or encoded
* filename (null-terminated), for the given maximum encrypted filename length.
*
* Return: 0 on success, -errno on failure
*/
int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
<------><------><------> struct fscrypt_str *crypto_str)
{
<------>const u32 max_encoded_len = BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX);
<------>u32 max_presented_len;
<------>max_presented_len = max(max_encoded_len, max_encrypted_len);
<------>crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
<------>if (!crypto_str->name)
<------><------>return -ENOMEM;
<------>crypto_str->len = max_presented_len;
<------>return 0;
}
EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
/**
* fscrypt_fname_free_buffer() - free a buffer for presented filenames
* @crypto_str: the buffer to free
*
* Free a buffer that was allocated by fscrypt_fname_alloc_buffer().
*/
void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
{
<------>if (!crypto_str)
<------><------>return;
<------>kfree(crypto_str->name);
<------>crypto_str->name = NULL;
}
EXPORT_SYMBOL(fscrypt_fname_free_buffer);
/**
* fscrypt_fname_disk_to_usr() - convert an encrypted filename to
* user-presentable form
* @inode: inode of the parent directory (for regular filenames)
* or of the symlink (for symlink targets)
* @hash: first part of the name's dirhash, if applicable. This only needs to
* be provided if the filename is located in an indexed directory whose
* encryption key may be unavailable. Not needed for symlink targets.
* @minor_hash: second part of the name's dirhash, if applicable
* @iname: encrypted filename to convert. May also be "." or "..", which
* aren't actually encrypted.
* @oname: output buffer for the user-presentable filename. The caller must
* have allocated enough space for this, e.g. using
* fscrypt_fname_alloc_buffer().
*
* If the key is available, we'll decrypt the disk name. Otherwise, we'll
* encode it for presentation in fscrypt_nokey_name format.
* See struct fscrypt_nokey_name for details.
*
* Return: 0 on success, -errno on failure
*/
int fscrypt_fname_disk_to_usr(const struct inode *inode,
<------><------><------> u32 hash, u32 minor_hash,
<------><------><------> const struct fscrypt_str *iname,
<------><------><------> struct fscrypt_str *oname)
{
<------>const struct qstr qname = FSTR_TO_QSTR(iname);
<------>struct fscrypt_nokey_name nokey_name;
<------>u32 size; /* size of the unencoded no-key name */
<------>if (fscrypt_is_dot_dotdot(&qname)) {
<------><------>oname->name[0] = '.';
<------><------>oname->name[iname->len - 1] = '.';
<------><------>oname->len = iname->len;
<------><------>return 0;
<------>}
<------>if (iname->len < FS_CRYPTO_BLOCK_SIZE)
<------><------>return -EUCLEAN;
<------>if (fscrypt_has_encryption_key(inode))
<------><------>return fname_decrypt(inode, iname, oname);
<------>/*
<------> * Sanity check that struct fscrypt_nokey_name doesn't have padding
<------> * between fields and that its encoded size never exceeds NAME_MAX.
<------> */
<------>BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) !=
<------><------> offsetof(struct fscrypt_nokey_name, bytes));
<------>BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) !=
<------><------> offsetof(struct fscrypt_nokey_name, sha256));
<------>BUILD_BUG_ON(BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX) > NAME_MAX);
<------>nokey_name.dirhash[0] = hash;
<------>nokey_name.dirhash[1] = minor_hash;
<------>if (iname->len <= sizeof(nokey_name.bytes)) {
<------><------>memcpy(nokey_name.bytes, iname->name, iname->len);
<------><------>size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]);
<------>} else {
<------><------>memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes));
<------><------>/* Compute strong hash of remaining part of name. */
<------><------>sha256(&iname->name[sizeof(nokey_name.bytes)],
<------><------> iname->len - sizeof(nokey_name.bytes),
<------><------> nokey_name.sha256);
<------><------>size = FSCRYPT_NOKEY_NAME_MAX;
<------>}
<------>oname->len = base64_encode((const u8 *)&nokey_name, size, oname->name);
<------>return 0;
}
EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
/**
* fscrypt_setup_filename() - prepare to search a possibly encrypted directory
* @dir: the directory that will be searched
* @iname: the user-provided filename being searched for
* @lookup: 1 if we're allowed to proceed without the key because it's
* ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
* proceed without the key because we're going to create the dir_entry.
* @fname: the filename information to be filled in
*
* Given a user-provided filename @iname, this function sets @fname->disk_name
* to the name that would be stored in the on-disk directory entry, if possible.
* If the directory is unencrypted this is simply @iname. Else, if we have the
* directory's encryption key, then @iname is the plaintext, so we encrypt it to
* get the disk_name.
*
* Else, for keyless @lookup operations, @iname should be a no-key name, so we
* decode it to get the struct fscrypt_nokey_name. Non-@lookup operations will
* be impossible in this case, so we fail them with ENOKEY.
*
* If successful, fscrypt_free_filename() must be called later to clean up.
*
* Return: 0 on success, -errno on failure
*/
int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
<------><------><------> int lookup, struct fscrypt_name *fname)
{
<------>struct fscrypt_nokey_name *nokey_name;
<------>int ret;
<------>memset(fname, 0, sizeof(struct fscrypt_name));
<------>fname->usr_fname = iname;
<------>if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
<------><------>fname->disk_name.name = (unsigned char *)iname->name;
<------><------>fname->disk_name.len = iname->len;
<------><------>return 0;
<------>}
<------>ret = fscrypt_get_encryption_info(dir, lookup);
<------>if (ret)
<------><------>return ret;
<------>if (fscrypt_has_encryption_key(dir)) {
<------><------>if (!fscrypt_fname_encrypted_size(&dir->i_crypt_info->ci_policy,
<------><------><------><------><------><------> iname->len,
<------><------><------><------><------><------> dir->i_sb->s_cop->max_namelen,
<------><------><------><------><------><------> &fname->crypto_buf.len))
<------><------><------>return -ENAMETOOLONG;
<------><------>fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
<------><------><------><------><------><------> GFP_NOFS);
<------><------>if (!fname->crypto_buf.name)
<------><------><------>return -ENOMEM;
<------><------>ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name,
<------><------><------><------><------> fname->crypto_buf.len);
<------><------>if (ret)
<------><------><------>goto errout;
<------><------>fname->disk_name.name = fname->crypto_buf.name;
<------><------>fname->disk_name.len = fname->crypto_buf.len;
<------><------>return 0;
<------>}
<------>if (!lookup)
<------><------>return -ENOKEY;
<------>fname->is_nokey_name = true;
<------>/*
<------> * We don't have the key and we are doing a lookup; decode the
<------> * user-supplied name
<------> */
<------>if (iname->len > BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX))
<------><------>return -ENOENT;
<------>fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL);
<------>if (fname->crypto_buf.name == NULL)
<------><------>return -ENOMEM;
<------>ret = base64_decode(iname->name, iname->len, fname->crypto_buf.name);
<------>if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) ||
<------> (ret > offsetof(struct fscrypt_nokey_name, sha256) &&
<------> ret != FSCRYPT_NOKEY_NAME_MAX)) {
<------><------>ret = -ENOENT;
<------><------>goto errout;
<------>}
<------>fname->crypto_buf.len = ret;
<------>nokey_name = (void *)fname->crypto_buf.name;
<------>fname->hash = nokey_name->dirhash[0];
<------>fname->minor_hash = nokey_name->dirhash[1];
<------>if (ret != FSCRYPT_NOKEY_NAME_MAX) {
<------><------>/* The full ciphertext filename is available. */
<------><------>fname->disk_name.name = nokey_name->bytes;
<------><------>fname->disk_name.len =
<------><------><------>ret - offsetof(struct fscrypt_nokey_name, bytes);
<------>}
<------>return 0;
errout:
<------>kfree(fname->crypto_buf.name);
<------>return ret;
}
EXPORT_SYMBOL(fscrypt_setup_filename);
/**
* fscrypt_match_name() - test whether the given name matches a directory entry
* @fname: the name being searched for
* @de_name: the name from the directory entry
* @de_name_len: the length of @de_name in bytes
*
* Normally @fname->disk_name will be set, and in that case we simply compare
* that to the name stored in the directory entry. The only exception is that
* if we don't have the key for an encrypted directory and the name we're
* looking for is very long, then we won't have the full disk_name and instead
* we'll need to match against a fscrypt_nokey_name that includes a strong hash.
*
* Return: %true if the name matches, otherwise %false.
*/
bool fscrypt_match_name(const struct fscrypt_name *fname,
<------><------><------>const u8 *de_name, u32 de_name_len)
{
<------>const struct fscrypt_nokey_name *nokey_name =
<------><------>(const void *)fname->crypto_buf.name;
<------>u8 digest[SHA256_DIGEST_SIZE];
<------>if (likely(fname->disk_name.name)) {
<------><------>if (de_name_len != fname->disk_name.len)
<------><------><------>return false;
<------><------>return !memcmp(de_name, fname->disk_name.name, de_name_len);
<------>}
<------>if (de_name_len <= sizeof(nokey_name->bytes))
<------><------>return false;
<------>if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes)))
<------><------>return false;
<------>sha256(&de_name[sizeof(nokey_name->bytes)],
<------> de_name_len - sizeof(nokey_name->bytes), digest);
<------>return !memcmp(digest, nokey_name->sha256, sizeof(digest));
}
EXPORT_SYMBOL_GPL(fscrypt_match_name);
/**
* fscrypt_fname_siphash() - calculate the SipHash of a filename
* @dir: the parent directory
* @name: the filename to calculate the SipHash of
*
* Given a plaintext filename @name and a directory @dir which uses SipHash as
* its dirhash method and has had its fscrypt key set up, this function
* calculates the SipHash of that name using the directory's secret dirhash key.
*
* Return: the SipHash of @name using the hash key of @dir
*/
u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name)
{
<------>const struct fscrypt_info *ci = dir->i_crypt_info;
<------>WARN_ON(!ci->ci_dirhash_key_initialized);
<------>return siphash(name->name, name->len, &ci->ci_dirhash_key);
}
EXPORT_SYMBOL_GPL(fscrypt_fname_siphash);
/*
* Validate dentries in encrypted directories to make sure we aren't potentially
* caching stale dentries after a key has been added.
*/
int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
{
<------>struct dentry *dir;
<------>int err;
<------>int valid;
<------>/*
<------> * Plaintext names are always valid, since fscrypt doesn't support
<------> * reverting to no-key names without evicting the directory's inode
<------> * -- which implies eviction of the dentries in the directory.
<------> */
<------>if (!(dentry->d_flags & DCACHE_NOKEY_NAME))
<------><------>return 1;
<------>/*
<------> * No-key name; valid if the directory's key is still unavailable.
<------> *
<------> * Although fscrypt forbids rename() on no-key names, we still must use
<------> * dget_parent() here rather than use ->d_parent directly. That's
<------> * because a corrupted fs image may contain directory hard links, which
<------> * the VFS handles by moving the directory's dentry tree in the dcache
<------> * each time ->lookup() finds the directory and it already has a dentry
<------> * elsewhere. Thus ->d_parent can be changing, and we must safely grab
<------> * a reference to some ->d_parent to prevent it from being freed.
<------> */
<------>if (flags & LOOKUP_RCU)
<------><------>return -ECHILD;
<------>dir = dget_parent(dentry);
<------>/*
<------> * Pass allow_unsupported=true, so that files with an unsupported
<------> * encryption policy can be deleted.
<------> */
<------>err = fscrypt_get_encryption_info(d_inode(dir), true);
<------>valid = !fscrypt_has_encryption_key(d_inode(dir));
<------>dput(dir);
<------>if (err < 0)
<------><------>return err;
<------>return valid;
}
EXPORT_SYMBOL_GPL(fscrypt_d_revalidate);