// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) Rockchip Electronics Co., Ltd.
*
* Author: Cerf Yu <cerf.yu@rock-chips.com>
*/
#define pr_fmt(fmt) "rga_mm: " fmt
#include "rga.h"
#include "rga_job.h"
#include "rga_mm.h"
#include "rga_dma_buf.h"
#include "rga_common.h"
#include "rga_iommu.h"
#include "rga_hw_config.h"
#include "rga_debugger.h"
static void rga_current_mm_read_lock(struct mm_struct *mm)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 10, 0)
mmap_read_lock(mm);
#else
down_read(&mm->mmap_sem);
#endif
}
static void rga_current_mm_read_unlock(struct mm_struct *mm)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 10, 0)
mmap_read_unlock(mm);
#else
up_read(&mm->mmap_sem);
#endif
}
static int rga_get_user_pages_from_vma(struct page **pages, unsigned long Memory,
uint32_t pageCount, struct mm_struct *current_mm)
{
int ret = 0;
int i;
struct vm_area_struct *vma;
spinlock_t *ptl;
pte_t *pte;
pgd_t *pgd;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 10, 0)
p4d_t *p4d;
#endif
pud_t *pud;
pmd_t *pmd;
unsigned long pfn;
for (i = 0; i < pageCount; i++) {
vma = find_vma(current_mm, (Memory + i) << PAGE_SHIFT);
if (!vma) {
pr_err("failed to get vma\n");
ret = RGA_OUT_OF_RESOURCES;
break;
}
pgd = pgd_offset(current_mm, (Memory + i) << PAGE_SHIFT);
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) {
pr_err("failed to get pgd\n");
ret = RGA_OUT_OF_RESOURCES;
break;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 10, 0)
/*
* In the four-level page table,
* it will do nothing and return pgd.
*/
p4d = p4d_offset(pgd, (Memory + i) << PAGE_SHIFT);
if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) {
pr_err("failed to get p4d\n");
ret = RGA_OUT_OF_RESOURCES;
break;
}
pud = pud_offset(p4d, (Memory + i) << PAGE_SHIFT);
#else
pud = pud_offset(pgd, (Memory + i) << PAGE_SHIFT);
#endif
if (pud_none(*pud) || unlikely(pud_bad(*pud))) {
pr_err("failed to get pud\n");
ret = RGA_OUT_OF_RESOURCES;
break;
}
pmd = pmd_offset(pud, (Memory + i) << PAGE_SHIFT);
if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) {
pr_err("failed to get pmd\n");
ret = RGA_OUT_OF_RESOURCES;
break;
}
pte = pte_offset_map_lock(current_mm, pmd,
(Memory + i) << PAGE_SHIFT, &ptl);
if (pte_none(*pte)) {
pr_err("failed to get pte\n");
pte_unmap_unlock(pte, ptl);
ret = RGA_OUT_OF_RESOURCES;
break;
}
pfn = pte_pfn(*pte);
pages[i] = pfn_to_page(pfn);
pte_unmap_unlock(pte, ptl);
}
return ret;
}
static int rga_get_user_pages(struct page **pages, unsigned long Memory,
uint32_t pageCount, int writeFlag,
struct mm_struct *current_mm)
{
uint32_t i;
int32_t ret = 0;
int32_t result;
rga_current_mm_read_lock(current_mm);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 168) && \
LINUX_VERSION_CODE < KERNEL_VERSION(4, 5, 0)
result = get_user_pages(current, current_mm, Memory << PAGE_SHIFT,
pageCount, writeFlag ? FOLL_WRITE : 0,
pages, NULL);
#elif LINUX_VERSION_CODE < KERNEL_VERSION(4, 6, 0)
result = get_user_pages(current, current_mm, Memory << PAGE_SHIFT,
pageCount, writeFlag ? FOLL_WRITE : 0, 0, pages, NULL);
#elif LINUX_VERSION_CODE < KERNEL_VERSION(5, 10, 0)
result = get_user_pages_remote(current, current_mm,
Memory << PAGE_SHIFT,
pageCount, writeFlag ? FOLL_WRITE : 0, pages, NULL, NULL);
#else
result = get_user_pages_remote(current_mm, Memory << PAGE_SHIFT,
pageCount, writeFlag ? FOLL_WRITE : 0, pages, NULL, NULL);
#endif
if (result > 0 && result >= pageCount) {
ret = result;
} else {
if (result > 0)
for (i = 0; i < result; i++)
put_page(pages[i]);
ret = rga_get_user_pages_from_vma(pages, Memory, pageCount, current_mm);
if (ret < 0) {
pr_err("Can not get user pages from vma, result = %d, pagecount = %d\n",
result, pageCount);
}
}
rga_current_mm_read_unlock(current_mm);
return ret;
}
static void rga_free_sgt(struct sg_table **sgt_ptr)
{
if (sgt_ptr == NULL || *sgt_ptr == NULL)
return;
sg_free_table(*sgt_ptr);
kfree(*sgt_ptr);
*sgt_ptr = NULL;
}
static struct sg_table *rga_alloc_sgt(struct rga_virt_addr *virt_addr)
{
int ret;
struct sg_table *sgt = NULL;
sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
if (sgt == NULL) {
pr_err("%s alloc sgt error!\n", __func__);
return ERR_PTR(-ENOMEM);
}
/* get sg form pages. */
ret = sg_alloc_table_from_pages(sgt, virt_addr->pages,
virt_addr->page_count,
0, virt_addr->size,
GFP_KERNEL);
if (ret) {
pr_err("sg_alloc_table_from_pages failed");
goto out_free_sgt;
}
return sgt;
out_free_sgt:
kfree(sgt);
return ERR_PTR(ret);
}
static void rga_free_virt_addr(struct rga_virt_addr **virt_addr_p)
{
int i;
struct rga_virt_addr *virt_addr = NULL;
if (virt_addr_p == NULL)
return;
virt_addr = *virt_addr_p;
if (virt_addr == NULL)
return;
for (i = 0; i < virt_addr->result; i++)
put_page(virt_addr->pages[i]);
free_pages((unsigned long)virt_addr->pages, virt_addr->pages_order);
kfree(virt_addr);
*virt_addr_p = NULL;
}
static int rga_alloc_virt_addr(struct rga_virt_addr **virt_addr_p,
uint64_t viraddr,
struct rga_memory_parm *memory_parm,
int writeFlag,
struct mm_struct *mm)
{
int i;
int ret;
int result = 0;
int order;
unsigned int count;
int img_size;
size_t offset;
unsigned long size;
struct page **pages = NULL;
struct rga_virt_addr *virt_addr = NULL;
if (memory_parm->size)
img_size = memory_parm->size;
else
img_size = rga_image_size_cal(memory_parm->width,
memory_parm->height,
memory_parm->format,
NULL, NULL, NULL);
offset = viraddr & (~PAGE_MASK);
count = RGA_GET_PAGE_COUNT(img_size + offset);
size = count * PAGE_SIZE;
if (!size) {
pr_err("failed to calculating buffer size! size = %ld, count = %d, offset = %ld\n",
size, count, (unsigned long)offset);
return -EFAULT;
}
/* alloc pages and page_table */
order = get_order(count * sizeof(struct page *));
pages = (struct page **)__get_free_pages(GFP_KERNEL, order);
if (pages == NULL) {
pr_err("%s can not alloc pages for pages\n", __func__);
return -ENOMEM;
}
/* get pages from virtual address. */
ret = rga_get_user_pages(pages, viraddr >> PAGE_SHIFT, count, writeFlag, mm);
if (ret < 0) {
pr_err("failed to get pages");
ret = -EINVAL;
goto out_free_pages;
} else if (ret > 0) {
/* For put pages */
result = ret;
}
*virt_addr_p = kzalloc(sizeof(struct rga_virt_addr), GFP_KERNEL);
if (*virt_addr_p == NULL) {
pr_err("%s alloc virt_addr error!\n", __func__);
ret = -ENOMEM;
goto out_put_and_free_pages;
}
virt_addr = *virt_addr_p;
virt_addr->addr = viraddr;
virt_addr->pages = pages;
virt_addr->pages_order = order;
virt_addr->page_count = count;
virt_addr->size = size;
virt_addr->offset = offset;
virt_addr->result = result;
return 0;
out_put_and_free_pages:
for (i = 0; i < result; i++)
put_page(pages[i]);
out_free_pages:
free_pages((unsigned long)pages, order);
return ret;
}
static inline bool rga_mm_check_memory_limit(struct rga_scheduler_t *scheduler, int mm_flag)
{
if (!scheduler)
return false;
if (scheduler->data->mmu == RGA_MMU &&
!(mm_flag & RGA_MEM_UNDER_4G)) {
pr_err("%s unsupported Memory larger than 4G!\n",
rga_get_mmu_type_str(scheduler->data->mmu));
return false;
}
return true;
}
/* If it is within 0~4G, return 1 (true). */
static int rga_mm_check_range_sgt(struct sg_table *sgt)
{
int i;
struct scatterlist *sg;
phys_addr_t s_phys = 0;
for_each_sg(sgt->sgl, sg, sgt->orig_nents, i) {
s_phys = sg_phys(sg);
if ((s_phys > 0xffffffff) || (s_phys + sg->length > 0xffffffff))
return 0;
}
return 1;
}
static inline int rga_mm_check_range_phys_addr(phys_addr_t paddr, size_t size)
{
return ((paddr + size) <= 0xffffffff);
}
static inline bool rga_mm_check_contiguous_sgt(struct sg_table *sgt)
{
if (sgt->orig_nents == 1)
return true;
return false;
}
static void rga_mm_unmap_dma_buffer(struct rga_internal_buffer *internal_buffer)
{
if (rga_mm_is_invalid_dma_buffer(internal_buffer->dma_buffer))
return;
rga_dma_unmap_buf(internal_buffer->dma_buffer);
if (internal_buffer->mm_flag & RGA_MEM_PHYSICAL_CONTIGUOUS &&
internal_buffer->phys_addr > 0)
internal_buffer->phys_addr = 0;
kfree(internal_buffer->dma_buffer);
internal_buffer->dma_buffer = NULL;
}
static int rga_mm_map_dma_buffer(struct rga_external_buffer *external_buffer,
struct rga_internal_buffer *internal_buffer,
struct rga_job *job)
{
int ret;
uint32_t mm_flag = 0;
phys_addr_t phys_addr = 0;
struct rga_dma_buffer *buffer;
struct device *map_dev;
struct rga_scheduler_t *scheduler;
scheduler = job ? job->scheduler :
rga_drvdata->scheduler[rga_drvdata->map_scheduler_index];
if (scheduler == NULL) {
pr_err("Invalid scheduler device!\n");
return -EINVAL;
}
/*
* dma-buf api needs to use default_domain of main dev,
* and not IOMMU for devices without iommu_info ptr.
*/
map_dev = scheduler->iommu_info ? scheduler->iommu_info->default_dev : scheduler->dev;
buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
if (buffer == NULL) {
pr_err("%s alloc internal_buffer error!\n", __func__);
return -ENOMEM;
}
switch (external_buffer->type) {
case RGA_DMA_BUFFER:
ret = rga_dma_map_fd((int)external_buffer->memory,
buffer, DMA_BIDIRECTIONAL,
map_dev);
break;
case RGA_DMA_BUFFER_PTR:
ret = rga_dma_map_buf((struct dma_buf *)u64_to_user_ptr(external_buffer->memory),
buffer, DMA_BIDIRECTIONAL,
map_dev);
break;
default:
ret = -EFAULT;
break;
}
if (ret < 0) {
pr_err("%s core[%d] map dma buffer error!\n",
__func__, scheduler->core);
goto free_buffer;
}
buffer->scheduler = scheduler;
if (rga_mm_check_range_sgt(buffer->sgt))
mm_flag |= RGA_MEM_UNDER_4G;
/*
* If it's physically contiguous, then the RGA_MMU can
* directly use the physical address.
*/
if (rga_mm_check_contiguous_sgt(buffer->sgt)) {
phys_addr = sg_phys(buffer->sgt->sgl);
if (phys_addr == 0) {
pr_err("%s get physical address error!", __func__);
goto unmap_buffer;
}
mm_flag |= RGA_MEM_PHYSICAL_CONTIGUOUS;
}
if (!rga_mm_check_memory_limit(scheduler, mm_flag)) {
pr_err("scheduler core[%d] unsupported mm_flag[0x%x]!\n",
scheduler->core, mm_flag);
ret = -EINVAL;
goto unmap_buffer;
}
internal_buffer->dma_buffer = buffer;
internal_buffer->mm_flag = mm_flag;
internal_buffer->phys_addr = phys_addr ? phys_addr : 0;
return 0;
unmap_buffer:
rga_dma_unmap_buf(buffer);
free_buffer:
kfree(buffer);
return ret;
}
static void rga_mm_unmap_virt_addr(struct rga_internal_buffer *internal_buffer)
{
WARN_ON(internal_buffer->dma_buffer == NULL || internal_buffer->virt_addr == NULL);
if (rga_mm_is_invalid_dma_buffer(internal_buffer->dma_buffer))
return;
switch (internal_buffer->dma_buffer->scheduler->data->mmu) {
case RGA_IOMMU:
rga_iommu_unmap(internal_buffer->dma_buffer);
break;
case RGA_MMU:
dma_unmap_sg(internal_buffer->dma_buffer->scheduler->dev,
internal_buffer->dma_buffer->sgt->sgl,
internal_buffer->dma_buffer->sgt->orig_nents,
DMA_BIDIRECTIONAL);
break;
default:
break;
}
if (internal_buffer->mm_flag & RGA_MEM_PHYSICAL_CONTIGUOUS &&
internal_buffer->phys_addr > 0)
internal_buffer->phys_addr = 0;
rga_free_sgt(&internal_buffer->dma_buffer->sgt);
kfree(internal_buffer->dma_buffer);
internal_buffer->dma_buffer = NULL;
rga_free_virt_addr(&internal_buffer->virt_addr);
mmput(internal_buffer->current_mm);
mmdrop(internal_buffer->current_mm);
internal_buffer->current_mm = NULL;
}
static int rga_mm_map_virt_addr(struct rga_external_buffer *external_buffer,
struct rga_internal_buffer *internal_buffer,
struct rga_job *job, int write_flag)
{
int ret;
uint32_t mm_flag = 0;
phys_addr_t phys_addr = 0;
struct sg_table *sgt;
struct rga_virt_addr *virt_addr;
struct rga_dma_buffer *buffer;
struct rga_scheduler_t *scheduler;
scheduler = job ? job->scheduler :
rga_drvdata->scheduler[rga_drvdata->map_scheduler_index];
if (scheduler == NULL) {
pr_err("Invalid scheduler device!\n");
return -EINVAL;
}
internal_buffer->current_mm = job ? job->mm : current->mm;
if (internal_buffer->current_mm == NULL) {
pr_err("%s, cannot get current mm!\n", __func__);
return -EFAULT;
}
mmgrab(internal_buffer->current_mm);
mmget(internal_buffer->current_mm);
ret = rga_alloc_virt_addr(&virt_addr,
external_buffer->memory,
&internal_buffer->memory_parm,
write_flag, internal_buffer->current_mm);
if (ret < 0) {
pr_err("Can not alloc rga_virt_addr from 0x%lx\n",
(unsigned long)external_buffer->memory);
goto put_current_mm;
}
sgt = rga_alloc_sgt(virt_addr);
if (IS_ERR(sgt)) {
pr_err("alloc sgt error!\n");
ret = PTR_ERR(sgt);
goto free_virt_addr;
}
if (rga_mm_check_range_sgt(sgt))
mm_flag |= RGA_MEM_UNDER_4G;
if (rga_mm_check_contiguous_sgt(sgt)) {
phys_addr = sg_phys(sgt->sgl);
if (phys_addr == 0) {
pr_err("%s get physical address error!", __func__);
goto free_sgt;
}
mm_flag |= RGA_MEM_PHYSICAL_CONTIGUOUS;
}
if (!rga_mm_check_memory_limit(scheduler, mm_flag)) {
pr_err("scheduler core[%d] unsupported mm_flag[0x%x]!\n",
scheduler->core, mm_flag);
ret = -EINVAL;
goto free_sgt;
}
buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
if (buffer == NULL) {
pr_err("%s alloc internal dma_buffer error!\n", __func__);
ret = -ENOMEM;
goto free_sgt;
}
switch (scheduler->data->mmu) {
case RGA_IOMMU:
ret = rga_iommu_map_sgt(sgt, virt_addr->size, buffer, scheduler->dev);
if (ret < 0) {
pr_err("%s core[%d] iommu_map virtual address error!\n",
__func__, scheduler->core);
goto free_dma_buffer;
}
break;
case RGA_MMU:
ret = dma_map_sg(scheduler->dev, sgt->sgl, sgt->orig_nents, DMA_BIDIRECTIONAL);
if (ret == 0) {
pr_err("%s core[%d] dma_map_sgt error! va = 0x%lx, nents = %d\n",
__func__, scheduler->core,
(unsigned long)virt_addr->addr, sgt->orig_nents);
ret = -EINVAL;
goto free_dma_buffer;
}
break;
default:
if (mm_flag & RGA_MEM_PHYSICAL_CONTIGUOUS)
break;
pr_err("Current RGA mmu[%d] cannot support virtual address!\n",
scheduler->data->mmu);
goto free_dma_buffer;
}
buffer->sgt = sgt;
buffer->offset = virt_addr->offset;
buffer->size = virt_addr->size;
buffer->scheduler = scheduler;
internal_buffer->virt_addr = virt_addr;
internal_buffer->dma_buffer = buffer;
internal_buffer->mm_flag = mm_flag;
internal_buffer->phys_addr = phys_addr ? phys_addr : 0;
return 0;
free_dma_buffer:
kfree(buffer);
free_sgt:
rga_free_sgt(&sgt);
free_virt_addr:
rga_free_virt_addr(&virt_addr);
put_current_mm:
mmput(internal_buffer->current_mm);
mmdrop(internal_buffer->current_mm);
internal_buffer->current_mm = NULL;
return ret;
}
static void rga_mm_unmap_phys_addr(struct rga_internal_buffer *internal_buffer)
{
WARN_ON(internal_buffer->dma_buffer == NULL);
if (rga_mm_is_invalid_dma_buffer(internal_buffer->dma_buffer))
return;
if (internal_buffer->dma_buffer->scheduler->data->mmu == RGA_IOMMU)
rga_iommu_unmap(internal_buffer->dma_buffer);
kfree(internal_buffer->dma_buffer);
internal_buffer->dma_buffer = NULL;
internal_buffer->phys_addr = 0;
internal_buffer->size = 0;
}
static int rga_mm_map_phys_addr(struct rga_external_buffer *external_buffer,
struct rga_internal_buffer *internal_buffer,
struct rga_job *job)
{
int ret;
phys_addr_t phys_addr;
int buffer_size;
uint32_t mm_flag = 0;
struct rga_dma_buffer *buffer;
struct rga_scheduler_t *scheduler;
scheduler = job ? job->scheduler :
rga_drvdata->scheduler[rga_drvdata->map_scheduler_index];
if (scheduler == NULL) {
pr_err("Invalid scheduler device!\n");
return -EINVAL;
}
if (internal_buffer->memory_parm.size)
buffer_size = internal_buffer->memory_parm.size;
else
buffer_size = rga_image_size_cal(internal_buffer->memory_parm.width,
internal_buffer->memory_parm.height,
internal_buffer->memory_parm.format,
NULL, NULL, NULL);
if (buffer_size <= 0) {
pr_err("Fault to get phys addr size!\n");
return buffer_size == 0 ? -EINVAL : buffer_size;
}
phys_addr = external_buffer->memory;
mm_flag |= RGA_MEM_PHYSICAL_CONTIGUOUS;
if (rga_mm_check_range_phys_addr(phys_addr, buffer_size))
mm_flag |= RGA_MEM_UNDER_4G;
if (!rga_mm_check_memory_limit(scheduler, mm_flag)) {
pr_err("scheduler core[%d] unsupported mm_flag[0x%x]!\n",
scheduler->core, mm_flag);
return -EINVAL;
}
buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
if (buffer == NULL) {
pr_err("%s alloc internal dma buffer error!\n", __func__);
return -ENOMEM;
}
if (scheduler->data->mmu == RGA_IOMMU) {
ret = rga_iommu_map(phys_addr, buffer_size, buffer, scheduler->dev);
if (ret < 0) {
pr_err("%s core[%d] map phys_addr error!\n", __func__, scheduler->core);
return ret;
}
}
buffer->scheduler = scheduler;
internal_buffer->phys_addr = phys_addr;
internal_buffer->size = buffer_size;
internal_buffer->mm_flag = mm_flag;
internal_buffer->dma_buffer = buffer;
return 0;
}
static int rga_mm_unmap_buffer(struct rga_internal_buffer *internal_buffer)
{
switch (internal_buffer->type) {
case RGA_DMA_BUFFER:
case RGA_DMA_BUFFER_PTR:
rga_mm_unmap_dma_buffer(internal_buffer);
break;
case RGA_VIRTUAL_ADDRESS:
rga_mm_unmap_virt_addr(internal_buffer);
break;
case RGA_PHYSICAL_ADDRESS:
rga_mm_unmap_phys_addr(internal_buffer);
break;
default:
pr_err("Illegal external buffer!\n");
return -EFAULT;
}
return 0;
}
static int rga_mm_map_buffer(struct rga_external_buffer *external_buffer,
struct rga_internal_buffer *internal_buffer,
struct rga_job *job, int write_flag)
{
int ret;
memcpy(&internal_buffer->memory_parm, &external_buffer->memory_parm,
sizeof(internal_buffer->memory_parm));
switch (external_buffer->type) {
case RGA_DMA_BUFFER:
case RGA_DMA_BUFFER_PTR:
internal_buffer->type = external_buffer->type;
ret = rga_mm_map_dma_buffer(external_buffer, internal_buffer, job);
if (ret < 0) {
pr_err("%s map dma_buf error!\n", __func__);
return ret;
}
internal_buffer->size = internal_buffer->dma_buffer->size -
internal_buffer->dma_buffer->offset;
internal_buffer->mm_flag |= RGA_MEM_NEED_USE_IOMMU;
break;
case RGA_VIRTUAL_ADDRESS:
internal_buffer->type = RGA_VIRTUAL_ADDRESS;
ret = rga_mm_map_virt_addr(external_buffer, internal_buffer, job, write_flag);
if (ret < 0) {
pr_err("%s iommu_map virtual address error!\n", __func__);
return ret;
}
internal_buffer->size = internal_buffer->virt_addr->size -
internal_buffer->virt_addr->offset;
internal_buffer->mm_flag |= RGA_MEM_NEED_USE_IOMMU;
break;
case RGA_PHYSICAL_ADDRESS:
internal_buffer->type = RGA_PHYSICAL_ADDRESS;
ret = rga_mm_map_phys_addr(external_buffer, internal_buffer, job);
if (ret < 0) {
pr_err("%s iommu_map physical address error!\n", __func__);
return ret;
}
internal_buffer->mm_flag |= RGA_MEM_NEED_USE_IOMMU;
break;
default:
pr_err("Illegal external buffer!\n");
return -EFAULT;
}
return 0;
}
static void rga_mm_kref_release_buffer(struct kref *ref)
{
struct rga_internal_buffer *internal_buffer;
internal_buffer = container_of(ref, struct rga_internal_buffer, refcount);
rga_mm_unmap_buffer(internal_buffer);
idr_remove(&rga_drvdata->mm->memory_idr, internal_buffer->handle);
kfree(internal_buffer);
rga_drvdata->mm->buffer_count--;
}
/*
* Called at driver close to release the memory's handle references.
*/
static int rga_mm_handle_remove(int id, void *ptr, void *data)
{
struct rga_internal_buffer *internal_buffer = ptr;
rga_mm_kref_release_buffer(&internal_buffer->refcount);
return 0;
}
static struct rga_internal_buffer *
rga_mm_lookup_external(struct rga_mm *mm_session,
struct rga_external_buffer *external_buffer)
{
int id;
struct dma_buf *dma_buf = NULL;
struct rga_internal_buffer *temp_buffer = NULL;
struct rga_internal_buffer *output_buffer = NULL;
WARN_ON(!mutex_is_locked(&mm_session->lock));
switch (external_buffer->type) {
case RGA_DMA_BUFFER:
dma_buf = dma_buf_get((int)external_buffer->memory);
if (IS_ERR(dma_buf))
return (struct rga_internal_buffer *)dma_buf;
idr_for_each_entry(&mm_session->memory_idr, temp_buffer, id) {
if (temp_buffer->dma_buffer == NULL)
continue;
if (temp_buffer->dma_buffer[0].dma_buf == dma_buf) {
output_buffer = temp_buffer;
break;
}
}
dma_buf_put(dma_buf);
break;
case RGA_VIRTUAL_ADDRESS:
idr_for_each_entry(&mm_session->memory_idr, temp_buffer, id) {
if (temp_buffer->virt_addr == NULL)
continue;
if (temp_buffer->virt_addr->addr == external_buffer->memory) {
output_buffer = temp_buffer;
break;
}
}
break;
case RGA_PHYSICAL_ADDRESS:
idr_for_each_entry(&mm_session->memory_idr, temp_buffer, id) {
if (temp_buffer->phys_addr == external_buffer->memory) {
output_buffer = temp_buffer;
break;
}
}
break;
case RGA_DMA_BUFFER_PTR:
idr_for_each_entry(&mm_session->memory_idr, temp_buffer, id) {
if (temp_buffer->dma_buffer == NULL)
continue;
if ((unsigned long)temp_buffer->dma_buffer[0].dma_buf ==
external_buffer->memory) {
output_buffer = temp_buffer;
break;
}
}
break;
default:
pr_err("Illegal external buffer!\n");
return NULL;
}
return output_buffer;
}
struct rga_internal_buffer *rga_mm_lookup_handle(struct rga_mm *mm_session, uint32_t handle)
{
struct rga_internal_buffer *output_buffer;
WARN_ON(!mutex_is_locked(&mm_session->lock));
output_buffer = idr_find(&mm_session->memory_idr, handle);
return output_buffer;
}
int rga_mm_lookup_flag(struct rga_mm *mm_session, uint64_t handle)
{
struct rga_internal_buffer *output_buffer;
output_buffer = rga_mm_lookup_handle(mm_session, handle);
if (output_buffer == NULL) {
pr_err("This handle[%ld] is illegal.\n", (unsigned long)handle);
return -EINVAL;
}
return output_buffer->mm_flag;
}
dma_addr_t rga_mm_lookup_iova(struct rga_internal_buffer *buffer)
{
if (rga_mm_is_invalid_dma_buffer(buffer->dma_buffer))
return 0;
return buffer->dma_buffer->iova + buffer->dma_buffer->offset;
}
struct sg_table *rga_mm_lookup_sgt(struct rga_internal_buffer *buffer)
{
if (rga_mm_is_invalid_dma_buffer(buffer->dma_buffer))
return NULL;
return buffer->dma_buffer->sgt;
}
void rga_mm_dump_buffer(struct rga_internal_buffer *dump_buffer)
{
pr_info("handle = %d refcount = %d mm_flag = 0x%x\n",
dump_buffer->handle, kref_read(&dump_buffer->refcount),
dump_buffer->mm_flag);
switch (dump_buffer->type) {
case RGA_DMA_BUFFER:
case RGA_DMA_BUFFER_PTR:
if (rga_mm_is_invalid_dma_buffer(dump_buffer->dma_buffer))
break;
pr_info("dma_buffer:\n");
pr_info("dma_buf = %p, iova = 0x%lx, sgt = %p, size = %ld, map_core = 0x%x\n",
dump_buffer->dma_buffer->dma_buf,
(unsigned long)dump_buffer->dma_buffer->iova,
dump_buffer->dma_buffer->sgt,
dump_buffer->dma_buffer->size,
dump_buffer->dma_buffer->scheduler->core);
if (dump_buffer->mm_flag & RGA_MEM_PHYSICAL_CONTIGUOUS)
pr_info("is contiguous, pa = 0x%lx\n",
(unsigned long)dump_buffer->phys_addr);
break;
case RGA_VIRTUAL_ADDRESS:
if (dump_buffer->virt_addr == NULL)
break;
pr_info("virtual address:\n");
pr_info("va = 0x%lx, pages = %p, size = %ld\n",
(unsigned long)dump_buffer->virt_addr->addr,
dump_buffer->virt_addr->pages,
dump_buffer->virt_addr->size);
if (rga_mm_is_invalid_dma_buffer(dump_buffer->dma_buffer))
break;
pr_info("iova = 0x%lx, offset = 0x%lx, sgt = %p, size = %ld, map_core = 0x%x\n",
(unsigned long)dump_buffer->dma_buffer->iova,
(unsigned long)dump_buffer->dma_buffer->offset,
dump_buffer->dma_buffer->sgt,
dump_buffer->dma_buffer->size,
dump_buffer->dma_buffer->scheduler->core);
if (dump_buffer->mm_flag & RGA_MEM_PHYSICAL_CONTIGUOUS)
pr_info("is contiguous, pa = 0x%lx\n",
(unsigned long)dump_buffer->phys_addr);
break;
case RGA_PHYSICAL_ADDRESS:
pr_info("physical address: pa = 0x%lx\n", (unsigned long)dump_buffer->phys_addr);
break;
default:
pr_err("Illegal external buffer!\n");
break;
}
}
void rga_mm_dump_info(struct rga_mm *mm_session)
{
int id;
struct rga_internal_buffer *dump_buffer;
WARN_ON(!mutex_is_locked(&mm_session->lock));
pr_info("rga mm info:\n");
pr_info("buffer count = %d\n", mm_session->buffer_count);
pr_info("===============================================================\n");
idr_for_each_entry(&mm_session->memory_idr, dump_buffer, id) {
rga_mm_dump_buffer(dump_buffer);
pr_info("---------------------------------------------------------------\n");
}
}
static bool rga_mm_is_need_mmu(struct rga_job *job, struct rga_internal_buffer *buffer)
{
if (buffer == NULL || job == NULL || job->scheduler == NULL)
return false;
/* RK_IOMMU no need to configure enable or not in the driver. */
if (job->scheduler->data->mmu == RGA_IOMMU)
return false;
/* RK_MMU need to configure enable or not in the driver. */
if (buffer->mm_flag & RGA_MEM_PHYSICAL_CONTIGUOUS)
return false;
else if (buffer->mm_flag & RGA_MEM_NEED_USE_IOMMU)
return true;
return false;
}
static int rga_mm_set_mmu_flag(struct rga_job *job)
{
struct rga_mmu_t *mmu_info;
int src_mmu_en;
int src1_mmu_en;
int dst_mmu_en;
int els_mmu_en;
src_mmu_en = rga_mm_is_need_mmu(job, job->src_buffer.addr);
src1_mmu_en = rga_mm_is_need_mmu(job, job->src1_buffer.addr);
dst_mmu_en = rga_mm_is_need_mmu(job, job->dst_buffer.addr);
els_mmu_en = rga_mm_is_need_mmu(job, job->els_buffer.addr);
mmu_info = &job->rga_command_base.mmu_info;
memset(mmu_info, 0x0, sizeof(*mmu_info));
if (src_mmu_en)
mmu_info->mmu_flag |= (0x1 << 8);
if (src1_mmu_en)
mmu_info->mmu_flag |= (0x1 << 9);
if (dst_mmu_en)
mmu_info->mmu_flag |= (0x1 << 10);
if (els_mmu_en)
mmu_info->mmu_flag |= (0x1 << 11);
if (mmu_info->mmu_flag & (0xf << 8)) {
mmu_info->mmu_flag |= 1;
mmu_info->mmu_flag |= 1 << 31;
mmu_info->mmu_en = 1;
}
return 0;
}
static int rga_mm_sgt_to_page_table(struct sg_table *sg,
uint32_t *page_table,
int32_t pageCount,
int32_t use_dma_address)
{
uint32_t i;
unsigned long Address;
uint32_t mapped_size = 0;
uint32_t len;
struct scatterlist *sgl = sg->sgl;
uint32_t sg_num = 0;
uint32_t break_flag = 0;
do {
/*
* The length of each sgl is expected to be obtained here, not
* the length of the entire dma_buf, so sg_dma_len() is not used.
*/
len = sgl->length >> PAGE_SHIFT;
if (use_dma_address)
/*
* The fd passed by user space gets sg through
* dma_buf_map_attachment, so dma_address can
* be use here.
* When the mapped device does not have iommu, it will
* return the first address of the real physical page
* when it meets the requirements of the current device,
* and will trigger swiotlb when it does not meet the
* requirements to obtain a software-mapped physical
* address that is mapped to meet the device address
* requirements.
*/
Address = sg_dma_address(sgl);
else
Address = sg_phys(sgl);
for (i = 0; i < len; i++) {
if (mapped_size + i >= pageCount) {
break_flag = 1;
break;
}
page_table[mapped_size + i] = (uint32_t)(Address + (i << PAGE_SHIFT));
}
if (break_flag)
break;
mapped_size += len;
sg_num += 1;
} while ((sgl = sg_next(sgl)) && (mapped_size < pageCount) && (sg_num < sg->orig_nents));
return 0;
}
static int rga_mm_set_mmu_base(struct rga_job *job,
struct rga_img_info_t *img,
struct rga_job_buffer *job_buf)
{
int ret;
int yrgb_count = 0;
int uv_count = 0;
int v_count = 0;
int page_count = 0;
int order = 0;
uint32_t *page_table = NULL;
struct sg_table *sgt = NULL;
int img_size, yrgb_size, uv_size, v_size;
int img_offset = 0;
int yrgb_offset = 0;
int uv_offset = 0;
int v_offset = 0;
img_size = rga_image_size_cal(img->vir_w, img->vir_h, img->format,
&yrgb_size, &uv_size, &v_size);
if (img_size <= 0) {
pr_err("Image size cal error! width = %d, height = %d, format = %s\n",
img->vir_w, img->vir_h, rga_get_format_name(img->format));
return -EINVAL;
}
/* using third-address */
if (job_buf->uv_addr) {
if (job_buf->y_addr->virt_addr != NULL)
yrgb_offset = job_buf->y_addr->virt_addr->offset;
if (job_buf->uv_addr->virt_addr != NULL)
uv_offset = job_buf->uv_addr->virt_addr->offset;
if (job_buf->v_addr->virt_addr != NULL)
v_offset = job_buf->v_addr->virt_addr->offset;
yrgb_count = RGA_GET_PAGE_COUNT(yrgb_size + yrgb_offset);
uv_count = RGA_GET_PAGE_COUNT(uv_size + uv_offset);
v_count = RGA_GET_PAGE_COUNT(v_size + v_offset);
page_count = yrgb_count + uv_count + v_count;
if (page_count <= 0) {
pr_err("page count cal error! yrba = %d, uv = %d, v = %d\n",
yrgb_count, uv_count, v_count);
return -EFAULT;
}
if (job->flags & RGA_JOB_USE_HANDLE) {
order = get_order(page_count * sizeof(uint32_t *));
page_table = (uint32_t *)__get_free_pages(GFP_KERNEL | GFP_DMA32, order);
if (page_table == NULL) {
pr_err("%s can not alloc pages for pages, order = %d\n",
__func__, order);
return -ENOMEM;
}
} else {
mutex_lock(&rga_drvdata->lock);
page_table = rga_mmu_buf_get(rga_drvdata->mmu_base, page_count);
if (page_table == NULL) {
pr_err("mmu_buf get error!\n");
mutex_unlock(&rga_drvdata->lock);
return -EFAULT;
}
mutex_unlock(&rga_drvdata->lock);
}
sgt = rga_mm_lookup_sgt(job_buf->y_addr);
if (sgt == NULL) {
pr_err("rga2 cannot get sgt from internal buffer!\n");
ret = -EINVAL;
goto err_free_page_table;
}
rga_mm_sgt_to_page_table(sgt, page_table, yrgb_count, false);
sgt = rga_mm_lookup_sgt(job_buf->uv_addr);
if (sgt == NULL) {
pr_err("rga2 cannot get sgt from internal buffer!\n");
ret = -EINVAL;
goto err_free_page_table;
}
rga_mm_sgt_to_page_table(sgt, page_table + yrgb_count, uv_count, false);
sgt = rga_mm_lookup_sgt(job_buf->v_addr);
if (sgt == NULL) {
pr_err("rga2 cannot get sgt from internal buffer!\n");
ret = -EINVAL;
goto err_free_page_table;
}
rga_mm_sgt_to_page_table(sgt, page_table + yrgb_count + uv_count, v_count, false);
img->yrgb_addr = yrgb_offset;
img->uv_addr = (yrgb_count << PAGE_SHIFT) + uv_offset;
img->v_addr = ((yrgb_count + uv_count) << PAGE_SHIFT) + v_offset;
} else {
if (job_buf->addr->virt_addr != NULL)
img_offset = job_buf->addr->virt_addr->offset;
page_count = RGA_GET_PAGE_COUNT(img_size + img_offset);
if (page_count < 0) {
pr_err("page count cal error! yrba = %d, uv = %d, v = %d\n",
yrgb_count, uv_count, v_count);
return -EFAULT;
}
if (job->flags & RGA_JOB_USE_HANDLE) {
order = get_order(page_count * sizeof(uint32_t *));
page_table = (uint32_t *)__get_free_pages(GFP_KERNEL | GFP_DMA32, order);
if (page_table == NULL) {
pr_err("%s can not alloc pages for pages, order = %d\n",
__func__, order);
return -ENOMEM;
}
} else {
mutex_lock(&rga_drvdata->lock);
page_table = rga_mmu_buf_get(rga_drvdata->mmu_base, page_count);
if (page_table == NULL) {
pr_err("mmu_buf get error!\n");
mutex_unlock(&rga_drvdata->lock);
return -EFAULT;
}
mutex_unlock(&rga_drvdata->lock);
}
sgt = rga_mm_lookup_sgt(job_buf->addr);
if (sgt == NULL) {
pr_err("rga2 cannot get sgt from internal buffer!\n");
ret = -EINVAL;
goto err_free_page_table;
}
rga_mm_sgt_to_page_table(sgt, page_table, page_count, false);
img->yrgb_addr = img_offset;
rga_convert_addr(img, false);
}
job_buf->page_table = page_table;
job_buf->order = order;
job_buf->page_count = page_count;
return 0;
err_free_page_table:
if (job->flags & RGA_JOB_USE_HANDLE)
free_pages((unsigned long)page_table, order);
return ret;
}
static int rga_mm_sync_dma_sg_for_device(struct rga_internal_buffer *buffer,
struct rga_job *job,
enum dma_data_direction dir)
{
struct sg_table *sgt;
struct rga_scheduler_t *scheduler;
sgt = rga_mm_lookup_sgt(buffer);
if (sgt == NULL) {
pr_err("%s(%d), failed to get sgt, core = 0x%x\n",
__func__, __LINE__, job->core);
return -EINVAL;
}
scheduler = buffer->dma_buffer->scheduler;
if (scheduler == NULL) {
pr_err("%s(%d), failed to get scheduler, core = 0x%x\n",
__func__, __LINE__, job->core);
return -EFAULT;
}
dma_sync_sg_for_device(scheduler->dev, sgt->sgl, sgt->orig_nents, dir);
return 0;
}
static int rga_mm_sync_dma_sg_for_cpu(struct rga_internal_buffer *buffer,
struct rga_job *job,
enum dma_data_direction dir)
{
struct sg_table *sgt;
struct rga_scheduler_t *scheduler;
sgt = rga_mm_lookup_sgt(buffer);
if (sgt == NULL) {
pr_err("%s(%d), failed to get sgt, core = 0x%x\n",
__func__, __LINE__, job->core);
return -EINVAL;
}
scheduler = buffer->dma_buffer->scheduler;
if (scheduler == NULL) {
pr_err("%s(%d), failed to get scheduler, core = 0x%x\n",
__func__, __LINE__, job->core);
return -EFAULT;
}
dma_sync_sg_for_cpu(scheduler->dev, sgt->sgl, sgt->orig_nents, dir);
return 0;
}
static int rga_mm_get_buffer_info(struct rga_job *job,
struct rga_internal_buffer *internal_buffer,
uint64_t *channel_addr)
{
uint64_t addr;
switch (job->scheduler->data->mmu) {
case RGA_IOMMU:
addr = rga_mm_lookup_iova(internal_buffer);
if (addr == 0) {
pr_err("core[%d] lookup buffer_type[0x%x] iova error!\n",
job->core, internal_buffer->type);
return -EINVAL;
}
break;
case RGA_MMU:
default:
if (internal_buffer->mm_flag & RGA_MEM_PHYSICAL_CONTIGUOUS) {
addr = internal_buffer->phys_addr;
break;
}
switch (internal_buffer->type) {
case RGA_DMA_BUFFER:
case RGA_DMA_BUFFER_PTR:
addr = 0;
break;
case RGA_VIRTUAL_ADDRESS:
addr = internal_buffer->virt_addr->addr;
break;
case RGA_PHYSICAL_ADDRESS:
addr = internal_buffer->phys_addr;
break;
default:
pr_err("Illegal external buffer!\n");
return -EFAULT;
}
break;
}
*channel_addr = addr;
return 0;
}
static int rga_mm_get_buffer(struct rga_mm *mm,
struct rga_job *job,
uint64_t handle,
uint64_t *channel_addr,
struct rga_internal_buffer **buf,
enum dma_data_direction dir)
{
int ret = 0;
struct rga_internal_buffer *internal_buffer = NULL;
if (handle == 0) {
pr_err("No buffer handle can be used!\n");
return -EFAULT;
}
mutex_lock(&mm->lock);
*buf = rga_mm_lookup_handle(mm, handle);
if (*buf == NULL) {
pr_err("This handle[%ld] is illegal.\n", (unsigned long)handle);
mutex_unlock(&mm->lock);
return -EFAULT;
}
internal_buffer = *buf;
kref_get(&internal_buffer->refcount);
if (DEBUGGER_EN(MM)) {
pr_info("handle[%d] get info:\n", (int)handle);
rga_mm_dump_buffer(internal_buffer);
}
mutex_unlock(&mm->lock);
ret = rga_mm_get_buffer_info(job, internal_buffer, channel_addr);
if (ret < 0) {
pr_err("handle[%ld] failed to get internal buffer info!\n", (unsigned long)handle);
return ret;
}
if (internal_buffer->type == RGA_VIRTUAL_ADDRESS) {
/*
* Some userspace virtual addresses do not have an
* interface for flushing the cache, so it is mandatory
* to flush the cache when the virtual address is used.
*/
ret = rga_mm_sync_dma_sg_for_device(internal_buffer, job, dir);
if (ret < 0) {
pr_err("sync sgt for device error!\n");
return ret;
}
}
return 0;
}
static void rga_mm_put_buffer(struct rga_mm *mm,
struct rga_job *job,
struct rga_internal_buffer *internal_buffer,
enum dma_data_direction dir)
{
if (internal_buffer->type == RGA_VIRTUAL_ADDRESS && dir != DMA_NONE)
if (rga_mm_sync_dma_sg_for_cpu(internal_buffer, job, dir))
pr_err("sync sgt for cpu error!\n");
mutex_lock(&mm->lock);
kref_put(&internal_buffer->refcount, rga_mm_kref_release_buffer);
mutex_unlock(&mm->lock);
}
static int rga_mm_get_channel_handle_info(struct rga_mm *mm,
struct rga_job *job,
struct rga_img_info_t *img,
struct rga_job_buffer *job_buf,
enum dma_data_direction dir)
{
int ret = 0;
int handle = 0;
/* using third-address */
if (img->uv_addr > 0) {
handle = img->yrgb_addr;
if (handle > 0) {
ret = rga_mm_get_buffer(mm, job, handle, &img->yrgb_addr,
&job_buf->y_addr, dir);
if (ret < 0) {
pr_err("handle[%d] Can't get src y/rgb address info!\n", handle);
return ret;
}
}
handle = img->uv_addr;
if (handle > 0) {
ret = rga_mm_get_buffer(mm, job, handle, &img->uv_addr,
&job_buf->uv_addr, dir);
if (ret < 0) {
pr_err("handle[%d] Can't get src uv address info!\n", handle);
return ret;
}
}
handle = img->v_addr;
if (handle > 0) {
ret = rga_mm_get_buffer(mm, job, handle, &img->v_addr,
&job_buf->v_addr, dir);
if (ret < 0) {
pr_err("handle[%d] Can't get src uv address info!\n", handle);
return ret;
}
}
} else {
handle = img->yrgb_addr;
if (handle > 0) {
ret = rga_mm_get_buffer(mm, job, handle, &img->yrgb_addr,
&job_buf->addr, dir);
if (ret < 0) {
pr_err("handle[%d] Can't get src y/rgb address info!\n", handle);
return ret;
}
}
rga_convert_addr(img, false);
}
if (job->scheduler->data->mmu == RGA_MMU &&
rga_mm_is_need_mmu(job, job_buf->addr)) {
ret = rga_mm_set_mmu_base(job, img, job_buf);
if (ret < 0) {
pr_err("Can't set RGA2 MMU_BASE from handle!\n");
return ret;
}
}
return 0;
}
static void rga_mm_put_channel_handle_info(struct rga_mm *mm,
struct rga_job *job,
struct rga_job_buffer *job_buf,
enum dma_data_direction dir)
{
if (job_buf->y_addr)
rga_mm_put_buffer(mm, job, job_buf->y_addr, dir);
if (job_buf->uv_addr)
rga_mm_put_buffer(mm, job, job_buf->uv_addr, dir);
if (job_buf->v_addr)
rga_mm_put_buffer(mm, job, job_buf->v_addr, dir);
if (job_buf->page_table)
free_pages((unsigned long)job_buf->page_table, job_buf->order);
}
static int rga_mm_get_handle_info(struct rga_job *job)
{
int ret = 0;
struct rga_req *req = NULL;
struct rga_mm *mm = NULL;
enum dma_data_direction dir;
req = &job->rga_command_base;
mm = rga_drvdata->mm;
if (likely(req->src.yrgb_addr > 0)) {
ret = rga_mm_get_channel_handle_info(mm, job, &req->src,
&job->src_buffer,
DMA_TO_DEVICE);
if (ret < 0) {
pr_err("Can't get src buffer third info!\n");
return ret;
}
}
if (likely(req->dst.yrgb_addr > 0)) {
ret = rga_mm_get_channel_handle_info(mm, job, &req->dst,
&job->dst_buffer,
DMA_TO_DEVICE);
if (ret < 0) {
pr_err("Can't get dst buffer third info!\n");
return ret;
}
}
if (likely(req->pat.yrgb_addr > 0)) {
if (req->render_mode != UPDATE_PALETTE_TABLE_MODE) {
if (req->bsfilter_flag)
dir = DMA_BIDIRECTIONAL;
else
dir = DMA_TO_DEVICE;
ret = rga_mm_get_channel_handle_info(mm, job, &req->pat,
&job->src1_buffer,
dir);
} else {
ret = rga_mm_get_channel_handle_info(mm, job, &req->pat,
&job->els_buffer,
DMA_BIDIRECTIONAL);
}
if (ret < 0) {
pr_err("Can't get pat buffer third info!\n");
return ret;
}
}
rga_mm_set_mmu_flag(job);
return 0;
}
static void rga_mm_put_handle_info(struct rga_job *job)
{
struct rga_mm *mm = rga_drvdata->mm;
rga_mm_put_channel_handle_info(mm, job, &job->src_buffer, DMA_NONE);
rga_mm_put_channel_handle_info(mm, job, &job->dst_buffer, DMA_FROM_DEVICE);
rga_mm_put_channel_handle_info(mm, job, &job->src1_buffer, DMA_NONE);
rga_mm_put_channel_handle_info(mm, job, &job->els_buffer, DMA_NONE);
}
static void rga_mm_put_channel_external_buffer(struct rga_job_buffer *job_buffer)
{
if (job_buffer->ex_addr->type == RGA_DMA_BUFFER_PTR)
dma_buf_put((struct dma_buf *)(unsigned long)job_buffer->ex_addr->memory);
kfree(job_buffer->ex_addr);
job_buffer->ex_addr = NULL;
}
static int rga_mm_get_channel_external_buffer(int mmu_flag,
struct rga_img_info_t *img_info,
struct rga_job_buffer *job_buffer)
{
struct dma_buf *dma_buf = NULL;
struct rga_external_buffer *external_buffer = NULL;
/* Default unsupported multi-planar format */
external_buffer = kzalloc(sizeof(*external_buffer), GFP_KERNEL);
if (external_buffer == NULL) {
pr_err("Cannot alloc job_buffer!\n");
return -ENOMEM;
}
if (img_info->yrgb_addr) {
dma_buf = dma_buf_get(img_info->yrgb_addr);
if (IS_ERR(dma_buf)) {
pr_err("%s dma_buf_get fail fd[%lu]\n",
__func__, (unsigned long)img_info->yrgb_addr);
kfree(external_buffer);
return -EINVAL;
}
external_buffer->memory = (unsigned long)dma_buf;
external_buffer->type = RGA_DMA_BUFFER_PTR;
} else if (mmu_flag && img_info->uv_addr) {
external_buffer->memory = (uint64_t)img_info->uv_addr;
external_buffer->type = RGA_VIRTUAL_ADDRESS;
} else if (img_info->uv_addr) {
external_buffer->memory = (uint64_t)img_info->uv_addr;
external_buffer->type = RGA_PHYSICAL_ADDRESS;
} else {
kfree(external_buffer);
return -EINVAL;
}
external_buffer->memory_parm.width = img_info->vir_w;
external_buffer->memory_parm.height = img_info->vir_h;
external_buffer->memory_parm.format = img_info->format;
job_buffer->ex_addr = external_buffer;
return 0;
}
static void rga_mm_put_external_buffer(struct rga_job *job)
{
if (job->src_buffer.ex_addr)
rga_mm_put_channel_external_buffer(&job->src_buffer);
if (job->src1_buffer.ex_addr)
rga_mm_put_channel_external_buffer(&job->src1_buffer);
if (job->dst_buffer.ex_addr)
rga_mm_put_channel_external_buffer(&job->dst_buffer);
if (job->els_buffer.ex_addr)
rga_mm_put_channel_external_buffer(&job->els_buffer);
}
static int rga_mm_get_external_buffer(struct rga_job *job)
{
int ret = -EINVAL;
int mmu_flag;
struct rga_img_info_t *src0 = NULL;
struct rga_img_info_t *src1 = NULL;
struct rga_img_info_t *dst = NULL;
struct rga_img_info_t *els = NULL;
if (job->rga_command_base.render_mode != COLOR_FILL_MODE)
src0 = &job->rga_command_base.src;
if (job->rga_command_base.render_mode != UPDATE_PALETTE_TABLE_MODE)
src1 = job->rga_command_base.bsfilter_flag ?
&job->rga_command_base.pat : NULL;
else
els = &job->rga_command_base.pat;
dst = &job->rga_command_base.dst;
if (likely(src0)) {
mmu_flag = ((job->rga_command_base.mmu_info.mmu_flag >> 8) & 1);
ret = rga_mm_get_channel_external_buffer(mmu_flag, src0, &job->src_buffer);
if (ret < 0) {
pr_err("Cannot get src0 channel buffer!\n");
return ret;
}
}
if (likely(dst)) {
mmu_flag = ((job->rga_command_base.mmu_info.mmu_flag >> 10) & 1);
ret = rga_mm_get_channel_external_buffer(mmu_flag, dst, &job->dst_buffer);
if (ret < 0) {
pr_err("Cannot get dst channel buffer!\n");
goto error_put_buffer;
}
}
if (src1) {
mmu_flag = ((job->rga_command_base.mmu_info.mmu_flag >> 9) & 1);
ret = rga_mm_get_channel_external_buffer(mmu_flag, src1, &job->src1_buffer);
if (ret < 0) {
pr_err("Cannot get src1 channel buffer!\n");
goto error_put_buffer;
}
}
if (els) {
mmu_flag = ((job->rga_command_base.mmu_info.mmu_flag >> 11) & 1);
ret = rga_mm_get_channel_external_buffer(mmu_flag, els, &job->els_buffer);
if (ret < 0) {
pr_err("Cannot get els channel buffer!\n");
goto error_put_buffer;
}
}
return 0;
error_put_buffer:
rga_mm_put_external_buffer(job);
return ret;
}
static void rga_mm_unmap_channel_job_buffer(struct rga_job *job,
struct rga_job_buffer *job_buffer,
enum dma_data_direction dir)
{
if (job_buffer->addr->type == RGA_VIRTUAL_ADDRESS && dir != DMA_NONE)
if (rga_mm_sync_dma_sg_for_cpu(job_buffer->addr, job, dir))
pr_err("sync sgt for cpu error!\n");
rga_mm_unmap_buffer(job_buffer->addr);
kfree(job_buffer->addr);
job_buffer->page_table = NULL;
}
static int rga_mm_map_channel_job_buffer(struct rga_job *job,
struct rga_img_info_t *img,
struct rga_job_buffer *job_buffer,
enum dma_data_direction dir,
int write_flag)
{
int ret;
struct rga_internal_buffer *buffer = NULL;
buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
if (buffer == NULL) {
pr_err("%s alloc internal_buffer error!\n", __func__);
return -ENOMEM;
}
ret = rga_mm_map_buffer(job_buffer->ex_addr, buffer, job, write_flag);
if (ret < 0) {
pr_err("job buffer map failed!\n");
goto error_free_buffer;
}
ret = rga_mm_get_buffer_info(job, buffer, &img->yrgb_addr);
if (ret < 0) {
pr_err("Failed to get internal buffer info!\n");
goto error_unmap_buffer;
}
if (buffer->type == RGA_VIRTUAL_ADDRESS) {
/*
* Some userspace virtual addresses do not have an
* interface for flushing the cache, so it is mandatory
* to flush the cache when the virtual address is used.
*/
ret = rga_mm_sync_dma_sg_for_device(buffer, job, dir);
if (ret < 0) {
pr_err("sync sgt for device error!\n");
goto error_unmap_buffer;
}
}
rga_convert_addr(img, false);
job_buffer->addr = buffer;
if (job->scheduler->data->mmu == RGA_MMU &&
rga_mm_is_need_mmu(job, job_buffer->addr)) {
ret = rga_mm_set_mmu_base(job, img, job_buffer);
if (ret < 0) {
pr_err("Can't set RGA2 MMU_BASE!\n");
job_buffer->addr = NULL;
goto error_unmap_buffer;
}
}
return 0;
error_unmap_buffer:
rga_mm_unmap_buffer(buffer);
error_free_buffer:
kfree(buffer);
return ret;
}
static void rga_mm_unmap_buffer_info(struct rga_job *job)
{
if (job->src_buffer.addr)
rga_mm_unmap_channel_job_buffer(job, &job->src_buffer, DMA_NONE);
if (job->dst_buffer.addr)
rga_mm_unmap_channel_job_buffer(job, &job->dst_buffer, DMA_FROM_DEVICE);
if (job->src1_buffer.addr)
rga_mm_unmap_channel_job_buffer(job, &job->src1_buffer, DMA_NONE);
if (job->els_buffer.addr)
rga_mm_unmap_channel_job_buffer(job, &job->els_buffer, DMA_NONE);
rga_mm_put_external_buffer(job);
}
static int rga_mm_map_buffer_info(struct rga_job *job)
{
int ret = 0;
struct rga_req *req = NULL;
enum dma_data_direction dir;
ret = rga_mm_get_external_buffer(job);
if (ret < 0) {
pr_err("failed to get external buffer from job_cmd!\n");
return ret;
}
req = &job->rga_command_base;
if (likely(job->src_buffer.ex_addr)) {
ret = rga_mm_map_channel_job_buffer(job, &req->src,
&job->src_buffer,
DMA_TO_DEVICE, false);
if (ret < 0) {
pr_err("src channel map job buffer failed!");
goto error_unmap_buffer;
}
}
if (likely(job->dst_buffer.ex_addr)) {
ret = rga_mm_map_channel_job_buffer(job, &req->dst,
&job->dst_buffer,
DMA_TO_DEVICE, true);
if (ret < 0) {
pr_err("dst channel map job buffer failed!");
goto error_unmap_buffer;
}
}
if (job->src1_buffer.ex_addr) {
if (req->bsfilter_flag)
dir = DMA_BIDIRECTIONAL;
else
dir = DMA_TO_DEVICE;
ret = rga_mm_map_channel_job_buffer(job, &req->pat,
&job->src1_buffer,
dir, false);
if (ret < 0) {
pr_err("src1 channel map job buffer failed!");
goto error_unmap_buffer;
}
}
if (job->els_buffer.ex_addr) {
ret = rga_mm_map_channel_job_buffer(job, &req->pat,
&job->els_buffer,
DMA_BIDIRECTIONAL, false);
if (ret < 0) {
pr_err("els channel map job buffer failed!");
goto error_unmap_buffer;
}
}
rga_mm_set_mmu_flag(job);
return 0;
error_unmap_buffer:
rga_mm_unmap_buffer_info(job);
return ret;
}
int rga_mm_map_job_info(struct rga_job *job)
{
int ret;
if (job->flags & RGA_JOB_USE_HANDLE) {
ret = rga_mm_get_handle_info(job);
if (ret < 0) {
pr_err("failed to get buffer from handle\n");
return ret;
}
} else {
ret = rga_mm_map_buffer_info(job);
if (ret < 0) {
pr_err("failed to map buffer\n");
return ret;
}
}
return 0;
}
void rga_mm_unmap_job_info(struct rga_job *job)
{
if (job->flags & RGA_JOB_USE_HANDLE)
rga_mm_put_handle_info(job);
else
rga_mm_unmap_buffer_info(job);
}
uint32_t rga_mm_import_buffer(struct rga_external_buffer *external_buffer,
struct rga_session *session)
{
int ret = 0, new_id;
struct rga_mm *mm;
struct rga_internal_buffer *internal_buffer;
mm = rga_drvdata->mm;
if (mm == NULL) {
pr_err("rga mm is null!\n");
return 0;
}
mutex_lock(&mm->lock);
/* first, Check whether to rga_mm */
internal_buffer = rga_mm_lookup_external(mm, external_buffer);
if (!IS_ERR_OR_NULL(internal_buffer)) {
kref_get(&internal_buffer->refcount);
mutex_unlock(&mm->lock);
return internal_buffer->handle;
}
/* finally, map and cached external_buffer in rga_mm */
internal_buffer = kzalloc(sizeof(struct rga_internal_buffer), GFP_KERNEL);
if (internal_buffer == NULL) {
pr_err("%s alloc internal_buffer error!\n", __func__);
mutex_unlock(&mm->lock);
return 0;
}
ret = rga_mm_map_buffer(external_buffer, internal_buffer, NULL, true);
if (ret < 0)
goto FREE_INTERNAL_BUFFER;
kref_init(&internal_buffer->refcount);
internal_buffer->session = session;
/*
* Get the user-visible handle using idr. Preload and perform
* allocation under our spinlock.
*/
idr_preload(GFP_KERNEL);
new_id = idr_alloc_cyclic(&mm->memory_idr, internal_buffer, 1, 0, GFP_NOWAIT);
idr_preload_end();
if (new_id < 0) {
pr_err("internal_buffer alloc id failed!\n");
goto FREE_INTERNAL_BUFFER;
}
internal_buffer->handle = new_id;
mm->buffer_count++;
if (DEBUGGER_EN(MM)) {
pr_info("import buffer:\n");
rga_mm_dump_buffer(internal_buffer);
}
mutex_unlock(&mm->lock);
return internal_buffer->handle;
FREE_INTERNAL_BUFFER:
mutex_unlock(&mm->lock);
kfree(internal_buffer);
return 0;
}
int rga_mm_release_buffer(uint32_t handle)
{
struct rga_mm *mm;
struct rga_internal_buffer *internal_buffer;
mm = rga_drvdata->mm;
if (mm == NULL) {
pr_err("rga mm is null!\n");
return -EFAULT;
}
mutex_lock(&mm->lock);
/* Find the buffer that has been imported */
internal_buffer = rga_mm_lookup_handle(mm, handle);
if (IS_ERR_OR_NULL(internal_buffer)) {
pr_err("This is not a buffer that has been imported, handle = %d\n", (int)handle);
mutex_unlock(&mm->lock);
return -ENOENT;
}
if (DEBUGGER_EN(MM)) {
pr_info("release buffer:\n");
rga_mm_dump_buffer(internal_buffer);
}
kref_put(&internal_buffer->refcount, rga_mm_kref_release_buffer);
mutex_unlock(&mm->lock);
return 0;
}
int rga_mm_session_release_buffer(struct rga_session *session)
{
int i;
struct rga_mm *mm;
struct rga_internal_buffer *buffer;
mm = rga_drvdata->mm;
if (mm == NULL) {
pr_err("rga mm is null!\n");
return -EFAULT;
}
mutex_lock(&mm->lock);
idr_for_each_entry(&mm->memory_idr, buffer, i) {
if (session == buffer->session) {
pr_err("[tgid:%d] Decrement the reference of handle[%d] when the user exits\n",
session->tgid, buffer->handle);
kref_put(&buffer->refcount, rga_mm_kref_release_buffer);
}
}
mutex_unlock(&mm->lock);
return 0;
}
int rga_mm_init(struct rga_mm **mm_session)
{
struct rga_mm *mm = NULL;
*mm_session = kzalloc(sizeof(struct rga_mm), GFP_KERNEL);
if (*mm_session == NULL) {
pr_err("can not kzalloc for rga buffer mm_session\n");
return -ENOMEM;
}
mm = *mm_session;
mutex_init(&mm->lock);
idr_init_base(&mm->memory_idr, 1);
return 0;
}
int rga_mm_remove(struct rga_mm **mm_session)
{
struct rga_mm *mm = *mm_session;
mutex_lock(&mm->lock);
idr_for_each(&mm->memory_idr, &rga_mm_handle_remove, mm);
idr_destroy(&mm->memory_idr);
mutex_unlock(&mm->lock);
kfree(*mm_session);
*mm_session = NULL;
return 0;
}